So lets say i have a member base website and when the user signs in i put put a cookie (or a session) with a key value pair remembering who the user is. But its just come to my attention which information i should use to remember the user so that its secure. I cant use username=username or user_id = user_id (because my user_id will be 1), because people then can just simply guess what the cookie values are and logged in as that user. So what key/value pair should i use to be able to identify users and still connect their information to the database securely? Thanks.
Ben, there are a few different types of attacks you need to be concerned with. For example simply encrypting the identifier with a private key doesn't prevent someone who can intercept the encrypted value from simply replaying it to your server (and appear to be the user). Some common security risks are detailed here (and in associated links at bottom of this page):
https://www.owasp.org/index.php/Session_hijacking_attack
Session management can be quite complex and depending on the level of security you require, it is not something you want to tackle yourself, because likely your development environment / framework already has a solution that has been vetted moreso than a homebrew solution. Here is a link detailing some things to consider, unfortunately this topic has more to it than a simple Stack Overflow post:
https://www.owasp.org/index.php/Session_Management
If you dont prefer encryption for whatever reason, then a simpler solution could be to use a GUID to identify the user. This way, a hacker would have to launch a denial of service kind-of attack on your application to be able to run through even a very small fraction of the GUIDs.
If you want to do this properly, then you should have a look at http://jaspan.com/improved_persistent_login_cookie_best_practice also.
I'm definitely not an expert in security, but I have recently implemented user management tool and I have done the following.
Don't use encryption, its slow and most of the time for simple implementation its just a waste of time.
Here is what you do need to store on the server - in order to authenticate each request.
UserId (obvious)
CookieHash (made out of userId, some secret private key and crypto randomly generated number)
LastLogin
SessionRenewed (useful for when to cancel someone's session eg. renew cookieHash every 10 min, otherwise log out user)
LastIP
What I store in cookie is following
UserId
CookieHash
How to use this basic security
Simply when user logs in you check username/password etc. (just the usual) If everything is fine then log in user and generate new cookiehash and fill those values given above.
Every request check UserId against its hash. If someone gave UserId = 4 but hash didnt match then automatically drop a session and forward user to login screen. Possible log is good to see how often people try to play around with your hard work.
I hope this helps.
You can just encrypt the user id with a private encryption key that you keep on the server. There are a few things to watch out for with this approach:
Every call to the server will require you to decrypt the cookie to get the id of the user. This will add overhead to each request.
If the key is ever compromised, you will be forced to abandon the current name for the cookie you use and use another encryption key when assigning to the new cookie name; this will cause the user to have to re-login, of course.
While I don't think that these are major hurdles, they might be to you, and you would have to evaluate the impact on your site for yourself.
Related
Introduction
For a website I'm working on, I will be storing confidential information that I need encrypted.
The way Laravel currently handles things, they encrypt each record with the same APP_KEY that's stored in the .env by default. I think I should be able to take that same APP_KEY and decrypt all the information in my production database as long as I have access to the production .env.
If so, I don't think that's a proper away to handle security for my case. Let's say I hire an admin for my production site and they turn out to be malicious. All they need to do to get access to all the users' sensitive details is take that APP_KEY and run the decryption.
If that's the case, I would rather have it work like this:
The user creates a record that has a "secret" field
A random string is generated to encrypt the data passed to the "secret" field and is then given to the user
If the user wants to access the data in the "secret" field, they have to use the key given to them; I nor anyone else should be able to decrypt that field without knowing the key given to the user
For my specific case, a client program will handle accessing the site's API and storing the encryption key and other details safely, so the user doesn't have to think about this.
My questions are the following:
Is the current encryption scheme Laravel uses safe from malicious admins?
If not, how would I go about best implementing the latter scheme?
Are there vulnerabilities with the latter schema as well, and if so, how can I improve it?
What I've Done
I've looked at the docs on this issue. I've also looked into the Model::encryptUsing feature, which allows for custom encryption.
I think I can implement the above if, when running the action that creates the record, I use Model::encryptUsing, but I haven't tested it yet.
If it ends up working, I will post the answer here.
Hello fellow developers
I have obviously under estimated a thing when developing my first complex web site, where user creation and login is required.
It appears that cookies can be edited and modified by the user logged in, by using some developer tools i.e. in Google Chrome. That, I never gave a thought.
So, here is my issue.
