I have twice recently refactored code in order to change the order of parameters because there was too much code where hacks like flip or \x -> foo bar x 42 were happening.
When designing a function signature what principles will help me to make the best use of currying?
For languages that support currying and partial-application easily, there is one compelling series of arguments, originally from Chris Okasaki:
Put the data structure as the last argument
Why? You can then compose operations on the data nicely. E.g. insert 1 $ insert 2 $ insert 3 $ s. This also helps for functions on state.
Standard libraries such as "containers" follow this convention.
Alternate arguments are sometimes given to put the data structure first, so it can be closed over, yielding functions on a static structure (e.g. lookup) that are a bit more concise. However, the broad consensus seems to be that this is less of a win, especially since it pushes you towards heavily parenthesized code.
Put the most varying argument last
For recursive functions, it is common to put the argument that varies the most (e.g. an accumulator) as the last argument, while the argument that varies the least (e.g. a function argument) at the start. This composes well with the data structure last style.
A summary of the Okasaki view is given in his Edison library (again, another data structure library):
Partial application: arguments more likely to be static usually appear before other arguments in order to facilitate partial application.
Collection appears last: in all cases where an operation queries a single collection or modifies an existing collection, the collection argument will appear last. This is something of a de facto standard for Haskell datastructure libraries and lends a degree of consistency to the API.
Most usual order: where an operation represents a well-known mathematical function on more than one datastructure, the arguments are chosen to match the most usual argument order for the function.
Place the arguments that you are most likely to reuse first. Function arguments are a great example of this. You are much more likely to want to map f over two different lists, than you are to want to map many different functions over the same list.
I tend to do what you did, pick some order that seems good and then refactor if it turns out that another order is better. The order depends a lot on how you are going to use the function (naturally).
Related
This is a follow-up to a suggestion by #DCTLib in the post below.
Cudd_PrintMinterm, accessing the individual minterms in the sum of products
I've been pursuing part (b) of the suggestion and will share some pseudo-code in a separate post.
Meanwhile, in his part (b) suggestion, #DCTLib posted a link to https://github.com/VerifiableRobotics/slugs/blob/master/src/BFAbstractionLibrary/BFCudd.cpp. I've been trying to read this program. There is a recursive function in the classic Somenzi paper, Binary Decision Diagrams, which describes an algo to compute the number of satisfying assignments (below, Fig. 7). I've been trying to compare the two, slugs and Fig. 7. But having a hard time seeing any similarities. But then C is mostly inscrutable to me. Do you know if slugs BFCudd is based on Somenze fig 7, #DCTLib?
Thanks,
Gui
It's not exactly the same algorithm.
There are two main differences:
First, the "SatHowMany" function does not take a cube of variables to consider for counting. Rather, that function considers all variables. The fact that "recurse_getNofSatisfyingAssignments" supports cubes manifest in the function potentially returning NaN (not a number) if a variable is found in the BDD that does not appear in the cube. The rest of the differences seem to stem from this support.
Second, SatHowMany returns the number of satisfying assignments to all n variables for a node. This leads, for instance, to the division by 2 in line -4. "recurse_getNofSatisfyingAssignments" only returns the number of assignments for the remaining variables to be considered.
Both algorithms cache information - in "SatHowMany", it's called a table, in "recurse_getNofSatisfyingAssignments" it's called a buffer. Note that in line 24 of "recurse_getNofSatisfyingAssignments", there is a constant string thrown. This means that either the function does not work, or the code is never reached. Most likely it's the latter.
Function "SatHowMany" seems to assume that it gets a BDD node - it cannot be a pointer to a complemented BDD node. Function "recurse_getNofSatisfyingAssignments" works correctly with complemented nodes, as a DdNode* may store a pointer to a complemented node.
Due to the support for cubes, "recurse_getNofSatisfyingAssignments" supports flexible variable ordering (hence the lookup of "cuddI" which denotes for a variable where it is in the current BDD variable ordering). For function SatHowMany, the variable ordering does not make a difference.
Now, at the start of my adventure with programming I have some problems understanding basic concepts. Here is one related to Haskell or perhaps generally functional paradigm.
