concurrent access to static methods in java, is synchronization needed? - multithreading

Do different threads accessing method "foo" have their own copy of local variables, or it is needed to make this method synchronized?
class X {
static returnType foo( Object arg) {
Object localvar;
// perform some calculation based on localvar and arg.
// no non-local variable is used i.e: this is a utility method.
// return something.
}
}

You don't need to synchronize that method. The local variable gets created in the current thread's "memory space" and there is no way that it will get accessed by any other thread (from what you've shown above).

Since the variables used are defined/used in it's own scope there is no need for syncronize the method.

The method should not be synchronized but you should use a final variable arg ie
static returnType foo(final Object arg).

Related

Why is the property value not instantly updated when multi-threading? C#

I have a Task running which updates a Property in another thread.
The moment it updates it, inside a loop it rechecks the variable and often happens that the variable still isn't updated? (a second, two)
Here's an example:
while (true)
{
if (someProperty) // Fails to recognize the set variable of True.
{
// Do something...
}
someProperty = true;
}
Is it a multi-thread issue and those should be synchronized? What would be the best way to solve that?
if this variable is shared between threads, it must be declared as volatile.
https://msdn.microsoft.com/en-us/library/x13ttww7.aspx

How can I implement callback functions in a QObject-derived class which are called from non-Qt multi-threaded libraries?

