2D shape optimization through genetic algorithms - geometry

I just recently started learning about genetic algorithms and am now trying to implement them in 2D shape optimization in physics simulaiton. The simulation produces a single scalar for each shape. (I guess this is kind of similar to boxcar2d http://boxcar2d.com/)
The 2D shapes are actually the union of several 2D "sub shapes." Each subshape is stored as an list of angles/radii. The 2D shape is then stored as a list of subshape lists. This serves as my chromosone right now.
Right now for fitness, I will probably use the scalar the simulation produced. My question is, how should I go about the selection and reproduction process? Would tournament be more appropriate, or would I want to use truncation in combination with the proportional selection? Also, how do you find a good mutation rate/population size, etc
sorry for so many questions but thanks in advance. I just don't really know where to start.

On my point of view the best way is to use adaptive reproduction strategy during evolution: at the first steps (let name it - "the first phase of calculations") you might set high mutation probability, at this phase you should find enough good solution. At the "second phase" of algorithm you might set decreasing of mutation probability every few steps - at this phase you should improve your solution. But sometimes in my practice I've noticed degradation of population during second phase of optimization (when each chromosome is strongly similar to other) - which effects with extremly slowing down of optimization pperformance, so my solution was to improve algorithm with high valued mutation random perturbations and it helps.
Also I'll advice you to read about differential evolution algorithm - http://en.wikipedia.org/wiki/Differential_evolution. As for me it's performance is much more faster than genetic algorithm.

Related

How do I analyze the change in the relationship between two variables?

I'm working on a simple project in which I'm trying to describe the relationship between two positively correlated variables and determine if that relationship is changing over time, and if so, to what degree. I feel like this is something people probably do pretty often, but maybe I'm just not using the correct terminology because google isn't helping me very much.
I've plotted the variables on a scatter plot and know how to determine the correlation coefficient and plot a linear regression. I thought this may be a good first step because the linear regression tells me what I can expect y to be for a given x value. This means I can quantify how "far away" each data point is from the regression line (I think this is called the squared error?). Now I'd like to see what the error looks like for each data point over time. For example, if I have 100 data points and the most recent 20 are much farther away from where the regression line/function says it should be, maybe I could say that the relationship between the variables is showing signs of changing? Does that make any sense at all or am I way off base?
I have a suspicion that there is a much simpler way to do this and/or that I'm going about it in the wrong way. I'd appreciate any guidance you can offer!
I can suggest two strands of literature that study changing relationships over time. Typing these names into google should provide you with a large number of references so I'll stick to more concise descriptions.
(1) Structural break modelling. As the name suggest, this assumes that there has been a sudden change in parameters (e.g. a correlation coefficient). This is applicable if there has been a policy change, change in measurement device, etc. The estimation approach is indeed very close to the procedure you suggest. Namely, you would estimate the squared error (or some other measure of fit) on the full sample and the two sub-samples (before and after break). If the gains in fit are large when dividing the sample, then you would favour the model with the break and use different coefficients before and after the structural change.
(2) Time-varying coefficient models. This approach is more subtle as coefficients will now evolve more slowly over time. These changes can originate from the time evolution of some observed variables or they can be modeled through some unobserved latent process. In the latter case the estimation typically involves the use of state-space models (and thus the Kalman filter or some more advanced filtering techniques).
I hope this helps!

Feature scaling and its affect on various algorithm

Despite going through lots of similar question related to this I still could not understand why some algorithm is susceptible to it while others are not.
Till now I found that SVM and K-means are susceptible to feature scaling while Linear Regression and Decision Tree are not.Can somebody please elaborate me why? in general or relating to this 4 algorithm.
As I am a beginner, please explain this in layman terms.
One reason I can think of off-hand is that SVM and K-means, at least with a basic configuration, uses an L2 distance metric. An L1 or L2 distance metric between two points will give different results if you double delta-x or delta-y, for example.
With Linear Regression, you fit a linear transform to best describe the data by effectively transforming the coordinate system before taking a measurement. Since the optimal model is the same no matter the coordinate system of the data, pretty much by definition, your result will be invariant to any linear transform including feature scaling.
With Decision Trees, you typically look for rules of the form x < N, where the only detail that matters is how many items pass or fail the given threshold test - you pass this into your entropy function. Because this rule format does not depend on dimension scale, since there is no continuous distance metric, we again have in-variance.
Somewhat different reasons for each, but I hope that helps.

How to collapse a RandomForest into an equivalent decision tree?