When the user is logged in, I store the user name in a cookie.
If username-cookie is not blank, and I can find a user file with that name, the user is logged in, per se. Otherwise, no user is logged in.
When the user logs out, I simply expires the cookie, which works fine.
Now, the problem is, that a user obviously can edit the content of a cookie, outside the web application, or with javascript.
What would be the correct approach here to ensure, that the username cookie is not compromised in any way, other by my web application?
Making them read-only is not possible, I assume. Encrypting the cookie and then decrypting might work, I guess. Then, the cookie would be nonsense to the user, and if modified, result in a logout, as no valid username can be found upon decrypting the edited cookie.
I have stalked Googles cookies, and it appears that there are a lot of xxID cookies, which contains garbage. Does that mean, that encrypting/decrypting is the only way to make it work? I also considered some kind of login-ticket, but that would require a table lookup every time a user interacts with my web page.
Can anyone give me a hint as to what would be the correct approach?
Thanks in advance
Best regards,
Karsten Heitmann
You should look up session management for the language you are using.
The traditional approach is that when a user logs on, your application generates a long, cryptographically random token called the "session id" and sets that into a cookie. It stores data like who is logged in on the server side identified by the random value, so when a logged on user comes back, the browser sends the cookie with the random session id and the application can look up session data on the server side. This way an attacker has no way to guess a valid session id for a logged on user, assuming the session id is cryptographically random and long enough (which more precisely means it has enough entropy). Logging out means deleting the session data on the server side, and also removing the cookie, but that is not the most important part - the session will be invalid anyway.
Note that you should not code this yourself. You did not mention the language and environment you are developing in, but session management is rather tricky business if you want to secure it, and it is already provided by most languages / frameworks.
Just for curiosity, the encryption approach you mention is by the way a valid one. Some frameworks actually do that, but you should not attempt to code that either, because it is very easy to get it wrong, lots of things need to be taken care of to make it secure enough. Unfortunately an answer here is not the right format to go into details I'm afraid.
Btw you mention looking at Google. They use their own single sign-on solution, it is very complex compared to simple session management, so it's probably not the best example for you to look at. Find simple websites, most of those work the traditional way.
I'm writing a GWT application where users login and interact with their profile. I understand that each form entry needs to be validated on the server, however, I am unsure about potential security issues once the user has logged in.
Let me explain. My application (the relevant parts) works as follows:
1 - user enters email/pass
2 - this info is sent back to the server, a DB is queried, passwords are checked (which are salted and hashed)
3. if the passwords match the profile associated w/ the email, this is considered success
Now I am unsure whether or not it is safe to pass the profile ID back to the client, which would then be used to query the DB for information relevant to the user to be displayed on the profile page.
Is there a possibility for a potential user to manually provide this profile ID and load a profile that way? My concern is that somebody w/ bad intentions could, if they knew the format of the profile ID, load an arbitrary amount of information from my DB without providing credentials.
-Nick
What you are dealing with here is a session management issue. Ideally, you want a way to keep track of logged in users (using random values as the session key), know how long they have been idle, be able to extend sessions as the user is using the site, and expire sessions.
Simply passing the profile ID to the client, and relying on it to send it back for each request is not sufficient - you are correct with your concern.
You want to keep a list of sessions with expiration times in a database. Every time an action is executed that needs user permissions (which should be pretty much everything), check to see if the session is still valid, if it is, extend it by however long you want. If it is expired, kill the session completely and log the user out.
You can store your session keys in a cookie (you have to trust the client at some point), but make sure they are non-deterministic and have a very large keyspace so it cannot be brute forced to get a valid session.
Since you're logging a user in, you must be using a backend that supports sessions (PHP, .Net, JAVA, etc), as Stefan H. said. That means that you shouldn't keep any ids on your client side, since a simple id substitution might grant me full access to another user's account (depending on what functionality you expose on your client, of course).
Any server request to get sensitive info (or for any admin actions) for the logged in user should look something like getMyCreditCard(), setMyCreditCard(), etc (note that no unique ids are passed in).
Is there a possibility for a potential user to manually provide this profile ID and load a profile that way? My concern is that somebody w/ bad intentions could, if they knew the format of the profile ID, load an arbitrary amount of information from my DB without providing credentials.
Stefan H is correct that you can solve this via session management if your session keys are unguessable and unfixable.
