Creating a list type using functions - haskell

For a silly challenge I am trying to implement a list type using as little of the prelude as possible and without using any custom types (the data keyword).
I can construct an modify a list using tuples like so:
import Prelude (Int(..), Num(..), Eq(..))
cons x = (x, ())
prepend x xs = (x, xs)
head (x, _) = x
tail (_, x) = x
at xs n = if n == 0 then xs else at (tail xs) (n-1)
I cannot think of how to write an at (!!) function. Is this even possible in a static language?
If it is possible could you try to nudge me in the right direction without telling me the answer.

There is a standard trick known as Church encoding that makes this easy. Here's a generic example to get you started:
data Foo = A Int Bool | B String
fooValue1 = A 3 False
fooValue2 = B "hello!"
Now, a function that wants to use this piece of data must know what to do with each of the constructors. So, assuming it wants to produce some result of type r, it must at the very least have two functions, one of type Int -> Bool -> r (to handle the A constructor), and the other of type String -> r (to handle the B constructor). In fact, we could write the type that way instead:
type Foo r = (Int -> Bool -> r) -> (String -> r) -> r
You should read the type Foo r here as saying "a function that consumes a Foo and produces an r". The type itself "stores" a Foo inside a closure -- so that it will effectively apply one or the other of its arguments to the value it closed over. Using this idea, we can rewrite fooValue1 and fooValue2:
fooValue1 = \consumeA consumeB -> consumeA 3 False
fooValue2 = \consumeA consumeB -> consumeB "hello!"
Now, let's try applying this trick to real lists (though not using Haskell's fancy syntax sugar).
data List a = Nil | Cons a (List a)
Following the same format as before, consuming a list like this involves either giving a value of type r (in case the constructor was Nil) or telling what to do with an a and another List a, so. At first, this seems problematic, since:
type List a r = (r) -> (a -> List a -> r) -> r
isn't really a good type (it's recursive!). But we can instead demand that we first reduce all the recursive arguments to r first... then we can adjust this type to make something more reasonable.
type List a r = (r) -> (a -> r -> r) -> r
(Again, we should read the type List a r as being "a thing that consumes a list of as and produces an r".)
There's one final trick that's necessary. What we would like to do is to enforce the requirement that the r that our List a r returns is actually constructed from the arguments we pass. That's a little abstract, so let's give an example of a bad value that happens to have type List a r, but which we'd like to rule out.
badList = \consumeNil consumeCons -> False
Now, badList has type List a Bool, but it's not really a function that consumes a list and produces a Bool, since in some sense there's no list being consumed. We can rule this out by demanding that the type work for any r, no matter what the user wants r to be:
type List a = forall r. (r) -> (a -> r -> r) -> r
This enforces the idea that the only way to get an r that gets us off the ground is to use the (user-supplied) consumeNil function. Can you see how to make this same refinement for our original Foo type?

If it is possible could you try and nudge me in the right direction without telling me the answer.
It's possible, in more than one way. But your main problem here is that you've not implemented lists. You've implemented fixed-size vectors whose length is encoded in the type.
Compare the types from adding an element to the head of a list vs. your implementation:
(:) :: a -> [a] -> [a]
prepend :: a -> b -> (a, b)
To construct an equivalent of the built-in list type, you'd need a function like prepend with a type resembling a -> b -> b. And if you want your lists to be parameterized by element type in a straightforward way, you need the type to further resemble a -> f a -> f a.
Is this even possible in a static language?
You're also on to something here, in that the encoding you're using works fine in something like Scheme. Languages with "dynamic" systems can be regarded as having a single static type with implicit conversions and metadata attached, which obviously solves the type mismatch problem in a very extreme way!
I cannot think of how to write an at (!!) function.
Recalling that your "lists" actually encode their length in their type, it should be easy to see why it's difficult to write functions that do anything other than increment/decrement the length. You can actually do this, but it requires elaborate encoding and more advanced type system features. A hint in this direction is that you'll need to use type-level numbers as well. You'd probably enjoy doing this as an exercise as well, but it's much more advanced than encoding lists.