Here is a general statement of accumulator factory problem, from
http://rosettacode.org/wiki/Accumulator_factory
[Write a function that]
Takes a number n and returns a function (lets call it g), that takes a number i, and returns n incremented by the accumulation of i from every call of function g(i).
Works for any numeric type-- i.e. can take both ints and floats and returns functions that can take both ints and floats. (It is not enough simply to convert all input to floats. An accumulator that has only seen integers must return integers.) (i.e., if the language doesn't allow for numeric polymorphism, you have to use overloading or something like that)
Generates functions that return the sum of every number ever passed to them, not just the most recent. (This requires a piece of state to hold the accumulated value, which in turn means that pure functional languages can't be used for this task.)
Returns a real function, meaning something that you can use wherever you could use a function you had defined in the ordinary way in the text of your program. (Follow your language's conventions here.)
Doesn't store the accumulated value or the returned functions in a way that could cause them to be inadvertently modified by other code. (No global variables or other such things.)
with, as I understand, a key point being:
"[...] creating a function that [...]
Generates functions that return the sum of every number ever passed to them, not just the most recent. (This requires a piece of state to hold the accumulated value, which in turn means that pure functional languages can't be used for this task.)"
We can find a Haskell solution on the same website and it seems to do just what the quote above says.
Here
http://rosettacode.org/wiki/Category:Haskell
it is said that Haskell is purely functional.
What is then the explanation of the apparent contradiction? Or maybe there is no contradiction and I simply lack some understanding? Thanks.
The Haskell solution does not actually quite follow the rules of the challenge. In particular, it violates the rule that the function "Returns a real function, meaning something that you can use wherever you could use a function you had defined in the ordinary way in the text of your program." Instead of returning a real function, it returns an ST computation that produces a function that itself produces more ST computations. Within the context of an ST "state thread", you can create and use mutable references (STRef), arrays, and vectors. However, it's impossible for this mutable state to "leak" outside the state thread to contaminate pure code.
I have an interesting question, but I'm not sure exactly how to phrase it...
Consider the lambda calculus. For a given lambda expression, there are several possible reduction orders. But some of these don't terminate, while others do.
In the lambda calculus, it turns out that there is one particular reduction order which is guaranteed to always terminate with an irreducible solution if one actually exists. It's called Normal Order.
I've written a simple logic solver. But the trouble is, the order in which it processes the constraints seems to have a huge effect on whether it finds any solutions or not. Basically, I'm wondering whether something like a normal order exists for my logic programming language. (Or wether it's impossible for a mere machine to deterministically solve this problem.)
So that's what I'm after. Presumably the answer critically depends on exactly what the "simple logic solver" is. So I will attempt to briefly describe it.
My program is closely based on the system of combinators in chapter 9 of The Fun of Programming (Jeremy Gibbons & Oege de Moor). The language has the following structure:
The input to the solver is a single predicate. Predicates may involve variables. The output from the solver is zero or more solutions. A solution is a set of variable assignments which make the predicate become true.
Variables hold expressions. An expression is an integer, a variable name, or a tuple of subexpressions.
There is an equality predicate, which compares expressions (not predicates) for equality. It is satisfied if substituting every (bound) variable with its value makes the two expressions identical. (In particular, every variable equals itself, bound or not.) This predicate is solved using unification.
There are also operators for AND and OR, which work in the obvious way. There is no NOT operator.
There is an "exists" operator, which essentially creates local variables.
The facility to define named predicates enables recursive looping.
One of the "interesting things" about logic programming is that once you write a named predicate, it typically works fowards and backwards (and sometimes even sideways). Canonical example: A predicate to concatinate two lists can also be used to split a list into all possible pairs.
But sometimes running a predicate backwards results in an infinite search, unless you rearrange the order of the terms. (E.g., swap the LHS and RHS of an AND or an OR somehwere.) I'm wondering whether there's some automated way to detect the best order to run the predicates in, to ensure prompt termination in all cases where the solution set is exactually finite.
Any suggestions?
Relevant paper, I think: http://www.cs.technion.ac.il/~shaulm/papers/abstracts/Ledeniov-1998-DCS.html
Also take a look at this: http://en.wikipedia.org/wiki/Constraint_logic_programming#Bottom-up_evaluation
I know that memoization seems to be a perennial topic here on the haskell tag on stack overflow, but I think this question has not been asked before.
