Linux filesystem million symlinks vs million files - linux

I'm working on a Linux filesystem-based caching system for a web application to be used as a last resort when APC and Memcache are unavailable. The system will cache between 500,000 and 1,000,000 unique strings identifiers, each with a large value. I'm taking the MD5 hash of the string ID and based on the first few chars, creating subfolders so not too many files end up in any one directory.
I know this concepts works because I'm using it in a similar application.
Although there are up to 1MM string IDs, they all point one of only 18,000 unique values, so, for instance there might be 100,000 string IDs that all point to the same value. Right now this means there are 100,000 files with different filenames containing the same content which is bad for the underlying filesystem cache.
Is there any disadvantage to caching the 18,000 unique values, then for every unique string ID, creating a symlink to the unique value file? This way the filesystem buffer can cache the 18,000 files and the descriptors for the symlinks.
I'm just concerned about having 1,000,000 symlinks and any potential problems this may introduce.
Thanks in advance!

Compared to storing plain files, no there is no disadvantage to storing symlinks. Performance will be slightly slower because of the indirection, but dentries and inodes are cached too.
However, I strongly suggest you need hard links, because that way, the content will stay around until the last of the links is deleted.

I agree with sehe, and please also note that hard links will use only 18,000 inodes instead of 106; a hard link only uses an additional directory entry that points to the one and only inode. You will save 106 * inode size bytes on-disk and in your memory cache.

Related

Ext4 on magnetic disk: Is it possible to process an arbitrary list of files in a seek-optimized manner?

I have a deduplicated storage of some million files in a two-level hashed directory structure. The filesystem is an ext4 partition on a magnetic disk. The path of a file is computed by its MD5 hash like this:
e93ac67def11bbef905a7519efbe3aa7 -> e9/3a/e93ac67def11bbef905a7519efbe3aa7
When processing* a list of files sequentially (selected by metadata stored in a separate database), I can literally hear the noise produced by the seeks ("randomized" by the hashed directory layout as I assume).
My actual question is: Is there a (generic) way to process a potentially long list of potentially small files in a seek-optimized manner, given they are stored on an ext4 partition on a magnetic disk (implying the use of linux)?
Such optimization is of course only useful if there is a sufficient share of small files. So please don't care too much about the size distribution of files. Without loss of generality, you may actually assume that there are only small files in each list.
As a potential solution, I was thinking of sorting the files by their physical disk locations or by other (heuristic) criteria that can be related to the total amount and length of the seek operations needed to process the entire list.
A note on file types and use cases for illustration (if need be)
The files are a deduplicated backup of several desktop machines. So any file you would typically find on a personal computer will be included on the partition. The processing however will affect only a subset of interest that is selected via the database.
Here are some use cases for illustration (list is not exhaustive):
extract metadata from media files (ID3, EXIF etc.) (files may be large, but only some small parts of the files are read, so they become effectively smaller)
compute smaller versions of all JPEG images to process them with a classifier
reading portions of the storage for compression and/or encryption (e.g. put all files newer than X and smaller than Y in a tar archive)
extract the headlines of all Word documents
recompute all MD5 hashes to verify data integrity
While researching for this question, I learned of the FIBMAP ioctl command (e.g. mentioned here) which may be worth a shot, because the files will not be moved around and the results may be stored along the metadata. But I suppose that will only work as sort criterion if the location of a file's inode correlates somewhat with the location of the contents. Is that true for ext4?
*) i.e. opening each file and reading the head of the file (arbitrary number of bytes) or the entire file into memory.
A file (especially when it is large enough) is scattered on several blocks on the disk (look e.g. in the figure of ext2 wikipage, it still is somehow relevant for ext4, even if details are different). More importantly, it could be in the page cache (so won't require any disk access). So "sorting the file list by disk location" usually does not make any sense.
I recommend instead improving the code accessing these files. Look into system calls like posix_fadvise(2) and readahead(2).
If the files are really small (hundreds of bytes each only), it is probable that using something else (e.g. sqlite or some real RDBMS like PostGreSQL, or gdbm ...) could be faster.
BTW, adding more RAM could enlarge the page cache size, so the overall experience. And replacing your HDD by some SSD would also help.
(see also linuxatemyram)
Is it possible to sort a list of files to optimize read speed / minimize seek times?
That is not really possible. File system fragmentation is not (in practice) important with ext4. Of course, backing up all your file system (e.g. in some tar or cpio archive) and restoring it sequentially (after making a fresh file system with mkfs) might slightly lower fragmentation, but not that much.
You might optimize your file system settings (block size, cluster size, etc... e.g. various arguments to mke2fs(8)). See also ext4(5).
Is there a (generic) way to process a potentially long list of potentially small files in a seek-optimized manner.
If the list is not too long (otherwise, split it in chunks of several hundred files each), you might open(2) each file there and use readahead(2) on each such file descriptor (and then close(2) it). This would somehow prefill your page cache (and the kernel could reorder the required IO operations).
(I don't know how effective is that in your case; you need to benchmark)
I am not sure there is a software solution to your issue. Your problem is likely IO-bound, so the bottleneck is probably the hardware.
Notice that on most current hard disks, the CHS addressing (used by the kernel) is some "logical" addressing handled by the disk controller and is not much related to physical geometry any more. Read about LBA, TCQ, NCQ (so today, the kernel has no direct influence on the actual mechanical movements of a hard disk head). I/O scheduling mostly happens in the hard disk itself (not much more in the kernel).

