Repeating function recursive in Haskell - haskell

I am trying to make a function that outputs char*m n times, as such as the expected output would be ["ccc","ccc"] for the input 2 3 c. Here is what i have so far:
rectangle :: Int -> Int -> Char -> [string]
rectangle n m c
| m > 0 = [concat ([[c]] ++ (rectangle n (m-1) c))]
| otherwise = []
I am able to carry out the first part, char*m, so it returns ["ccc"]. Thing is: I also would like to be able to repeat my string n times.
I have tried using replicate but it doesn't seem to work, yet it works if doing it in the console: replicate 2 (rectangle 2 3 c).

Try the replicate function this way:
replicate :: Int -> a -> [a]
rectangle n m c = replicate n (replicate m c)
Also, don't forget to mention if this is homework.

As an addendum to Refactor's answer, I think his approach is the correct one. He subdivides the problem until it can be solved trivially using built-in functions. If you want to roll your own solution for learning purposes, I suggest you keep this subdivision, and go from there, implementing your own replicate. Otherwise, you will end up with a single function which does too much.
So the remaining problem is that of implementing replicate. My first idea would be to look at the source code for replicate. I found it via hoogle, which led me to hackage, which has links to the source code. Excerpted from the source:
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
which is nice and concise, again using the built-in functions. If you want to completely roll your own replicate, you can do:
myReplicate :: Int -> a -> [a]
myReplicate n x | n <= 0 = []
| otherwise = x : replicate (n-1) x
----------EDIT----------------
As a side note, I think your problem requires two rather orthogonal skills. The first is trying not to tackle the whole problem at once, but making some small progress instead. Then you can try to solve that smaller problem, before returning to the larger. In your case, it would likely involve recognizing that you definitely need a way of transforming the character into a series of characters of length n. Experience with functions such as map, filter, foldr and so on will help you here, since they each represent a very distinct transformation, which you might recognize.
The second skill required for your solution - if you want to roll your own - is recognizing when a function can be expressed recursively. As you can see, your problem - and indeed many common problems - can be solved without explicit recursion, but it is a nice skill to have, when the need arises. Recursive solutions do not always come easily mind, so I think the best way to gain familiarity with them are to read and practice.
For further study, I'm sure you have already been pointed to the excellent Learn You a Haskell and Real World Haskell, but just in case you haven't, here they are.

Related

"For all" statements in Haskell

I'm building comfort going through some Haskell toy problems and I've written the following speck of code
multipOf :: [a] -> (Int, a)
multipOf x = (length x, head x)
gmcompress x = (map multipOf).group $ x
which successfully preforms the following operation
gmcompress [1,1,1,1,2,2,2,3] = [(4,1),(3,2),(1,3)]
Now I want this function to instead of telling me that an element of the set had multiplicity 1, to just leave it alone. So to give the result [(4,1),(3,2),3] instead. It be great if there were a way to say (either during or after turning the list into one of pairs) for all elements of multiplicity 1, leave as just an element; else, pair. My initial, naive, thought was to do the following.
multipOf :: [a] -> (Int, a)
multipOf x = if length x = 1 then head x else (length x, head x)
gmcompress x = (map multipOf).group $ x
BUT this doesn't work. I think because the then and else clauses have different types, and unfortunately you can't piece-wise define the (co)domain of your functions. How might I go about getting past this issue?
BUT this doesn't work. I think because the then and else clauses have different types, and unfortunately you can't piece-wise define the (co)domain of your functions. How might I go about getting past this issue?
Your diagnosis is right; the then and else must have the same type. There's no "getting past this issue," strictly speaking. Whatever solution you adopt has to use same type in both branches of the conditional. One way would be to design a custom data type that encodes the possibilities that you want, and use that instead. Something like this would work:
-- | A 'Run' of #a# is either 'One' #a# or 'Many' of them (with the number
-- as an argument to the 'Many' constructor).
data Run a = One a | Many Int a
But to tell you the truth, I don't think this would really gain you anything. I'd stick to the (Int, a) encoding rather than going to this Run type.