The way I understand it, in creating a random forest, the algorithm bundles a bunch of randomly generated decision trees together, weighting them such that they fit the training data.
Is it reasonable to say that this average of forests could be simplified into a simple decision tree? And, if so - how can I access and present this tree?
What I'm looking to do here is extract the information in the tree to help identify both the leading attributes, their boundary values and placement in the tree. I'm assuming that such a tree would provide insight to a human (or computer heuristic) as to which attributes within a dataset provide the most insight into determining the target outcome.
This probably seems a naive question - and if so, please be patient, I'm new to this and want to get to a stage where I understand it sufficiently.
RandomForest uses bootstrap to create many training sets by sampling the data with replacement (bagging). Each bootstrapped set is very close to the original data, but slightly different, since it may have multiples of the some points and some other points in the original data will be missing. (This helps create a whole bunch of similar but different sets that as a whole represent the population your data came from, and allow better generalization)
Then it fits a DecisionTree to each set. However, what a regular DecisionTree does at each step, is to loop over each feature, find the best split for each feature, and in the end choose to do the split in the feature that produced the best one among all. In RandomForest, instead of looping over every feature to find the best split, you only try a random subsample at each step (default is sqrt(n_features)).
So, every tree in RandomForest is fit to a bootstrapped random training set. And at each branching step, it only looks at a subsample of features, so some of the branching will be good but not necessarily the ideal split. This means that each tree is a less than ideal fit to the original data. When you average the result of all these (sub-ideal) trees, though, you get a robust prediction. Regular DecisionTrees overfit the data, this two-way randomization (bagging and feature subsampling) allow them to generalize and a forest usually does a good job.
Here is the catch: While you can average out the output of each tree, you cannot really "average the trees" to get an "average tree". Since trees are a bunch of if-then statements that are chained, there is no way of taking these chains and coming up with a single chain that produces the result that's the same as averaged result from each chain. Each tree in the forest is different, even if same features show up, they show up in different places of the trees, which makes it impossible to combine. You cannot represent a RandomForest as a single tree.
There are two things you can do.
1) As RPresle mentioned, you can look at the .feature_importances_ attribute, which for each feature averages the splitting score from different trees. The idea is, while you can't get an average tree, you can quantify how much and how effectively each feature is used in the forest by averaging their score in each tree.
2) When I fit a RandomForest model and need to get some insight into what's happening, how the features are affecting the result, I also fit a single DecisionTree. Now, this model is usually not good at all by itself, it will easily be outperformed by the RandomForest and I wouldn't use it to predict anything, but by drawing and looking at the splits in this tree, combined with the .feature_importances_ of the forest, I usually get a pretty good idea of the big picture.

How do I measure the distribution of an attribute of a given population?

I have a catalog of 900 applications.
I need to determine how their reliability is distributed as a whole. (i.e. is it normal).
I can measure the reliability of an individual application.
How can I determine the reliability of the group as a whole without measuring each one?
That's a pretty open-ended question! Overall, distribution fitting can be quite challenging and works best with large samples (100's or even 1000's). It's generally better to pick a modeling distribution based on known characteristics of the process you're attempting to model than to try purely empirical fitting.
If you're going to go empirical, for a start you could take a random sample, measure the reliability scores (whatever you're using for that) of your sample, sort them, and plot them vs normal quantiles. If they fall along a relatively straight line the normal distribution is a plausible model, and you can estimate sample mean and variance to parameterize it. You can apply the same idea of plotting vs quantiles from other proposed distributions to see if they are plausible as well.
Watch out for behavior in the tails, in particular. Pretty much by definition the tails occur rarely and may be under-represented in your sample. Like all things statistical, the larger the sample size you can draw on the better your results will be.
I'd also add that my prior belief would be that a normal distribution wouldn't be a great fit. Your reliability scores probably fall on a bounded range, tend to fall more towards one side or the other of that range. If they tend to the high range, I'd predict that they get lopped off at the end of the range and have a long tail to the low side, and vice versa if they tend to the low range.

k-means with ellipsoids

I have n points in R^3 that I want to cover with k ellipsoids or cylinders (I don't really care; whichever is easier). I want to approximately minimize the union of the volumes. Let's say n is tens of thousands and k is a handful. Development time (i.e. simplicity) is more important than runtime.
Obviously I can run k-means and use perfect balls for my ellipsoids. Or I can run k-means, then use minimum enclosing ellipsoids per cluster rather than covering with balls, though in the worst case that's no better. I've seen talk of handling anisotropy with k-means but the links I saw seemed to think I had a tensor in hand; I don't, I just know the data will be a union of ellipsoids. Any suggestions?
[Edit: There's a couple votes for fitting a mixture of multivariate Gaussians, which seems like a viable thing to try. Firing up an EM code to do that won't minimize the volume of the union, but of course k-means doesn't minimize volume either.]
So you likely know k-means is NP-hard, and this problem is even more general (harder). Because you want to do ellipsoids it might make a lot of sense to fit a mixture of k multivariate gaussian distributions. You would probably want to try and find a maximum likelihood solution, which is a non-convex optimization, but at least it's easy to formulate and there is likely code available.
Other than that you're likely to have to write your own heuristic search algorithm from scratch, this is just a huge undertaking.
I did something similar with multi-variate gaussians using this method. The authors use kurtosis as the split measure, and I found it to be a satisfactory method for my application, clustering points obtained from a laser range finder (i.e. computer vision).
If the ellipsoids can overlap a lot,
then methods like k-means that try to assign points to single clusters
won't work very well.
Part of each ellipsoid has to fit the surface of your object,
but the rest may be inside it, don't-cares.
That is, covering algorithms
seem to me quite different from clustering / splitting algorithms;
unions are not splits.
Gaussian mixtures with lots of overlaps ?
No idea, but see the picture and code on Numerical Recipes p. 845.
Coverings are hard even in 2d, see
find-near-minimal-covering-set-of-discs-on-a-2-d-plane.

Resources