Another way to solve it is to use crypto-primitives to prevent tampering with the ID.
For example, you can store a private key on your server and use it to sign the profile ID. On subsequent requests, your server can trust the profile ID if it passes the signature check.
Rule 1 - Avoid cooking up your own security solution and use existing tested approaches.
Rule 2 - If your server side is java then you should be thinking along the lines of jsessionid. Spring Security will give you a good starting point to manage session ids with additional security features. There will be similar existing frameworks across php too (i did not see server side language tags in the question).
Rule 3 - With GWT you come across javascript based security issues with Google Team documents and suggests XSRF and XSS security prevention steps. Reference - https://developers.google.com/web-toolkit/articles/security_for_gwt_applications
Many users – myself included – would like the security of having everything they do on a web service encrypted. That is, they don't won't any one at the web service to be able to look at their: posts, info, tasks, etc...
This is also major complaint in this discussion of an otherwise cool service: http://news.ycombinator.com/item?id=1549115
Since this data needs to be recoverable, some sort of two-way encryption is required. But unless you're prompting the user for the encryption key on every request, this key will need to be stored on the server, and the point of encrypting the data is basically lost.
What is a way to securely encrypt user data without degrading the user experience (asking for some key on every request)?
-- UPDATE --
From #Borealid's answer, I've focused on two possibilities: challenge-response protocols, where no data (password included) is sent in the "clear", and non-challenge-response protocols, where data (password included) is sent in the "clear" (although over HTTPS).
Challenge-response protocols (specifically SRP: http://srp.stanford.edu/)
It seems that its implementation would need to rely on either a fully AJAX site or using web storage. This is so the browser can persist the challenge-response data during encryption and also the encryption key between different "pages". (I'm assuming after authentication is completed I would send them back the encrypted encryption key, which they would decrypt client-side to obtain the real encryption key.)
The problem is that I'm either:
fully AJAX, which I don't like because I love urls and don't won't a user to live exclusively on a single url, or
I have to store data encryption keys in web storage, which based on http://dev.w3.org/html5/webstorage/ will persist even after the browser is closed and could be a security vulnerability
In addition, as SRP takes more than one request ( http://srp.stanford.edu/design.html ), there needs to be some persistence on the server-side. This is just another difficulty.
Traditionally
If I'm ok transmitting passwords and data in the clear (although over HTTPS), then the client-side issues above are not present.
On registration, I'll generate a random unique encryption key for the user, and encrypt it using their password and a random salt.
In the database, I'll store the user's password hash and salt (through bcrypt), encrypted encryption key, encryption key salt, and encryption iv.
After an authentication, I'll also need to use their password to decrypt the encryption key so that they may view and enter new data. I store this encryption key only temporarily and delete it when they explicitly "log out".
The problems with this approach is that (like #Borealid points out) evil sysadmins can still look at your data when you are logged in.
I'm also not sure how to store the encryption keys when users are logged in. If they are in the same data store, a stolen database would reveal all data of those who were logged in at the time of theft.
Is there a better in-memory data store for storing these encryption keys (and challenge data during an SRP authentication)? Is this something Redis would be good for?
If the data need to be recoverable in the event of user error, you can't use something like a cookie (which could get deleted). And as you point out, server-side keys don't actually secure the user against malicious sysadmins; they only help with things like databases stolen offline.
However, if you're running a normal web service, you've already gotten pretty lucky - the user, in order to be unique and non-ephemeral, must be logged in. This means they go through some authentication step which proves their identity. In order to prove their identity, most web sites use a passed credential (a password).
So long as you don't use a challenge-response authentication protocol, which most web sites don't, you can use an encryption key derived from a combination of a server-side secret and the user's password. Store the encryption key only while the user is authenticated.
If you do this, the users are still vulnerable to sysadmins peeking while they're using the service (or stealing their passwords). You might want to go a step further. To go one up, don't send the password to the server at all. Instead, use a challenge-response protocol for authentication to your website, and encrypt the data with a derivative of the user's password via JavaScript before uploading anything.
This is foolproof security: if you try to steal the user's password, the user can see what you're doing because the code for the theft is right there in the page you sent them. Your web service never touches their data unencrypted. This is also no hindrance to the normal user experience. The user just enters their password to log in, as per normal.
This method is what is used by Lacie's storage cloud service. It's very well done.