(Pseudo-)Code
Here is a non-compilable code-sketch of the concepts I am having trouble with:
struct Data {};
struct A {};
struct B {};
struct C {};
/* and many many more...*/
template<typename T>
class Listener {
public:
Listener(MyObject* worker):worker(worker)
{ /* do some magic to register with RTI DDS */ };
public:
// This function is used ass a callback from RTI DDS, i.e. it will be
// called from other threads when new Data is available
void callBackFunction(Data d)
{
T t = extractFromData(d);
// Option 1: direct function call
// works somewhat, but shows "QObject::startTimer: timers cannot be started
// from another thread" at the console...
worker->doSomeWorkWithData(t); //
// Option 2: Use invokeMethod:
// seems to fail, as the macro expands including '"T"' and that type isn't
// registered with the QMetaType system...
// QMetaObject::invokeMethod(worker,"doSomeGraphicsWork",Qt::AutoConnection,
// Q_ARG(T, t)
// );
// Option 3: use signals slots
// fails as I can't make Listener, a template class, a QObject...
// emit workNeedsToBeDone(t);
}
private:
MyObject* worker;
T extractFromData(Data d){ return T(d);};
};
class MyObject : public QObject {
Q_OBJECT
public Q_SLOTS:
void doSomeWorkWithData(A a); // This one affects some QGraphicsItems.
void doSomeWorkWithData(B b){};
void doSomeWorkWithData(C c){};
public:
MyObject():QObject(nullptr){};
void init()
{
// listeners are not created in the constructor, but they should have the
// same thread affinity as the MyObject instance that creates them...
// (which in this example--and in my actual code--would be the main GUI
// thread...)
new Listener<A>(this);
new Listener<B>(this);
new Listener<C>(this);
};
};
main()
{
QApplication app;
/* plenty of stuff to set up RTI DDS and other things... */
auto myObject = new MyObject();
/* stuff resulting in the need to separate "construction" and "initialization" */
myObject.init();
return app.exec();
};
Some more details from the actual code:
The Listener in the example is a RTI DataReaderListener, the callback
function is onDataAvailable()
What I would like to accomplish
I am trying to write a little distributed program that uses RTI's Connext DDS for communication and Qt5 for the GUI stuff--however, I don't believe those details do matter much as the problem, as far as I understood it, boils down to the following:
I have a QObject-derived object myObject whose thread affinity might or might not be with the main GUI thread (but for simplicity, let's assume that is the case.)
I want that object to react to event's which happen in another, non-Qt 3rd-party library (in my example code above represented by the functions doSomeWorkWithData().
What I understand so far as to why this is problematic
Disclaimer: As usual, there is always more than one new thing one learns when starting a new project. For me, the new things here are/were RTI's Connext and (apparently) my first time where I myself have to deal with threads.
From reading about threading in Qt (1,2,3,4, and 5 ) it seems to me that
QObjects in general are not thread safe, i.e. I have to be a little careful about things
Using the right way of "communicating" with QObjects should allow me to avoid having to deal with mutexes etc myself, i.e. somebody else (Qt?) can take care of serializing access for me.
As a result from that, I can't simply have (random) calls to MyClass::doSomeWorkWithData() but I need to serialize that. One, presumably easy, way to do so is to post an event to the event queue myObject lives in which--when time is available--will trigger the execution of the desired method, MyClass::doSomeWorkWithData() in my case.
What I have tried to make things work
I have confirmed that myObject, when instantiated similarly as in the sample code above, is affiliated with the main GUI thread, i.e. myObject.thread() == QApplication::instance()->thread().
With that given, I have tried three options so far:
Option 1: Directly calling the function
This approach is based upon the fact that
- myObject lives in the GUI thread
- All the created listeners are also affiliated with the GUI thread as they are
created by `myObject' and inherit its thread that way
This actually results in the fact that doSomeWorkWithData() is executed. However,
some of those functions manipulate QGraphicsItems and whenever that is the case I get
error messages reading: "QObject::startTimer: timers cannot be started from another
thread".
Option 2: Posting an event via QMetaObject::invokeMethod()
Trying to circumvent this problem by properly posting an event for myObject, I
tried to mark MyObject::doSomeWorkWithData() with Q_INVOKABLE, but I failed at invoking the
method as I need to pass arguments with Q_ARG. I properly registered and declared my custom types
represented by struct A, etc. in the example), but I failed at the fact the
Q_ARG expanded to include a literal of the type of the argument, which in the
templated case didn't work ("T" isn't a registered or declared type).
Trying to use conventional signals and slots
This approach essentially directly failed at the fact that the QMeta system doesn't
work with templates, i.e. it seems to me that there simply can't be any templated QObjects.
What I would like help with
After spending about a week on attempting to fix this, reading up on threads (and uncovering some other issues in my code), I would really like to get this done right.
As such, I would really appreciate if :
somebody could show me a generic way of how a QObject's member function can be called via a callback function from another 3rd-party library (or anything else for that matter) from a different, non QThread-controlled, thread.
somebody could explain to me why Option 1 works if I simply don't create a GUI, i.e. do all the same work, just without a QGraphcisScene visualizing it (and the project's app being a QCoreApplication instead of a QApplication and all the graphics related work #defineed out).
Any, and I mean absolutely any, straw I could grasp on is truly appreciated.
Update
Based on the accepted answer I altered my code to deal with callbacks from other threads: I introduced a thread check at the beginning of my void doSomeWorkWithData() functions:
void doSomeWorkWithData(A a)
{
if( QThread::currentThread() != this->thread() )
{
QMetaObject::invokeMethod( this,"doSomeWorkWithData"
,Qt::QueuedConnection
,Q_ARG(A, a) );
return;
}
/* The actual work this function does would be below here... */
};
Some related thoughts:
I was contemplating to introduce a QMutexLocker before the if statement, but decided against it: the only part of the function that is potentially used in parallel (anything above the return; in the if statement) is--as far as I understand--thread safe.
Setting the connection type manually to Qt::QueuedConnection: technically, if I understand the documentation correctly, Qt should do the right thing and the default, Qt::AutoConnection, should end up becoming a Qt::QueuedConnection. But since would always be the case when that statement is reached, I decided to put explicitly in there to remind myself about why this is there.
putting the queuing code directly in the function and not hiding it in an interim function: I could have opted to put the call to invokeMethod in another interim function, say queueDoSomeWorkWithData()', which would be called by the callback in the listener and then usesinvokeMethodwith anQt::AutoConnection' on doSomeWorkWithData(). I decided against this as there seems no way for me to auto-code this interim function via templates (templates and the Meta system was part of the original problem), so "the user" of my code (i.e. the person who implements doSomeWorkWithData(XYZ xyz)) would have to hand type the interim function as well (as that is how the templated type names are correctly resolved). Including the check in the actual function seems to me to safe typing an extra function header, keeps the MyClass interface a little cleaner, and better reminds readers of doSomeWorkWithData() that there might be a threading issue lurking in the dark.
It is ok to call a public function on a subclass of QObject from another thread if you know for certain that the individual function will perform only thread-safe actions.
One nice thing about Qt is that it will handle foreign threads just as well as it handles QThreads. So, one option is to create a threadSafeDoSomeWorkWithData function for each doSomeWorkWithData that does nothing but QMetaMethod::invoke the non-threadsafe one.
public:
void threadSafeDoSomeWorkWithData(A a) {
QMetaMethod::invoke("doSomeWorkWithData", Q_ARG(A,a));
}
Q_INVOKABLE void doSomeWorkWithData(A a);
Alternatively, Sergey Tachenov suggests an interesting way of doing more or less the same thing in his answer here. He combines the two functions I suggested into one.
void Obj2::ping() {
if (QThread::currentThread() != this->thread()) {
// not sure how efficient it is
QMetaObject::invoke(this, "ping", Qt::QueuedConnection);
return;
}
// thread unsafe code goes here
}
As to why you see normal behaviour when not creating a GUI? Perhaps you're not doing anything else that is unsafe, aside from manipulating GUI objects. Or, perhaps they're the only place in which your thread-safety problems are obvious.

Is there a Groovy way of making a method synchronized?

I'm working with Groovy 1.7.2. There are methods which needs to be Synchronized , is there any groovier way of doing this or I have to follow same Java way of putting synchronized keyword before method.
e.g : synchronized static def Map getMap(def fileName) { }
If you can upgrade to Groovy 1.7.3 you can use the Synchronized AST transformation instead. You can use the annotation on instance and static methods. The annotation will create a lock variable in your class (or you can use an existing variable) and the code is synchronized on that lock variable.
The usage of a synchronized block should be preferred over adding the keyword to the method. If you use the synchronized keyword on the method you synchronize on this which means that all other threads that want to access any of the methods in your class have to wait until the lock is free again.
import groovy.transform.Synchronized
class YourClass {
#Synchronized
static Map getMap(def fileName) {
...
}
}
Since Groovy 1.7.3 we have a new AST transformation: #Synchronized

How to do a proper way to copy URL->bstrVal to a global variable?

