redirecting stdin _and_ stdout to a pipe - linux

I would like to run a program "A", have its output go to the input to another program "B", as well as stdin going to intput of "B". If program "A" closes, I'd like "B" to continue running.
I can redirect A output to B input easily:
./a | ./b
And I can combine stderr into the output if I'd like:
./a 2>&1 | ./b
But I can't figure out how to combine stdin into the output. My guess would be:
./a 0>&1 | ./b
but it doesn't work.
Here's a test that doesn't require us to rewrite up any test programs:
$ echo ls 0>&1 | /bin/sh -i
$ a b info.txt
$
/bin/sh: Cannot set tty process group (No such process)
If possible, I'd like to do this using only bash redirection on the command line (I don't want to write a C program to fork off child processes and do anything complicated everytime I want to do some redirection of stdin to a pipe).

This cannot be done without writing an auxiliary program.
In general, stdin could be a read-only file descriptor (heck, it might refer to read-only file). So you cannot "insert" anything into it.
You will need to write a "helper" program that monitors two file descriptors (say, 0 and 3) in order to read from both and "merge" them. A simple select or poll loop would be sufficient, and you could write it in most scripting languages, but not the shell, I don't think.
Then you can use shell redirection to feed your program's output to descriptor 3 of the "helper".
Since what you want is basically the opposite of "tee", I might call it "eet"...
[edit]
If only you could launch "cat" in the background...
But that will fail because background processes with a controlling terminal cannot read from stdin. So if you could just detach "cat" from its controlling terminal and run it in the background...
On Linux, "setsid cat" should do it, roughly. But (a) I could not get it to work very well and (b) I really do not have time for this today and (c) it is non-standard anyway.
I would just write the helper program.
[edit 2]
OK, this seems to work:
{ seq 5 ; sleep 2 ; seq 5 ; } | /bin/bash -c 'set -m ; setsid cat ; echo HELLO'
The set -m thing forces bash to enable job control, which apparently is needed to prevent the shell from redirecting stdin from /dev/null.
Here, the echo HELLO represents your "program A". The seq commands (with the sleep in the middle) are just to provide some input. And yes, you can pipe this whole thing to process B.
About as ugly and non-portable a solution as you could ask for...

A pipe has two ends. One is for writing, and that which gets written appears in the other end, which is for reading.
It's a pipe, not a T or Y junction.
I don't think your scenario is possible. Having "stdin going to input of" anything doesn't make sense.

If I understand your requirements correctly, you want this set up (ASCII art to the fore):
o----+----->| A |----+---->| B |---->o
| ^
| |
+------------------+
with the additional constraint that if process A closes up shop, process B should be able to continue with the input stream going to B.
This is a non-standard setup, as you realize, and can only be achieved by using an auxilliary program to drive the input to A and B. You end up with some interesting synchronization issues but it will all work remarkably well as long as your messages are short enough.
The plumbing necessary to achieve this is notable - you'll need two pipes, one for the input to A and the other for the input to B, and the output of A will be connected to the input of B as well.
o---->| C |---------->| A |----+---->| B |---->o
| ^
| |
+--------------------------+
Note that C will be writing the data twice, once to A and once to B. Note, too, that the pipe from A to B is the same pipe as the pipe from C to A.

To make the given test case work you have to while ... read from the controlling terminal device /dev/tty inside a sh -c '...' construct.
Note the use of eval (could it be avoided here?) and that multi-line commands on input> will fail.
echo 'ls; export var=myval' | (
stdin="$(</dev/stdin)"
/bin/sh -i -c '
eval "$1";
while IFS="" read -e -r -p "input> " line; do
history -s "${line}"
eval "${line}";
done </dev/tty
' argv0 "${stdin}"
)
input> echo $var
For a similar problem and the use of named pipes see here:
BASH: Best architecture for reading from two input streams

This can't be done exactly as shown, but to perform your example you can make use of cat's ability to join files together:
cat <(echo ls) - | /bin/sh
(You can do -i, but then you'll have to have another process kill the /bin/sh, as your attempts to Ctrl-C and Ctrl-D out will fail.)
This assumes that you want to pass in your piped input and then accept from stdin. You can also make it so that it does something after stdin is done, or on both sides -- but it won't merge input character-by-character or line-by-line.