Note: when I say "use foo to encrypt", I really mean "use foo to encrypt a secure symmetric key which is then used with a random salt to encrypt". Know your cryptography. I'm only talking about the secret, not the methodology.
None of those other solutions are going to maintain the feature set requested -- which specifically wants to preserve the user experience. If you look at the site referenced in the link, they email you a nightly past journal entry. You're not going to get that with JavaScript trickery per above because you don't have the browser to depend on. So basically this is all leading you down a path to a degraded user experience.
What you would want, or more precisely the best solution you're going to find in this space, is not so much what wuala does per above, but rather something like hush.com. The handling of user data needs to be done on the client side at all times -- this is generally accomplished via full client-side Java (like the Facebook photo uploader, etc), but HTML/JavaScript might get you there these days. JavaScript encryption is pretty poor, so you may be better off ignoring it.
OK, so now you've got client-side Java running a Journal entry encryption service. The next feature was to email past journal entries to users every night. Well, you're not going to get that in an unencrypted email obviously. This is where you're going to need to change the user experience one way or the other. The simplest solution is not to email the entry and instead to provide for instance a journal entry browser in the Java app that reminds them of some old entry once they get to the website based on a link in the daily email. A much more complex solution would be to use JavaScript encryption to decrypt the entry as an attachment inline in the email. This isn't rocket science but there is a fairly huge amount of trickery involved. This is the general path used by several web email encryption services such as IronPort. You can get a demo email by going to http://www.ironport.com/securedemo/.
As much as I'd love to see a properly encrypted version of all this, my final comment would be that journal entries are not state secrets. Given a solid privacy policy and good site security semantics, I'm sure 99% of your users will feel just fine about things. Doing all this right with true security will take an enormous amount of effort per above and at least some design/UE changes.
You should look into the MIT project CryptDB which supports querying an encrypted database using a subset of SQL. (see the forbes article, mefi thread, or Homomorphic encryption on wikipedia)
There is the Tahoe-LAFS project for cloud storage too, which conceivably could be leveraged into a fully anonymous social networking application, one day in the distant future.
If you want to perform computations on a server without even the server being able to see the data, you may be interested in knowing about fully homomorphic encryption. A fully homomorphic encryption scheme lets you perform arbitrary computations on encrypted data, even if you can't decrypt it. However, this is still a topic of research.
For now, I guess your best bet would be to encrypt all posts and assign meaningless (e.g. sequential) IDs to each one. For a more in-depth discussion of how to encrypt server-side data with today's technology, look up.
If a user logs into the site, and says 'remember me', we get the unique identifier for the user, encrypt this with RijndaelManaged with a keysize of 256 and place this in a httponly cookie with a set expiration of say.. 120 days, the expiration is refreshed each successful request to the server.
Optionally we generate the initialization vector based upon the user agent and part of the ipv4 address (the last two octets).
Obviously theres no real expiration system built into this, the user could technically use this encrypted key forever (given we don't change the server side key)..
I considered the fact that to allow this feature I need to allow the user to be able to bypass the login and give me their unique id (which is a guid), I figured the guid alone was really hard to guess a real users guid, but would leave the site open to attack by botnots generating guids (I've no idea how realistic it is for them to find a legit guid).. so this is why theres encryption where the server knows the encryption key, and optionally the iv is specific to the browser and ip part.
Should I be considering a different approach where the server issues tickets associated to a user, and these tickets would have a known expiration date so the server stays in control of expiration? should I really care about expiration? remember me is remember me after all?
Looking forward to being humbled ;),
Cheers.
Very similar question.
The solution to your question is in this blog post
"Persistent Login Cookie Best
Practice," describes a relatively
secure approach to implementing the
familiar "Remember Me" option for web
sites. In this article, I propose an
improvement that retains all the
benefits of that approach but also
makes it possible to detect when a
persistent login cookie has been
stolen and used by an attacker.
As Jacco says in the comments: for in depth info about secure authentication read The Definitive Guide To Website Authentication.
Did you consider something like Open Id? As SO uses.
How important is the information that is being remembered? If it's not going to be anything very personal or important, just put a GUID in the cookie.
Including the IP address in the calculation is probably a bad idea, as it would make users using public networks be instantly forgotten.
Using brute force to find GUIDs is ridiculous, as there are 2128 possibilities.