Solution A - nested tuples:
Your lists are really nested tuples - for example, they can hold items of different types, and their type reveals their length.
It is possible to write indexing-like function for nested tuples, but it is ugly, and it won't correspond to Prelude's lists. Something like this:
class List a b where ...
instance List () b where ...
instance List a b => List (b,a) b where ...
Solution B - use data
I recommend using data construct. Tuples are internally something like this:
data (,) a b = Pair a b
so you aren't avoiding data. The division between "custom types" and "primitive types" is rather artificial in Haskell, as opposed to C.
Solution C - use newtype:
If you are fine with newtype but not data:
newtype List a = List (Maybe (a, List a))
Solution D - rank-2-types:
Use rank-2-types:
type List a = forall b. b -> (a -> b -> b) -> b
list :: List Int
list = \n c -> c 1 (c 2 n) -- [1,2]
and write functions for them. I think this is closest to your goal. Google for "Church encoding" if you need more hints.

Let's set aside at, and just think about your first four functions for the moment. You haven't given them type signatures, so let's look at those; they'll make things much clearer. The types are
cons :: a -> (a, ())
prepend :: a -> b -> (a, b)
head :: (a, b) -> a
tail :: (a, b) -> b
Hmmm. Compare these to the types of the corresponding Prelude functions1:
return :: a -> [a]
(:) :: a -> [a] -> [a]
head :: [a] -> a
tail :: [a] -> [a]
The big difference is that, in your code, there's nothing that corresponds to the list type, []. What would such a type be? Well, let's compare, function by function.
cons/return: here, (a,()) corresponds to [a]
prepend/(:): here, both b and (a,b) correspond to [a]
head: here, (a,b) corresponds to [a]
tail: here, (a,b) corresponds to [a]
It's clear, then, that what you're trying to say is that a list is a pair. And prepend indicates that you then expect the tail of the list to be another list. So what would that make the list type? You'd want to write type List a = (a,List a) (although this would leave out (), your empty list, but I'll get to that later), but you can't do this—type synonyms can't be recursive. After all, think about what the type of at/!! would be. In the prelude, you have (!!) :: [a] -> Int -> a. Here, you might try at :: (a,b) -> Int -> a, but this won't work; you have no way to convert a b into an a. So you really ought to have at :: (a,(a,b)) -> Int -> a, but of course this won't work either. You'll never be able to work with the structure of the list (neatly), because you'd need an infinite type. Now, you might argue that your type does stop, because () will finish a list. But then you run into a related problem: now, a length-zero list has type (), a length-one list has type (a,()), a length-two list has type (a,(a,())), etc. This is the problem: there is no single "list type" in your implementation, and so at can't have a well-typed first parameter.
You have hit on something, though; consider the definition of lists:
data List a = []
| a : [a]
Here, [] :: [a], and (:) :: a -> [a] -> [a]. In other words, a list is isomorphic to something which is either a singleton value, or a pair of a value and a list:
newtype List' a = List' (Either () (a,List' a))
You were trying to use the same trick without creating a type, but it's this creation of a new type which allows you to get the recursion. And it's exactly your missing recursion which allows lists to have a single type.
1: On a related note, cons should be called something like singleton, and prepend should be cons, but that's not important right now.

You can implement the datatype List a as a pair (f, n) where f :: Nat -> a and n :: Nat, where n is the length of the list:
type List a = (Int -> a, Int)
Implementing the empty list, the list operations cons, head, tail, and null, and a function convert :: List a -> [a] is left as an easy exercise.
(Disclaimer: stole this from Bird's Introduction to Functional Programming in Haskell.)
Of course, you could represent tuples via functions as well. And then True and False and the natural numbers ...