Is it OK (performance-wise) to have hundreds or thousands of files in the same Linux directory?

It's well known that in Windows a directory with too many files will have a terrible performance when you try to open one of them. I have a program that is to execute only in Linux (currently it's on Debian-Lenny, but I don't want to be specific about this distro) and writes many files to the same directory (which acts somewhat as a repository). By "many" I mean tens each day, meaning that after one year I expect to have something like 5000-10000 files. They are meant to be kept (once a file is created, it's never deleted) and it is assumed that the hard disk has the required capacity (if not, it should be upgraded). Those files have a wide range of sizes, from a few KB to tens of MB (but not much more than that). The names are always numeric values, incrementally generated.
I'm worried about long-term performance degradation, so I'd ask:
Is it OK to write all to the same directory? Or should I think about creating a set of subdirectories for every X files?
Should I require a specific filesystem to be used for such directory?
What would be the more robust alternative? Specialized filesystem? Which?
Any other considerations/recomendations?
It depends very much on the file system.
ext2 and ext3 have a hard limit of 32,000 files per directory. This is somewhat more than you are asking about, but close enough that I would not risk it. Also, ext2 and ext3 will perform a linear scan every time you access a file by name in the directory.
ext4 supposedly fixes these problems, but I cannot vouch for it personally.
XFS was designed for this sort of thing from the beginning and will work well even if you put millions of files in the directory.
So if you really need a huge number of files, I would use XFS or maybe ext4.
Note that no file system will make "ls" run fast if you have an enormous number of files (unless you use "ls -f"), since "ls" will read the entire directory and the sort the names. A few tens of thousands is probably not a big deal, but a good design should scale beyond what you think you need at first glance...
For the application you describe, I would probably create a hierarchy instead, since it is hardly any additional coding or mental effort for someone looking at it. Specifically, you can name your first file "00/00/01" instead of "000001".
If you use a filesystem without directory-indexing, then it is a very bad idea to have lots of files in one directory (say, > 5000).
However, if you've got directory indexing (which is enabled by default on more recent distros in ext3), then it's not such a problem.
However, it does break quite a few tools to have many files in one directory (For example, "ls" will stat() all the files, which takes a long time). You can probably easily split it into subdirectories.
But don't overdo it. Don't use many levels of nested subdirectory unnecessarily, this just uses lots of inodes and makes metadata operations slower.
I've seen more cases of "too many levels of nested directories" than I've seen of "too many files per directory".
The best solution I have for you (rather than quoting some values from a micro-filesystem-benchmark) is to test it yourself.
Just use the file system of your choice. Create some random test data for 100, 1000 and 10000 entries. Then, measure the time it takes your system to perform the action you are concerned about time-wise (opening a file, reading 100 random files, etc).
Then, you compare the times and use the best solution (put them all into one directory; put each year into a new directory; put each month of each year into a new directory).
I do not know in detail what you are using, but creating a directory is a one time (and probably quite easy) operation, so why not do it instead of changing filesystems or trying some other more time-consuming stuff?