This seems to do what you want:
$ ( ./a <&-; cat ) | ./b
(It's not clear to me if you want a to get input...this solution sends all input to b)
Of course, in this case the inputs to b are strictly ordered: all of the output of a
is sent to b first, then a terminates, then input goes to b. If you want things
interleaved, try:
$ ( ./a <&- & cat ) | ./b

Related

by default, does stderr start as a duplicate file descriptor of stdout?

Does stderr start out as a duplicate FD of stdout?
i.e. considering dup(2), is stderr initialized kind of like so?
int stderr = dup(stdout); // stdout = 1
In the BashGuide, there's a code example
$ grep proud file 'not a file' > proud.log 2> proud.log
The author states
We've created two FDs that both point to the same file, independently of each other. The results of this are not well-defined. Depending on how the operating system handles FDs, some information written via one FD may clobber information written through the other FD.
and further says
We need to prevent having two independent FDs working on the same destination or source. We can do this by duplicating FDs
So basically, 2 independent FDs on the same file = broken
Well, I know that stdout & stderr both point to my terminal by default. Since they can both function properly (i.e. i don't see mish-mashed output+error messages), does that mean that they're not independent FDs? And thus, stderr is a duplicate FD of stdout? (or vice versa)
No, stderr is not a duplicate of stdout.
They work in parallel, independent and asynchronously.
Which means that in a race condition, you might even 'mish-mash' as you say.
One practical difference is also that stderr output will be ignored when you pipe your output to a subsequent command:
Practical example:
$ cat tst.sh
#!/bin/bash
echo "written to stdout"
echo "written to stderr" 1>&2
exit 0
~$ ./tst.sh
written to stdout
written to stderr
~$ ./tst.sh | xargs -n1 -I{} echo "this came through the pipe:{}"
written to stderr
this came through the pipe:written to stdout

Reading /proc/PID/maps of short-lived process

I have a binary that exits/segfaults shortly after executing. I am trying to read /proc/PID/maps of this binary before it exits but with no luck.
I've tried cat /proc/($./binary [input] & echo $!)/maps which should result in /proc/pidofprocess/maps but always get No such file or directory.
My goal is to see where things get loaded to on subsequent runs.
You solution cat /proc/$(<pipeline>)/maps won't call cat until the whole <pipeline> has ended (even if you use & within it), so you will never get your maps.
On the other hand,
<pipeline> & cat /proc/${!}/maps
will return immediately. Of course, as your binary exits immediately, cat may still run too late to capture /proc/${!}/maps
But you could try:
while true; do; ./binary [input] & cat /proc/${!}/maps ; done
This restarts a race between your binary and cat all day long, and sometimes cat may win (it does, in my case, with ls <nonexisting file> instead of ./binary 1 out of 30 times)
This prints a lot of garbage on your terminal, but you can collect the succesful maps by redirecting your cats output:
while true; do; ./binary [input] & cat /proc/${!}/maps >> mymaps; done
Elegant? No. Effective: I hope so!

Unix: What does cat by itself do?