Related

Haskell - Maybe Either

-- | Convert a 'Maybe a' to an equivalent 'Either () a'. Should be inverse
-- to 'eitherUnitToMaybe'.
maybeToEitherUnit :: Maybe a -> Either () a
maybeToEitherUnit a = error "Not yet implemented: maybeToEitherUnit"
-- | Convert a 'Either () a' to an equivalent 'Maybe a'. Should be inverse
-- to 'maybeToEitherUnit'.
eitherUnitToMaybe :: Either () a -> Maybe a
eitherUnitToMaybe = error "Not yet implemented: eitherUnitToMaybe"
-- | Convert a pair of a 'Bool' and an 'a' to 'Either a a'. Should be inverse
-- to 'eitherToPairWithBool'.
pairWithBoolToEither :: (Bool,a) -> Either a a
pairWithBoolToEither = undefined -- What should I do here?
-- | Convert an 'Either a a' to a pair of a 'Bool' and an 'a'. Should be inverse
-- to 'pairWithBoolToEither'.
eitherToPairWithBool :: Either a a -> (Bool,a)
eitherToPairWithBool = undefined -- What should I do here?
-- | Convert a function from 'Bool' to 'a' to a pair of 'a's. Should be inverse
-- to 'pairToFunctionFromBool'.
functionFromBoolToPair :: (Bool -> a) -> (a,a)
functionFromBoolToPair = error "Not yet implemented: functionFromBoolToPair"
-- | Convert a pair of 'a's to a function from 'Bool' to 'a'. Should be inverse
-- to 'functionFromBoolToPair'.
pairToFunctionFromBool :: (a,a) -> (Bool -> a)
pairToFunctionFromBool = error "Not yet implemented: pairToFunctionFromBool"
I don't really know what to do. I know what maybe is, but I think I have a problem with either, because Either a a makes no sense in my mind. Either a b would be okay. This is either a or b but Either a a is a?!
I don't have any idea in general how to write these functions.
Given that I think this is homework, I'll not answer, but give important hints:
If you look for the definitions on hoogle (http://www.haskell.org/hoogle/)
you find
data Bool = True | False
data Either a b = Left a | Right b
This means that Bool can only be True or False, but that Either a b can be Left a or Right b.
which means your functions should look like
pairWithBoolToEither :: (Bool,a) -> Either a a
pairWithBoolToEither (True,a) = ....
pairWithBoolToEither (False,a) = ....
and
eitherToPairWithBool :: Either a a -> (Bool,a)
eitherToPairWithBool (Left a) = ....
eitherToPairWithBool (Right a) = ....
Comparing with Maybe
Maybe a is given by
data Maybe a = Just a | Nothing
so something of type Maybe Int could be Just 7 or Nothing.
Similarly, something of type Either Int Char could be Left 5 or Right 'c'.
Something of type Either Int Int could be Left 7 or Right 4.
So something with type Either Int Char is either an Int or a Char, but something of type Either Int Int is either an Int or an Int. You don't get to choose anything other than Int, but you'll know whether it was a Left or a Right.
Why you've been asked this/thinking behind it
If you have something of type Either a a, then the data (eg 5 in Left 5) is always of type a, and you've just tagged it with Left or Right. If you have something of type (Bool,a) the a-data (eg 5 in (True,5)) is always the same type, and you've paired it with False or True.
The maths word for two things which perhaps look different but actually have the same content is "isomorphic". Your instructor has asked you to write a pair of functions which show this isomorphism. Your answer will go down better if pairWithBoolToEither . eitherToPairWithBool and eitherToPairWithBool . pairWithBoolToEither do what id does, i.e. don't change anything. In fact, I've just spotted the comments in your question, where it says they should be inverses. In your write-up, you should show this by doing tests in ghci like
ghci> eitherToPairWithBool . pairWithBoolToEither $ (True,'h')
(True,'h')
and the other way round.
(In case you haven't seen it, $ is defined by f $ x = f x but $ has really low precedence (infixr 0 $), so f . g $ x is (f . g) $ x which is just (f . g) x and . is function composition, so (f.g) x = f (g x). That was a lot of explanation to save one pair of brackets!)
Functions that take or return functions
This can be a bit mind blowing at first when you're not used to it.
functionFromBoolToPair :: (Bool -> a) -> (a,a)
The only thing you can pattern match a function with is just a variable like f, so we'll need to do something like
functionFromBoolToPair f = ...
but what can we do with that f? Well, the easiest thing to do with a function you're given is to apply it to a value. What value(s) can we use f on? Well f :: (Bool -> a) so it takes a Bool and gives you an a, so we can either do f True or f False, and they'll give us two (probably different) values of type a. Now that's handy, because we needed to a values, didn't we?
Next have a look at
pairToFunctionFromBool :: (a,a) -> (Bool -> a)
The pattern match we can do for the type (a,a) is something like (x,y) so we'll need
pairToFunctionFromBool (x,y) = ....
but how can we return a function (Bool -> a) on the right hand side?
There are two ways I think you'll find easiest. One is to notice that since -> is right associative anyway, the type (a,a) -> (Bool -> a) is the same as (a,a) -> Bool -> a so we can actually move the arguments for the function we want to return to before the = sign, like this:
pairToFunctionFromBool (x,y) True = ....
pairToFunctionFromBool (x,y) False = ....
Another way, which feels perhaps a little easier, would to make a let or where clause to define a function called something like f, where f :: Bool -> a< a bit like:
pairToFunctionFromBool (x,y) = f where
f True = ....
f False = ....
Have fun. Mess around.
Perhaps it's useful to note that Either a b is also called the coproduct, or sum, of the types a and b. Indeed it is now common to use
type (+) = Either
You can then write Either a b as a + b.
eitherToPairWithBool :: (a+a) -> (Bool,a)
Now common sense would dictate that we rewrite a + a as something like 2 ⋅ a. Believe it or not, that is exactly the meaning of the tuple type you're transforming to!
To explain: algebraic data types can roughly be seen as "counting1 the number of possible constructions". So
data Bool = True | False
has two constructors. So sort of (this is not valid Haskell!)
type 2 = Bool
Tuples allow all the combinations of constructors from each argument. So for instance in (Bool, Bool), we have the values
(False,False)
(False,True )
(True, False)
(True, True )
You've guessed it: tuples are also called products. So the type (Bool, a) is basically 2 ⋅ a: for every value x :: a, we can create both the (False, x) tuple and the (True, x) tuple, alltogether twice as many as there are x values.
Much the same thing for Either a a: we always have both Left x and Right x as a possible value.
All your functions with "arithmetic types":
type OnePlus = Maybe
maybeToEitherUnit :: OnePlus a -> () + a
eitherUnitToMaybe :: () + a -> OnePlus a
pairWithBoolToEither :: 2 ⋅ a -> a + a
eitherToPairWithBool :: a + a -> 2 ⋅ a
functionFromBoolToPair :: a² -> a⋅a
pairToFunctionFromBool :: a⋅a -> a²
1For pretty much any interesting type there are actually infinitely many possible values, still this kind of naïve arithmetic gets you surprisingly far.
Either a a makes no sense in my mind.
Yes it does. Try to figure out the difference between type a and Either a a. Either is a disjoint union. Once you understand the difference between a and Either a a, your homework should be easy in conjunction with AndrewC's answer.
Note that Either a b means quite literally that a value of such a type can be either an a, or an a. It sounds like you have actually grasped this concept, but the piece you're missing is that the Either type differentiates between values constructed with Left and those constructed with Right.
For the first part, the idea is that Maybe is either Just a thing or Nothing -- Nothing corresponds to () because both are "in essence" data types with only one possible value.
The idea behind converting (Bool, a) pairs to Either a a pairs might seem a little trickier, but just think about the correspondence between True and False and Left and Right.
As for converting functions of type (Bool -> a) to (a, a) pairs, here's a hint: Consider the fact that Bool can only have two types, and write down what that initial function argument might look like.
Hopefully those hints help you to get started.