In addition to the other answers, if the huge directory is managed by a known application or library, you could consider replacing it by something else, e.g:
a GDBM index file; GDBM is a very common library providing indexed file, which associates to an arbitrary key (a sequence of bytes) an arbitrary value (another sequence of byte).
perhaps a table inside a database like MySQL or PostGresQL. Be careful about indexing.
some other way to index data
The advantages of the above approaches include:
space performance for a large collection of small items (less than a kilobyte each). A filesystem need an inode for each item. Indexed systems may have much less granularity
time performance: you don't access the filesystem for every item
scalability: indexed approaches are designed to fit large needs: either a GDBM index file, or a database can handle many millions of items. I'm not sure your directory approach will scale as easily.
The disadvantage of such approach is that they don't show as files. But as MarkR's answer remind you, ls is behaving quite poorly on huge directories.
If you stick to a filesystem approach, many software using large number of files are organizing them in subdirectories like aa/ ab/ ac/ ...ay/ az/ ba/ ... bz/ ...
Is it OK to write all to the same directory? Or should I think about creating a set of subdirectories for every X files?
In my experience the only slow down a directory with many files will give is if you do things such as getting a listing with ls. But that mostly is the fault of ls, there are faster ways of listing the contents of a directory using tools such as echo and find (see below).
Should I require a specific filesystem to be used for such directory?
I don't think so with regards to amount of files in one directory. I am sure some filesystems perform better with many small files in one dir whilst others do a better job on huge files. It's also a matter of personal taste, akin to vi vs. emacs. I prefer to use the XFS filesystem so that'd be my advice. :-)
What would be the more robust alternative? Specialized filesystem? Which?
XFS is definitely robust and fast, I use it in many places, as boot partition, oracle tablespaces, space for source control you name it. It lacks a bit on delete performance, but otherwise it's a safe bet. Plus it supports growing the size whilst it is still mounted (that's a requirement actually). That is you just delete the partition, recreate it at the same starting block and whatever ending block that's larger than the original partition, then you run xfs_growfs on it with the filesystem mounted.
Any other considerations/recomendations?
See above. With the addition that having 5000 to 10000 files in one directory should not be a problem. In practice it doesn't arbitrarily slow down the filesystem as far as I know, except for utilities such as "ls" and "rm". But you could do:
find * | xargs echo
find * | xargs rm
The benefit that a directory tree with files, such as directory "a" for file names starting with an "a" etc., will give you is that of looks, it looks more organised. But then you have less of an overview... So what you're trying to do should be fine. :-)
I neglected to say you could consider using something called "sparse files" http://en.wikipedia.org/wiki/Sparse_file
It is bad for performance to have a huge number of files in one directory. Checking for the existence of a file will typically require an O(n) scan of the directory. Creating a new file will require that same scan with the directory locked to prevent the directory state changing before the new file is created. Some file systems may be smarter about this (using B-trees or whatever), but the fewer ties your implementation has to the filesystem's strengths and weaknesses the better for long term maintenance. Assume someone might decide to run the app on a network filesystem (storage appliance or even cloud storage) someday. Huge directories are a terrible idea when using network storage.

Maximum number of files/directories on Linux?