I saw the line data=$(cat) in a bash script (just declaring an empty variable) and am mystified as to what that could possibly do.
I read the man pages, but it doesn't have an example or explanation of this. Does this capture stdin or something? Any documentation on this?
EDIT: Specifically how the heck does doing data=$(cat) allow for it to run this hook script?
#!/bin/bash
# Runs all executable pre-commit-* hooks and exits after,
# if any of them was not successful.
#
# Based on
# http://osdir.com/ml/git/2009-01/msg00308.html
data=$(cat)
exitcodes=()
hookname=`basename $0`
# Run each hook, passing through STDIN and storing the exit code.
# We don't want to bail at the first failure, as the user might
# then bypass the hooks without knowing about additional issues.
for hook in $GIT_DIR/hooks/$hookname-*; do
test -x "$hook" || continue
echo "$data" | "$hook"
exitcodes+=($?)
done
https://github.com/henrik/dotfiles/blob/master/git_template/hooks/pre-commit
cat will catenate its input to its output.
In the context of the variable capture you posted, the effect is to assign the statement's (or containing script's) standard input to the variable.
The command substitution $(command) will return the command's output; the assignment will assign the substituted string to the variable; and in the absence of a file name argument, cat will read and print standard input.
The Git hook script you found this in captures the commit data from standard input so that it can be repeatedly piped to each hook script separately. You only get one copy of standard input, so if you need it multiple times, you need to capture it somehow. (I would use a temporary file, and quote all file name variables properly; but keeping the data in a variable is certainly okay, especially if you only expect fairly small amounts of input.)
Doing:
t#t:~# temp=$(cat)
hello how
are you?
t#t:~# echo $temp
hello how are you?
(A single Controld on the line by itself following "are you?" terminates the input.)
As manual says
cat - concatenate files and print on the standard output
Also
cat Copy standard input to standard output.
here, cat will concatenate your STDIN into a single string and assign it to variable temp.
Say your bash script script.sh is:
#!/bin/bash
data=$(cat)
Then, the following commands will store the string STR in the variable data:
echo STR | bash script.sh
bash script.sh < <(echo STR)
bash script.sh <<< STR

How to make an expect script to input commands into GDB?

I want to write an Expect script that will simply input commands into GDB regardless of its output. Then I want to take certain parts of the output of GDB and extract information from it using shell commands such as grep and sed. Then I want to use this information to input more commands into GDB.
For example, I would initiate a back trace by sending the command "bt" to GDB from the expect script. Then I would grep for a word such as "pardrivr" and get the line number associated with it. Then I would input "f lineNumberOfPardrivr" into GDB. This process would be repeated until the correct information is eventually extracted.
Is this possible. If so what is the best way to go about doing this?
Thanks
My $0.02: I'd use a coprocess or named pipe under ksh/bash/zsh. Much easier. See: https://unix.stackexchange.com/questions/86270/how-do-you-use-the-command-coproc-in-bash
Also, consider tee'ing the output of gdb into a named pipe that you cat in another xterm. Makes it much easier to debug what your script is reading if you can see a copy of the gdb output.
Edited to add:
Still can't post comments. *sigh*
gdb in batch mode, or via a simple shell redirect, won't let us define commands on the fly based upon current gdb output. A coprocess or named pipe approach is much the same technique, but it lets us create new input dynamically at will based upon gdb's output processed through grep/sed/awk/perl/whatever. Python or Perl might be even easier to use with their facilities for regular expressions and subprocesses. E.g. (perl) open("|gdb ...")
http://perldoc.perl.org/functions/open.html
Edited again to add:
A named pipe is a FIFO (first in first out) that exists much like a file in the filesystem. It's not really a file of course. It's just something that can be used like a file. Anything that you write to it can be read back out, within the limits of the OS buffering. (Otherwise writes will block.)
FIFO's are available under Unix, Linux, & Macs, but not windows. You create them with mkfifo. Any process can write to it. Any process can read from it. From that link I posted up above:
mkfifo in out
cmd <in >out &
exec 3> in 4< out
echo data >&3
read var <&4
From my own playing around to demo this...
#in BASH
mkfifo IN OUT
#or mkfifo IN OUT ERR
gdb < IN > OUT 2>&1 &
#or gdb < IN > OUT 2> ERR &
#or gdb < IN > OUT &
exec 3> IN
exec 4< OUT
echo "help bt" >&3
while read -t 0.001 var <&4 ; do echo $var; done
echo "help stack" >&3
while read -t 0.001 var <&4 ; do echo $var; done
#don't forget to kill the gdb process when you are done...
echo "quit" >&3
while read -t 0.001 var <&4 ; do echo $var; done
I want to write an Expect script that will simply input commands into GDB regardless of its output.
For non interactive control you don't need expect as gdb has a -batch mode and is able to read (-x) commands from a file.
Moreover, as gdbreads input from stdin and produces output to stdout standard redirection might do the trick.
For example, I wrote a simple C program:
sh$ cat hello.c
#include <stdio.h>
int main() {
char msg[] = "Hello world";
printf("%s\n", msg);
return 0;
}
sh$ gcc -ggdb hello.c -o hello
I'm able to "script" the gdb session like that:
sh$ gdb -q hello | awk '$2=="$1" { print "Var was #" $NF }'
br 6
r
print &msg
c
quit
EOF
warning: no loadable sections found in added symbol-file system-supplied DSO at 0x7ffff7ffa000
Var was #0x7fffffffe230