I'm aware of several different 'off the shelf' memoization libraries for Haskell:
The memo-combinators and memotrie packages, which make use of a beautiful trick involving lazy infinite data structures to achieve memoization in a purely functional way. (As I understand it, the former is slightly more flexible, while the latter is easier to use in simple cases: see this SO answer for discussion.)
The uglymemo package, which uses unsafePerformIO internally but still presents a referentially transparent interface. The use of unsafePerformIO internally results in better performance than the previous two packages. (Off the shelf, its implementation uses comparison-based search data structures, rather than perhaps-slightly-more-efficient hash functions; but I think that if you find and replace Cmp for Hashable and Data.Map for Data.HashMap and add the appropraite imports, you get a hash based version.)
However, I'm not aware of any library that looks answers up based on object identity rather than object value. This can be important, because sometimes the kinds of object which are being used as keys to your memo table (that is, as input to the function being memoized) can be large---so large that fully examining the object to determine whether you've seen it before is itself a slow operation. Slow, and also unnecessary, if you will be applying the memoized function again and again to an object which is stored at a given 'location in memory' 1. (This might happen, for example, if we're memoizing a function which is being called recursively over some large data structure with a lot of structural sharing.) If we've already computed our memoized function on that exact object before, we can already know the answer, even without looking at the object itself!
Implementing such a memoization library involves several subtle issues and doing it properly requires several special pieces of support from the language. Luckily, GHC provides all the special features that we need, and there is a paper by Peyton-Jones, Marlow and Elliott which basically worries about most of these issues for you, explaining how to build a solid implementation. They don't provide all details, but they get close.
The one detail which I can see which one probably ought to worry about, but which they don't worry about, is thread safety---their code is apparently not threadsafe at all.
My question is: does anyone know of a packaged library which does the kind of memoization discussed in the Peyton-Jones, Marlow and Elliott paper, filling in all the details (and preferably filling in proper thread-safety as well)?
Failing that, I guess I will have to code it up myself: does anyone have any ideas of other subtleties (beyond thread safety and the ones discussed in the paper) which the implementer of such a library would do well to bear in mind?
UPDATE
Following #luqui's suggestion below, here's a little more data on the exact problem I face. Let's suppose there's a type:
data Node = Node [Node] [Annotation]
This type can be used to represent a simple kind of rooted DAG in memory, where Nodes are DAG Nodes, the root is just a distinguished Node, and each node is annotated with some Annotations whose internal structure, I think, need not concern us (but if it matters, just ask and I'll be more specific.) If used in this way, note that there may well be significant structural sharing between Nodes in memory---there may be exponentially more paths which lead from the root to a node than there are nodes themselves. I am given a data structure of this form, from an external library with which I must interface; I cannot change the data type.
I have a function
myTransform : Node -> Node
the details of which need not concern us (or at least I think so; but again I can be more specific if needed). It maps nodes to nodes, examining the annotations of the node it is given, and the annotations its immediate children, to come up with a new Node with the same children but possibly different annotations. I wish to write a function
recursiveTransform : Node -> Node
whose output 'looks the same' as the data structure as you would get by doing:
recursiveTransform Node originalChildren annotations =
myTransform Node recursivelyTransformedChildren annotations
where
recursivelyTransformedChildren = map recursiveTransform originalChildren
except that it uses structural sharing in the obvious way so that it doesn't return an exponential data structure, but rather one on the order of the same size as its input.
I appreciate that this would all be easier if say, the Nodes were numbered before I got them, or I could otherwise change the definition of a Node. I can't (easily) do either of these things.
I am also interested in the general question of the existence of a library implementing the functionality I mention quite independently of the particular concrete problem I face right now: I feel like I've had to work around this kind of issue on a few occasions, and it would be nice to slay the dragon once and for all. The fact that SPJ et al felt that it was worth adding not one but three features to GHC to support the existence of libraries of this form suggests that the feature is genuinely useful and can't be worked around in all cases. (BUT I'd still also be very interested in hearing about workarounds which will help in this particular case too: the long term problem is not as urgent as the problem I face right now :-) )
1 Technically, I don't quite mean location in memory, since the garbage collector sometimes moves objects around a bit---what I really mean is 'object identity'. But we can think of this as being roughly the same as our intuitive idea of location in memory.