I'm developing a LAMP online store, which will allow admins to upload multiple images for each item.
My concern is - right off the bat there will be 20000 items meaning roughly 60000 images.
Questions:
What is the maximum number of files and/or directories on Linux?
What is the usual way of handling this situation (best practice)?
My idea was to make a directory for each item, based on its unique ID, but then I'd still have 20000 directories in a main uploads directory, and it will grow indefinitely as old items won't be removed.
Thanks for any help.
ext[234] filesystems have a fixed maximum number of inodes; every file or directory requires one inode. You can see the current count and limits with df -i. For example, on a 15GB ext3 filesystem, created with the default settings:
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/xvda 1933312 134815 1798497 7% /
There's no limit on directories in particular beyond this; keep in mind that every file or directory requires at least one filesystem block (typically 4KB), though, even if it's a directory with only a single item in it.
As you can see, though, 80,000 inodes is unlikely to be a problem. And with the dir_index option (enablable with tune2fs), lookups in large directories aren't too much of a big deal. However, note that many administrative tools (such as ls or rm) can have a hard time dealing with directories with too many files in them. As such, it's recommended to split your files up so that you don't have more than a few hundred to a thousand items in any given directory. An easy way to do this is to hash whatever ID you're using, and use the first few hex digits as intermediate directories.
For example, say you have item ID 12345, and it hashes to 'DEADBEEF02842.......'. You might store your files under /storage/root/d/e/12345. You've now cut the number of files in each directory by 1/256th.
If your server's filesystem has the dir_index feature turned on (see tune2fs(8) for details on checking and turning on the feature) then you can reasonably store upwards of 100,000 files in a directory before the performance degrades. (dir_index has been the default for new filesystems for most of the distributions for several years now, so it would only be an old filesystem that doesn't have the feature on by default.)
That said, adding another directory level to reduce the number of files in a directory by a factor of 16 or 256 would drastically improve the chances of things like ls * working without over-running the kernel's maximum argv size.
Typically, this is done by something like:
/a/a1111
/a/a1112
...
/b/b1111
...
/c/c6565
...
i.e., prepending a letter or digit to the path, based on some feature you can compute off the name. (The first two characters of md5sum or sha1sum of the file name is one common approach, but if you have unique object ids, then 'a'+ id % 16 is easy enough mechanism to determine which directory to use.)
60000 is nothing, 20000 as well. But you should put group these 20000 by any means in order to speed up access to them. Maybe in groups of 100 or 1000, by taking the number of the directory and dividing it by 100, 500, 1000, whatever.
E.g., I have a project where the files have numbers. I group them in 1000s, so I have
id/1/1332
id/3/3256
id/12/12334
id/350/350934
You actually might have a hard limit - some systems have 32 bit inodes, so you are limited to a number of 2^32 per file system.
In addition of the general answers (basically "don't bother that much", and "tune your filesystem", and "organize your directory with subdirectories containing a few thousand files each"):
If the individual images are small (e.g. less than a few kilobytes), instead of putting them in a folder, you could also put them in a database (e.g. with MySQL as a BLOB) or perhaps inside a GDBM indexed file. Then each small item won't consume an inode (on many filesystems, each inode wants at least some kilobytes). You could also do that for some threshold (e.g. put images bigger than 4kbytes in individual files, and smaller ones in a data base or GDBM file). Of course, don't forget to backup your data (and define a backup stategy).
The year is 2014. I come back in time to add this answer.
Lots of big/small files? You can use Amazon S3 and other alternatives based on Ceph like DreamObjects, where there are no directory limits to worry about.
I hope this helps someone decide from all the alternatives.
md5($id) ==> 0123456789ABCDEF
$file_path = items/012/345/678/9AB/CDE/F.jpg
1 node = 4096 subnodes (fast)