Understanding Haskell types [duplicate]

This question already has answers here:
Understanding Haskell Type Signatures
(3 answers)
Closed 8 years ago.
I need to understand how types works and can be interpreted.
For example, if we take map function we have map :: (a -> b) -> [a] -> [b]
Well, how do I interpret this?
-> is a type constructor for the type of functions. It's a right-associative infix operator, meaning it's grouped together from the right. This means that we can rewrite the type by adding explicit grouping for the functions to the right side.
map :: (a -> b) -> [a] -> [b]
map :: (a -> b) -> ([a] -> [b])
An infix expression for an operator * applied to two arguments, x and y, x * y can be written in prefix notation as (*) a b. We can rewrite the preceding type, starting with the outermost ->, which is the one in the middle.
map :: (->) (a -> b) ([a] -> [b])
And we can now translate the last type into English
map :: (->) (a -> b) ([a] -> [b])
map is a function that takes a "(a -> b)" and returns a "([a] -> [b])"
Where we interpret a -> b ~ (->) a b (here ~ means the types are equivalent) as
(->) a b
function that takes an "a" and return a "b"
And interpret [a] -> [b] ~ (->) [a] [b] as
(->) [ a ] [ b ]
function that takes a list of "a"s and returns a list of "b"s
We say "a function from a to b" as shorthand for "a function that takes an a and returns a b"
The as and bs in the type signature are type variables, they can take on any type, which we call polymorphism. Occasionally, you will see this written explicitly in Haskell as forall So, in all we could say:
map is a polymorphic value for all types a and b which is a function that:
takes a function from a to b and
returns a function from a lists of as to a list of bs.
The fact that this signature contains -> tells us it's a function. Whatever comes after the last -> is the return type of the function once fully applied. Let's look at the individual pieces.
(a -> b)
This is the first argument, and it, too is a function. This means that map is a higher-order-function -- it takes a function as one of its arguments. a -> b itself is a function that transforms some value of type a into some value of type b.
[a]
The second argument. The square brackets is special syntax that denotes list. This argument, therefore, is a list with elements of type a.
[b]
The type of the result. Again, a list, but this time with elements of type b.
We can try to reason about this now. Given a function a -> b and a list of a, map seems to be (it really is) a function that transforms that list of as into a list of bs.
Here's an example: map (*2) [1,2,3]. In this case, a is Integer (or some other integer type) and each element is doubled. b, too, is Integer, because (*2) assumes the same return type, so in the case the type variables a and b are the same. This need not be the case; we could have a different function instead of (*2), say show which would have produced a b distinct from a, namely String.
Try them out in ghci. You can type in map show [1,2,3] directly and see the result. You can query the type of the expression by prepending :t to that line.
To learn more, you should look up one of the marvelous starter resources. LYAH has an entire chapter dedicated to the basic understanding of types, and is definitely worth a read!