I have this function inside my program:
void CBar::NavigateComplete2(IDispatch *pDisp, VARIANT *URL)
{
try {
UpdateBar(UpdateNavigateComplete);
} catch (...) {
ASSERT(0);
}
}
I need to have the URL value from URL->bstrVal from this function and to copy it to a global variable so that my other function can easily refer to it.
What is the appropriate way to do this? since my current method destroys the stability of my program..it crash all the time.
I'm not sure I understand the question or the motivation. If all you want to do is, as described in the question, copy the value of URL->bstrVal then the simplest way to to use a wrapper BSTR class for the global.
namespace { // keep global private to .cpp file
CComBSTR globalURL;
}
void CBar::NavigateComplete2(IDispatch *pDisp, VARIANT *URL)
{
if (URL != NULL && URL->vt == VT_BSTR)
globalURL = URL->bstrVal;
Otherwise you should use a raw BSTR and copy it with SysAllocString (and don't forget to SysFreeString it when you're done with the global.
If you don't copy the string (and only copy the pointer) the VARIANT's owner will destroy it giving you a global with a dangling pointer.
Use SysAllocString(URL->bstrVal) to create a copy off the BSTRVAL. you will have to free it when you're done with it using SysFreeString().
Though I have to agree with #Space_C0wb0y that using global varsity for this is error prone. Unless UpdateBar does something asynchronously, you should just pass URL->bstrVal as a parameter to it. And even if UpdateBar schedules asynchronous work, it should still encapsulate creating the BSTR copy and associating it with the asynchronous work, to avoid race between the background code and another NavigateComplete event both trying to access the global var. (Or you have to lock the access to it, which pretty much negates the asynchronous idea, unless you know how to optimize your locks really well)

Using getters within class methods

If you have a class with some plain get/set properties, is there any reason to use the getters within the class methods, or should you just use the private member variables? I think there could be more of an argument over setters (validation logic?), but I'm wondering just about getters.
For example (in Java) - is there any reason to use option 2?:
public class Something
{
private int messageId;
public int getMessageId() { return this.messageId; }
public void setMessage(int messageId) { this.messageId = messageId; }
public void doSomething()
{
// Option 1:
doSomethingWithMessageId(messageId);
// Option 2:
doSomethingWithMessageId(getMessageId());
}
}
Java programmers in general tend to be very consistent about using getter methods. I program multiple languages and I'm not that consistent about it ;)
I'd say as long as you don't make a getter it's ok to use the raw variable - for private variables. When you make a getter, you should be using only that. When I make a getter for a private field, my IDE suggests that it replace raw field accesses for me automatically when I introduce a getter. Switching to using a getter is only a few keystrokes away (and without any chance of introducing errors), so I tend to delay it until I need it.
Of course, if you want to stuff like getter-injection, some types of proxying and subclassing framworks like hibernate, you have to user getters!
With getters you wont accidentally modify the variables :) Also, if you use both getters and the "raw" variable, your code can get confused.
Also, if you use inheritance and redefined the getter methods in child classes, getter-using methods will work properly, whereas those using the raw variables would not.
If you use the getter method everywhere - and in the future perform a code-search on all calls of getMessageId() you will find all of them, whereas if you had used the private ones, you may miss some.
Also if there's ever logic to be introduced in the setter method, you wont have to worry about changing more than 1 location for it.
If the value that you are assigning to the property is a known or verified value, you could safely use the private variable directly. (Except perhaps in some special situations, where it would be obvious why that would be bad.) Whether you do or not is more a matter of taste or style. It's not a performance issue either, as the getter or setter will be inlined by the compiler if it's simple enough.
If the value is unknown to the class, you should use the property to set it, so that you can protect the property from illegal values.
Here's an example (in C#):
public class Something {
private string _value;
public string Value {
get {
return _value;
}
set {
if (value == null) throw new ArgumentNullException();
_value = value;
}
}
public Something() {
// using a known value
_value = "undefined";
}
public Something(string initValue) {
// using an unknown value
Value = initValue;
}
}
If you use the getter you're ensuring you'll get the value after any logic/decisions have been applied to it. This probably isn't your typical situation but when it is, you'll thank yourself for this.
Unless I have a specific use case to use the internal field directly in the enclosing class, I've always felt that it's important to use access the field the same way it is accessed publicly. This ensures consistency in the return values across the board should there ever be any need to add some post-processing to the field via the getter method, or property. I feel like it's perfectly fine to access the raw field if you want its raw value for one reason or another.
More often than not, the getter encapsulation is plain and simple boilerplate code -- you're most likely not returning anything other than the field's value itself. However, in the case where you may want to change the way the data is presented at some point in the future, it's one less refactoring you have to make internally.

Resources