Storing & accessing up to 10 million files in Linux

I'm writing an app that needs to store lots of files up to approx 10 million.
They are presently named with a UUID and are going to be around 4MB each but always the same size. Reading and writing from/to these files will always be sequential.
2 main questions I am seeking answers for:
1) Which filesystem would be best for this. XFS or ext4?
2) Would it be necessary to store the files beneath subdirectories in order to reduce the numbers of files within a single directory?
For question 2, I note that people have attempted to discover the XFS limit for number of files you can store in a single directory and haven't found the limit which exceeds millions. They noted no performance problems. What about under ext4?
Googling around with people doing similar things, some people suggested storing the inode number as a link to the file instead of the filename for performance (this is in a database index. which I'm also using). However, I don't see a usable API for opening the file by inode number. That seemed to be more of a suggestion for improving performance under ext3 which I am not intending to use by the way.
What are the ext4 and XFS limits? What performance benefits are there from one over the other and could you see a reason to use ext4 over XFS in my case?
You should definitely store the files in subdirectories.
EXT4 and XFS both use efficient lookup methods for file names, but if you ever need to run tools over the directories such as ls or find you will be very glad to have the files in manageable chunks of 1,000 - 10,000 files.
The inode number thing is to improve the sequential access performance of the EXT filesystems. The metadata is stored in inodes and if you access these inodes out of order then the metadata accesses are randomized. By reading your files in inode order you make the metadata access sequential too.
Modern filesystems will let you store 10 million files all in the same directory if you like. But tools (ls and its friends) will not work well.
I'd recommend putting a single level of directories, a fixed number, perhaps 1,000 directories, and putting the files in there (10,000 files is tolerable to the shell, and "ls").
I've seen systems which create many levels of directories, this is truly unnecessary and increases inode consumption and makes traversal slower.
10M files should not really be a problem either, unless you need to do bulk operations on them.
I expect you will need to prune old files, but something like "tmpwatch" will probably work just fine with 10M files.

Disadvantages to creating/removing many hard links?

I need to create hundreds to thousands of temporary hard or symbolic links that will be deleted shortly after creation. For my purposes both types of links will work (i.e. the target is not a directory and it always exists on the same file system)
As I understand it, symbolic links create a small file that contains the path to the original file. Whereas a hardlink creates a reference to the data in the same inode. So maybe if I am going to be creating/deleting thousands of these links is it better to be creating and deleting thousands of tiny files (symlinks) or thousands of these references (hardlinks)? It seems like one taxes the hard drive (maybe fragmentation) while the other might tax the file system itself? Where are inode references stored. Do I risk corrupting the file system by making so many hard links? What about speed?
Thanks for your expertise!
This a work around to be able to use ffmpeg to encode a movie out of an arbitrary subset of images from a directory. Since ffmpeg requires that the files be named properly (e.g. frame%04d.jpg) I realized I can just create hard/sym links to the subset of files and just name the links appropriately. This avoids renaming the original files and having to actually copy the data. It works great but it requires creating and deleting many thousands of links, repeatedly.
Sort of addresses this problem too I believe:
convert image sequence using ffmpeg
If this activity breaks your file system, then your file system is at fault, not you. File systems are generally pretty reliable, so don't worry about that.
Both options require adding an entry in the directory. The symbolic link requires creating a file as well. When you access the file the hard link jumps directly to the content, while accessing a symlink requires finding the symlink file, reading it, finding the directory with the content, finding where the content is, and then accessing that. Therefore symlinks are more work for the filesystem all around.
But the difference is minute when compared to the work of actually reading the data in the files. Therefore I would not worry about it, and just go with whichever one best gives you the semantics you want.
Since you are not trying to create hundreds of thousands to the same file, hard links are marginally better performing.
However, symbolic links in /tmp if /tmp is tmpfs is even better performing yet.
Oh, and symlinks are too small to cause fragmentation issues.
Both options require the addition of a file entry in the directory inode, the directory structure may grow by allocating new blocks.
But a symbolic link requires the allocation of an inode and the filesystem has a limit for inodes. Your hundreds of thousands symlinks may hit that limit and you may get the "Not enough space for file" error message even with gigabytes free.
By default, the file system creation tool choose the maximum number of inodes according to the physical partition size. For instance for Linux ext2/3/4, mkfs.ext3 uses a bytes-per-inode ratio you can find in your /etc/mke2fs.conf.
For an existing filesystem, here is a command to get information about inodes:
# dumpe2fs /dev/sda1 | grep -i inode | less
Inode count: 979200
Free inodes: 742304
Inodes per group: 16320
Inode blocks per group: 510
First inode: 11
Inode size: 128
Journal inode: 8
First orphan inode: 441066
Journal backup: inode blocks
As a conclusion, you should prefer hard links mainly for resource consumption on disk and in memory (VFS structures in caches).
Another advice: do not create too many files in the same directory, 2'000 files is a reasonable limit to avoid performance issues.

Resources