bash script read pipe or argument

I want my script to read a string either from stdin , if it's piped, or from an argument. So first i want to check if some text is piped and if not it should use an argument as input. My code looks something like this:
value=$(cat) # read from stdin
if [ "$pipe" != "" ]; then #check if pipe is not empty
#Do something with pipe string
else
#Do something with argument string
fi
The problem is when it's not piped, then the script will halt and wait for "ctrl d" and i dont want that. Any suggestions on how to solve this?
Thanks in advance.
/Tomas
What about checking the argument first?
if (($#)) ; then
process "$1"
else
cat | process
fi
Or, just take advantage from the same behaviour of cat:
cat "$#" | process
If you only need to know if it's a pipe or a redirection, it should be sufficient to determine if stdin is a terminal or not:
if [ -t 0 ]; then
# stdin is a tty: process command line
else
# stdin is not a tty: process standard input
fi
[ (aka test) with -t is equivalent to the libc isatty() function.
The above will work with both something | myscript and myscript < infile. This is the simplest solution, assuming your script is for interactive use.
The [ command is a builtin in bash and some other shells, and since [/test with -tis in POSIX, it's portable too (not relying on Linux, bash, or GNU utility features).
There's one edge case, test -t also returns false if the file descriptor is invalid, but it would take some slight adversity to arrange that. test -e will detect this, though assuming you have a filename such as /dev/stdin to use.
The POSIX tty command can also be used, and handles the adversity above. It will print the tty device name and return 0 if stdin is a terminal, and will print "not a tty" and return 1 in any other case:
if tty >/dev/null ; then
# stdin is a tty: process command line
else
# stdin is not a tty: process standard input
fi
(with GNU tty, you can use tty -s for silent operation)
A less portable way, though certainly acceptable on a typical Linux, is to use GNU stat with its %F format specifier, this returns the text "character special file", "fifo" and "regular file" in the cases of terminal, pipe and redirection respectively. stat requires a filename, so you must provide a specially-named file of the form /dev/stdin, /dev/fd/0, or /proc/self/fd/0, and use -L to chase symlinks:
stat -L -c "%F" /dev/stdin
This is probably the best way to handle non-interactive use (since you can't make assumptions about terminals then), or to detect an actual pipe (FIFO) distinct from redirection.
There is a slight gotcha with %F in that you cannot use it to tell the difference between a terminal and certain other device files, for example /dev/zero or /dev/null which are also "character special files" and might reasonably appear. An unpretty solution is to use %t to report the underlying device type (major, in hex), assuming you know what the underlying tty device number ranges are... and that depends on whether you're using BSD style ptys or Unix98 ptys, or whether you're on the actual console, among other things. In the simple case %t will be 0 though for a pipe or a redirection of a normal (non-special) file.
More general solutions to this kind of problem are to use bash's read with a timeout (read -t 0 ...) or non-blocking I/O with GNU dd (dd iflag=nonblock).
The latter will allow you to detect lack of input on stdin, dd will return an exit code of 1 if there is nothing ready to read. However, these are more suitable for non-blocking polling loops, rather than a once-off check: there is a race condition when you start two or more processes in a pipeline as one may be ready to read before another has written.
It's easier to check for command line arguments first and fallback to stdin if no arguments. Shell Parameter Expansion is a nice shorthand instead of the if-else:
value=${*:-`cat`}
# do something with $value

Resources