How to modify this Haskell square root function to take an array

I have a function that will take and int and return its square root. However now i want to modify it so that it takes an array of integers and gives back an array with the square roots of the elements of the first array. I know Haskell does not use loops so how can this modification be done? Thanks.
intSquareRoot :: Int -> Int
intSquareRoot n = try n where
try i | i*i > n = try (i - 1)
| i*i <= n = i
Don't.
The idea of “looping through some collection”, putting each result in the corresponding slot of its input, is a somewhat trivial, extremely common pattern. Patterns are for OO programmers. In Haskell, when there's a pattern, we want to abstract over it, i.e. give it a simple name that we can always re-use without extra boilerplate.
This particular “pattern” is the functor operation1. For lists it's called
map :: (a->b) -> [a]->[b]
more generally (e.g. it'll also work with real arrays; lists aren't actually arrays),
class Functor f where
fmap :: (a->b) -> f a->f b
So instead of defining an extra function
intListSquareRoot :: [Int] -> [Int]
intListSquareRoot = ...
you simply use map intSquareRoot right where you wanted to use that function.
Of course, you could also define that “lifted” version of intSquareRoot,
intListSquareRoot = map intSquareRoot
but that gains you practically nothing over simply inlining the map call right where you need it.
If you insist
That said... it's of course valid to wonder how map itself works. Well, you can manually “loop” through a list by recursion:
map' :: (a->b) -> [a]->[b]
map' _ [] = []
map' f (x:xs) = f x : map' f xs
Now, you could inline your specific function here
intListSquareRoot' :: [Int] -> [Int]
intListSquareRoot' [] = []
intListSquareRoot' (x:xs) = intSquareRoot x : intListSquareRoot' xs
This is not only much more clunky and awkward than quickly inserting the map magic word, it will also often be slower: compilers such as GHC can make better optimisations when they work on higher-level concepts2 such as folds, than when they have to work again and again with manually defined recursion.
1Not to be confused what many C++ programmers call a “functor”. Haskell uses the word in the correct mathematical sense, which comes from category theory.
2This is why languages such as Matlab and APL actually achieve decent performance for special applications, although they are dynamically-typed, interpreted languages: they have this special case of “vector looping” hard-coded into their very syntax. (Unfortunately, this is pretty much the only thing they can do well...)
You can use map:
arraySquareRoot = map intSquareRoot

Haskell Sudoku Solver - Random Block Coordinates Generator

I have a question regarding an assignment of mine. So I am supposed to implement the following using Haskell: "Write a program that generates Sudoku problems with three empty blocks. Is it also possible to generate Sudoku problems with four empty blocks?"
The random generators using IO aren't a problem, but the coordinates of the Sudoku puzzle are.. If I get for example an random integer (for example 3 (3rd block)), how can I then determine the coordinates of the random-given block? I have tried several approaches such as list comprehension, but the problem is setting the property of (x,y) - coordinates.
I would really appreciate if somebody could give me some hint.
Thanks
The question isn't entirely clear, but if I understand it correctly then you can use something like this (nb: this actually needs a number between 0 and 8 inclusive, not 1 and 9)
blockCoords n = let
[bx,by] = map (\f -> (n `f` 3) * 3) [mod,div]
r t = map (+ t) [1,2,3]
in [(x,y) | x <- r bx, y <- r by]
I'm not positive on what you're asking in the question but I think a nice solution would be to use lenses. They're quite nice when you have data structures you want to index into.
For example you could create a record type for a block
Block = { _x :: Int
_y :: Int }
$(makeLenses ''Block)
I believe the syntax is along those lines. I used lenses when I was making a minesweeper game and it made indexing the board incredibly simple.
Hope this helps!