If you only want to memoize based on object identity, and not equality, you can just use the existing laziness mechanisms built into the language.
For example, if you have a data structure like this
data Foo = Foo { ... }
expensive :: Foo -> Bar
then you can just add the value to be memoized as an extra field and let the laziness take care of the rest for you.
data Foo = Foo { ..., memo :: Bar }
To make it easier to use, add a smart constructor to tie the knot.
makeFoo ... = let foo = Foo { ..., memo = expensive foo } in foo
Though this is somewhat less elegant than using a library, and requires modification of the data type to really be useful, it's a very simple technique and all thread-safety issues are already taken care of for you.
It seems that stable-memo would be just what you needed (although I'm not sure if it can handle multiple threads):
Whereas most memo combinators memoize based on equality, stable-memo does it based on whether the exact same argument has been passed to the function before (that is, is the same argument in memory).
stable-memo only evaluates keys to WHNF.
This can be more suitable for recursive functions over graphs with cycles.
stable-memo doesn't retain the keys it has seen so far, which allows them to be garbage collected if they will no longer be used. Finalizers are put in place to remove the corresponding entries from the memo table if this happens.
Data.StableMemo.Weak provides an alternative set of combinators that also avoid retaining the results of the function, only reusing results if they have not yet been garbage collected.
There is no type class constraint on the function's argument.
stable-memo will not work for arguments which happen to have the same value but are not the same heap object. This rules out many candidates for memoization, such as the most common example, the naive Fibonacci implementation whose domain is machine Ints; it can still be made to work for some domains, though, such as the lazy naturals.
Ekmett just uploaded a library that handles this and more (produced at HacPhi): http://hackage.haskell.org/package/intern. He assures me that it is thread safe.
Edit: Actually, strictly speaking I realize this does something rather different. But I think you can use it for your purposes. It's really more of a stringtable-atom type interning library that works over arbitrary data structures (including recursive ones). It uses WeakPtrs internally to maintain the table. However, it uses Ints to index the values to avoid structural equality checks, which means packing them into the data type, when what you want are apparently actually StableNames. So I realize this answers a related question, but requires modifying your data type, which you want to avoid...
Many a times, I've come across statements of the form
X does/doesn't compose well.
I can remember few instances that I've read recently :
Macros don't compose well (context: clojure)
Locks don't compose well (context: clojure)
Imperative programming doesn't compose well... etc.
I want to understand the implications of composability in terms of designing/reading/writing code ? Examples would be nice.
"Composing" functions basically just means sticking two or more functions together to make a big function that combines their functionality in a useful way. Essentially, you define a sequence of functions and pipe the results of each one into the next, finally giving the result of the whole process. Clojure provides the comp function to do this for you, you could do it by hand too.
Functions that you can chain with other functions in creative ways are more useful in general than functions that you can only call in certain conditions. For example, if we didn't have the last function and only had the traditional Lisp list functions, we could easily define last as (def last (comp first reverse)). Look at that — we didn't even need to defn or mention any arguments, because we're just piping the result of one function into another. This would not work if, for example, reverse took the imperative route of modifying the sequence in-place. Macros are problematic as well because you can't pass them to functions like comp or apply.
Composition in programming means assembling bigger pieces out of smaller ones.
Composition of unary functions creates a more complicated unary function by chaining simpler ones.
Composition of control flow constructs places control flow constructs inside other control flow constructs.
Composition of data structures combines multiple simpler data structures into a more complicated one.
Ideally, a composed unit works like a basic unit and you as a programmer do not need to be aware of the difference. If things fall short of the ideal, if something doesn't compose well, your composed program may not have the (intended) combined behavior of its individual pieces.
Suppose I have some simple C code.
void run_with_resource(void) {
Resource *r = create_resource();
do_some_work(r);
destroy_resource(r);
}
C facilitates compositional reasoning about control flow at the level of functions. I don't have to care about what actually happens inside do_some_work(); I know just by looking at this small function that every time a resource is created on line 2 with create_resource(), it will eventually be destroyed on line 4 by destroy_resource().