Type-safe difference lists

A common idiom in Haskell, difference lists, is to represent a list xs as the value (xs ++). Then (.) becomes "(++)" and id becomes "[]" (in fact this works for any monoid or category). Since we can compose functions in constant time, this gives us a nice way to efficiently build up lists by appending.
Unfortunately the type [a] -> [a] is way bigger than the type of functions of the form (xs ++) -- most functions on lists do something other than prepend to their argument.
One approach around this (as used in dlist) is to make a special DList type with a smart constructor. Another approach (as used in ShowS) is to not enforce the constraint anywhere and hope for the best. But is there a nice way of keeping all the desired properties of difference lists while using a type that's exactly the right size?
Yes!
We can view [a] as a free monad instance Free ((,) a) ().
Thus we can apply the scheme described by Edward Kmett in Free Monads for Less.
The type we'll get is
newtype F a = F { runF :: forall r. (() -> r) -> ((a, r) -> r) -> r }
or simply
newtype F a = F { runF :: forall r. r -> (a -> r -> r) -> r }
So runF is nothing else than the foldr function for our list!
This is called the Boehm-Berarducci encoding and it's isomorphic to the original data type (list) — so this is as small as you can possibly get.
Will Ness says:
So this type is still too "wide", it allows more than just prefixing - doesn't constrain the g function argument.
If I understood his argument correctly, he points out that you can apply the foldr (or runF) function to something different from [] and (:).
But I never claimed that you can use foldr-encoding only for concatenation. Indeed, as this name implies, you can use it to calculate any fold — and that's what Will Ness demonstrated.
It may become more clear if you forget for a moment that there's one true list type, [a]. There may be lots of list types — e.g. I can define one by
data List a = Nil | Cons a (List a)
It's be different from, but isomorphic to [a].
The foldr-encoding above is just yet another encoding of lists, like List a or [a]. It is also isomorphic to [a], as evidenced by functions \l -> F (\a f -> foldr a f l) and \x -> runF [] (:) and the fact that their compositions (in either order) is identity. But you are not obliged to convert to [a] — you can convert to List directly, using \x -> runF x Nil Cons.
The important point is that F a doesn't contain an element that is not the foldr functions for some list — nor does it contain an element that is the foldr functions for more than one list (obviously).
Thus, it doesn't contain too few or too many elements — it contains precisely as many elements as needed to exactly represent all lists.
This is not true of the difference list encoding — for example, the reverse function is not an append operation for any list.

What are the alternatives to prelude's iterate if the "output" values are not the same as those being iterated on?