Counting number of elements in a list that satisfy the given predicate

Does Haskell standard library have a function that given a list and a predicate, returns the number of elements satisfying that predicate? Something like with type (a -> Bool) -> [a] -> Int. My hoogle search didn't return anything interesting. Currently I am using length . filter pred, which I don't find to be a particularly elegant solution. My use case seems to be common enough to have a better library solution that that. Is that the case or is my premonition wrong?
The length . filter p implementation isn't nearly as bad as you suggest. In particular, it has only constant overhead in memory and speed, so yeah.
For things that use stream fusion, like the vector package, length . filter p will actually be optimized so as to avoid creating an intermediate vector. Lists, however, use what's called foldr/build fusion at the moment, which is not quite smart enough to optimize length . filter p without creating linearly large thunks that risk stack overflows.
For details on stream fusion, see this paper. As I understand it, the reason that stream fusion is not currently used in the main Haskell libraries is that (as described in the paper) about 5% of programs perform dramatically worse when implemented on top of stream-based libraries, while foldr/build optimizations can never (AFAIK) make performance actively worse.
No, there is no predefined function that does this, but I would say that length . filter pred is, in fact, an elegant implementation; it's as close as you can get to expressing what you mean without just invoking the concept directly, which you can't do if you're defining it.
The only alternatives would be a recursive function or a fold, which IMO would be less elegant, but if you really want to:
foo :: (a -> Bool) -> [a] -> Int
foo p = foldl' (\n x -> if p x then n+1 else n) 0
This is basically just inlining length into the definition. As for naming, I would suggest count (or perhaps countBy, since count is a reasonable variable name).
Haskell is a high-level language. Rather than provide one function for every possible combination of circumstances you might ever encounter, it provides you with a smallish set of functions that cover all of the basics, and you then glue these together as required to solve whatever problem is currently at hand.
In terms of simplicity and conciseness, this is as elegant as it gets. So yes, length . filter pred is absolutely the standard solution. As another example, consider elem, which (as you may know) tells you whether a given item is present in a list. The standard reference implementation for this is actually
elem :: Eq x => x -> [x] -> Bool
elem x = foldr (||) False . map (x ==)
In order words, compare every element in the list to the target element, creating a new list of Bools. Then fold the logical-OR function over this new list.
If this seems inefficient, try not to worry about it. In particular,
The compiler can often optimise away temporary data structures created by code like this. (Remember, this is the standard way to write code in Haskell, so the compiler is tuned to deal with it.)
Even if it can't be optimised away, laziness often makes such code fairly efficient anyway.
(In this specific example, the OR function will terminate the loop as soon as a match is seen - just like what would happen if you hand-coded it yourself.)
As a general rule, write code by gluing together pre-existing functions. Change this only if performance isn't good enough.
This is my amateurish solution to a similar problem. Count the number of negative integers in a list l
nOfNeg l = length(filter (<0) l)
main = print(nOfNeg [0,-1,-2,1,2,3,4] ) --2
No, there isn't!
As of 2020, there is indeed no such idiom in the Haskell standard library yet! One could (and should) however insert an idiom howMany (resembling good old any)
howMany p xs = sum [ 1 | x <- xs, p x ]
-- howMany=(length.).filter
main = print $ howMany (/=0) [0..9]
Try howMany=(length.).filter
I'd do manually
howmany :: (a -> Bool) -> [a] -> Int
howmany _ [ ] = 0
howmany pred (x:xs) = if pred x then 1 + howmany pred xs
else howmany pred xs

How can iterative deepening search implemented efficient in haskell?

I have an optimization problem I want to solve. You have some kind of data-structure:
data Foo =
{ fooA :: Int
, fooB :: Int
, fooC :: Int
, fooD :: Int
, fooE :: Int
}
and a rating function:
rateFoo :: myFoo -> Int
I have to optimize the result of rateFoo by changing the values in the struct. In this specific case, I decided to use iterative deepening search to solve the problem. The (infinite) search tree for the best optimization is created by another function, which simply applies all possible changes recursivly to the tree:
fooTree :: Foo -> Tree
My searching function looks something like this:
optimize :: Int -> Foo -> Foo
optimize threshold foo = undefined
The question I had, before I start is this:
As the tree can be generated by the data at each point, is it possible to have only the parts of the tree generated, which are currently needed by the algorithm? Is it possible to have the memory freed and the tree regenerated if needed in order to save memory (A leave at level n can be generated in O(n) and n remains small, but not small enough to have the whole tree in memory over time)?
Is this something I can excpect from the runtime? Can the runtime unevaluate expressions (turn an evaluated expression into an unevaluated one)? Or what is the dirty hack I have to do for this?
The runtime does not unevaluate expressions.
There's a straightforward way to get what you want however.
Consider a zipper-like structure for your tree. Each node holds a value and a thunk representing down, up, etc. When you move to the next node, you can either move normally (placing the previous node value in the corresponding slot) or forgetfully (placing an expression which evaluates to the previous node in the right slot). Then you have control over how much "history" you hang on to.
Here's my advice:
Just implement your algorithm in the
most straightforward way possible.
Profile.
Optimize for speed or memory use if necessary.
I very quickly learned that I'm not smart and/or experienced enough to reason about what GHC will do or how garbage collection will work. Sometimes things that I'm sure will be disastrously memory-inefficient work smoothly the first time around, and–less often–things that seem simple require lots of fussing with strictness annotations, etc.
The Real World Haskell chapter on profiling and optimization is incredibly helpful once you get to steps 2 and 3.
For example, here's a very simple implementation of IDDFS, where f expands children, p is the search predicate, and x is the starting point.
search :: (a -> [a]) -> (a -> Bool) -> a -> Bool
search f p x = any (\d -> searchTo f p d x) [1..]
where
searchTo f p d x
| d == 0 = False
| p x = True
| otherwise = any (searchTo f p $ d - 1) (f x)
I tested by searching for "abbaaaaaacccaaaaabbaaccc" with children x = [x ++ "a", x ++ "bb", x ++ "ccc"] as f. It seems reasonably fast and requires very little memory (linear with the depth, I think). Why not try something like this first and then move to a more complicated data structure if it isn't good enough?

Resources