Well, not quite. What if create_resource() acquires a lock and destroy_resource() frees it? Then I have to worry about whether do_some_work acquires the same lock, which would prevent the function from finishing. What if do_some_work() calls longjmp(), and skips the end of my function entirely? Until I know what goes on in do_some_work(), I won't be able to predict the control flow of my function. We no longer have compositionality: we can no longer decompose the program into parts, reason about the parts independently, and carry our conclusions back to the whole program. This makes designing and debugging much harder and it's why people care whether something composes well.
"Bang for the Buck" - composing well implies a high ratio of expressiveness per rule-of-composition. Each macro introduces its own rules of composition. Each custom data structure does the same. Functions, especially those using general data structures have far fewer rules.
Assignment and other side effects, especially wrt concurrency have even more rules.
Think about when you write functions or methods. You create a group of functionality to do a specific task. When working in an Object Oriented language you cluster your behavior around the actions you think a distinct entity in the system will perform. Functional programs break away from this by encouraging authors to group functionality according to an abstraction. For example, the Clojure Ring library comprises a group of abstractions that cover routing in web applications.
Ring is composable where functions that describe paths in the system (routes) can be grouped into higher order functions (middlewhere). In fact, Clojure is so dynamic that it is possible (and you are encouraged) to come up with patterns of routes that can be dynamically created at runtime. This is the essence of composablilty, instead of coming up with patterns that solve a certain problem you focus on patterns that generate solutions to a certain class of problem. Builders and code generators are just two of the common patterns used in functional programming. Function programming is the art of patterns that generate other patterns (and so on and so on).
The idea is to solve a problem at its most basic level then come up with patterns or groups of the lowest level functions that solve the problem. Once you start to see patterns in the lowest level you've discovered composition. As folks discover second order patterns in groups of functions they may start to see a third level. And so on...
Composition (in the context you describe at a functional level) is typically the ability to feed one function into another cleanly and without intermediate processing. Such an example of composition is in std::cout in C++:
cout << each << item << links << on;
That is a simple example of composition which doesn't really "look" like composition.
Another example with a form more visibly compositional:
foo(bar(baz()));
Wikipedia Link
Composition is useful for readability and compactness, however chaining large collections of interlocking functions which can potentially return error codes or junk data can be hazardous (this is why it is best to minimize error code or null return values.)
Provided your functions use exceptions, or alternatively return null objects you can minimize the requirement for branching (if) on errors and maximize the compositional potential of your code at no extra risk.
Object composition (vs inheritance) is a separate issue (and not what you are asking, but it shares the name). It is one of containment to derive object hierarchy as opposed to direct inheritance.
Within the context of clojure, this comment addresses certain aspects of composability. In general, it seems to emerge when units of the system do one thing well, do not require other units to understand its internals, eschew side-effects, and accept and return the system's pervasive data structures. All of the above can be seen in M2tM's C++ example.
composability, applied to functions, means that the functions are smaller and well-defined, thus easy to integrate into other functions (i have seen this idea in the book "the joy of clojure")
the concept can apply to other things that are supposed be composed into something else.
the purpose of composability is reuse. for example, a function well-build (composable) is easier to reuse
macros aren't that well-composable because you can't pass them as parameters
lock are crap because you can't really give them names (define them well) or reuse them. you just do them inplace
imperative languages aren't that composable because (some of them, at least) don't have closures. if you want functionality passed as parameter, you're screwed. you have to build an object and pass that; disclaimer here: this last idea i'm not entirely convinced is true, therefore research more before taking it for granted
another idea on imperative languages is that they don't compose well because they imply state (from wikipedia knowledgebase :) "Imperative programming - describes computation in terms of statements that change a program state").
state does not compose well because although you have given a specific "something" in input, that "something" generates an output according to it's state. different internal state, different behaviour. and thus you can say good-bye to what you where expecting to happen.
with state, you depend to much on knowing what the current state of an object is... if you want to predict it's behavior. more stuff to keep in the back of your mind, less composable (remember well-defined ? or "small and simple", as in "easy to use" ?)
ps: thinking of learning clojure, huh ? investigating... ? good for you ! :P