I have come across a pattern where, I start with a seed value x and at each step generate a new seed value and a value to be output. My desired final result is a list of the output values. This can be represented by the following function:
my_iter :: (a -> (a, b)) -> a -> [b]
my_iter f x = y : my_iter f x'
where (x',y) = f x
And a contrived example of using this would be generating the Fibonacci numbers:
fibs:: [Integer]
fibs = my_iter (\(a,b) -> let c = a+b in ((b, c), c)) (0,1)
-- [1, 2, 3, 5, 8...
My problem is that I have this feeling that there is very likely a more idiomatic way to do this kind of stuff. What are the idiomatic alternatives to my function?
The only ones I can think of right now involve iterate from the Prelude, but they have some shortcomings.
One way is to iterate first and map after
my_iter f x = map f2 $ iterate f1 x
where f1 = fst . f
f2 = snd . f
However, this can look ugly if there is no natural way to split f into the separate f1 and f2 functions. (In the contrived Fibonacci case this is easy to do, but there are some situations where the generated value is not an "independent" function of the seed so its not so simple to split things)
The other way is to tuple the "output" values together with the seeds, and use a separate step to separate them (kind of like the "Schwartzian transform" for sorting things):
my_iter f x = map snd . tail $ iterate (f.fst) (x, undefined)
But this seems wierd, since we have to remember to ignore the generated values in order to get to the seed (the (f.fst) bit) and add we need an "undefined" value for the first, dummy generated value.
As already noted, the function you want is unfoldr. As the name suggests, it's the opposite of foldr, but it might be instructive to see exactly why that's true. Here's the type of foldr:
(a -> b -> b) -> b -> [a] -> b
The first two arguments are ways of obtaining something of type b, and correspond to the two data constructors for lists:
[] :: [a]
(:) :: a -> [a] -> [a]
...where each occurrence of [a] is replaced by b. Noting that the [] case produces a b with no input, we can consolidate the two as a function taking Maybe (a, b) as input.
(Maybe (a, b) -> b) -> ([a] -> b)
The extra parentheses show that this is essentially a function that turns one kind of transformation into another.
Now, simply reverse the direction of both transformations:
(b -> Maybe (a, b)) -> (b -> [a])
The result is exactly the type of unfoldr.
The underlying idea this demonstrates can be applied similarly to other recursive data types, as well.
The standard function you're looking for is called unfoldr.
Hoogle is a very useful tool in this case, since it doesn't only support searching functions by name, but also by type.
In your case, you came up with the desired type (a -> (a, b)) -> a -> [b]. Entering it yields no results - hmm.
Well, maybe there's a standard function with a slightly different syntax. For example, the standard function might have its arguments flipped; let's look for something with (a -> (a, b)) in its type signature somewhere. This time we're lucky as there are plenty of results, but all of them are in exotic packages and none of them seems very helpful.
Maybe the second part of your function is a better match, you want to generate a list out of some initial element after all - so type in a -> [b] and hit search. First result: unfoldr - bingo!
Another possibility is iterateM in State monad:
iterateM :: Monad m => m a -> m [a]
iterateM = sequence . repeat
It is not in standard library but it's easy to build.
So your my_iter is
evalState . sequence . repeat :: State s a -> s -> [a]

What to call a function that splits lists?

I want to write a function that splits lists into sublists according to what items satisfy a given property p. My question is what to call the function. I'll give examples in Haskell, but the same problem would come up in F# or ML.
split :: (a -> Bool) -> [a] -> [[a]] --- split lists into list of sublists
The sublists, concatenated, are the original list:
concat (split p xss) == xs
Every sublist satisfies the initial_p_only p property, which is to say (A) the sublist begins with an element satisfying p—and is therefore not empty, and (B) no other elements satisfy p:
initial_p_only :: (a -> Bool) -> [a] -> Bool
initial_p_only p [] = False
initial_p_only p (x:xs) = p x && all (not . p) xs
So to be precise about it,
all (initial_p_only p) (split p xss)
If the very first element in the original list does not satisfy p, split fails.
This function needs to be called something other than split. What should I call it??
I believe the function you're describing is breakBefore from the list-grouping package.
Data.List.Grouping: http://hackage.haskell.org/packages/archive/list-grouping/0.1.1/doc/html/Data-List-Grouping.html
ghci> breakBefore even [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6]
[[3,1],[4,1,5,9],[2],[6,5,3,5],[8,9,7,9,3],[2,3],[8],[4],[6],[2],[6]]
I quite like some name based on the term "break" as adamse suggests. There are quite a few possible variants of the function. Here is what I'd expect (based on the naming used in F# libraries).
A function named just breakBefore would take an element before which it should break:
breakBefore :: Eq a => a -> [a] -> [[a]]
A function with the With suffix would take some kind of function that directly specifies when to break. In case of brekaing this is the function a -> Bool that you wanted:
breakBeforeWith :: (a -> Bool) -> [a] -> [[a]]
You could also imagine a function with By suffix would take a key selector and break when the key changes (which is a bit like group by, but you can have multiple groups with the same key):
breakBeforeBy :: Eq k => (a -> k) -> [a] -> [[a]]
I admit that the names are getting a bit long - and maybe the only function that is really useful is the one you wanted. However, F# libraries seem to be using this pattern quite consistently (e.g. there is sort, sortBy taking key selector and sortWith taking comparer function).
Perhaps it is possible to have these three variants for more of the list processing functions (and it's quite good idea to have some consistent naming pattern for these three types).

Resources