Functions in Haskell - haskell

I'm new to functional programming. I have a basic question.
I'm using the Hugs interpreter,
I would like to write a function in Haskell; I went though several tutorials, but I'm not getting it.
fact :: Int -> Int
fact n = if n == 0 then
1
else
n * fact (n-1)
This gives me a syntax error :-S
ERROR - Syntax error in input (unexpected `=')

I assume you type this right into the interactive prompt. Sadly, these are relatively primitive in Haskell - complex definitions, such as fact, can't be entered at the prompt, at least not in the same way you'd normally write them.
You need to put function definitions etc. into modules, then load those via (e.g.) :load fact.hs. There are resources for Hugs specifically that provide more information on this and other topic (I used http://cvs.haskell.org/Hugs/pages/hugsman/index.html to check my assumptions).
Also note that indentation matters, so the code won't work the way you posted it here even when in a module. Those tutorials will have correct versions. If not, they're useless and you should forget them.

The syntax is incorrect. In Haskell, whitespace matters, much like it does in Python. More specifically, if you have text that starts on the first column of a line, the interpreter will think it's a top-level declaration. The correct syntax would be (for example):
fact :: Int -> Int
fact n = if n == 0
then 1
else n * fact (n-1)
You could also put the if in one line if you'd like to. So if you're using an interactive prompt you could do:
λ> let fact n = if n == 0 then 1 else n * fact (n-1)
Notice that you'll need to use let in order to define functions on the prompt (at least this is how it's done in GHCi, I'm not sure about Hugs). You'll be better off putting them in a separate file and then loading that in the interpreter. But anyway, a much nicer solution would use pattern-matching in my opinion anyway:
fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)
Here, the interpreter would pattern-match the first argument of the function against the possible cases listed. So if the first argument is null, the result if 1, otherwise apply the function recursively.

Create a file named, for example, fact.hs
-- copying cedric's nicely formatted code
fact :: Int -> Int
fact n = if n == 0
then 1
else n * fact (n-1)
That's all that really needs to be there. When you want to make real modules, you should do some extra stuff.
Now, open up ghci from the same folder. At the ghci prompt, use the :l command to load the "module"
Prelude> :l fact.hs
[1 of 1] Compiling Main ( fact.hs, interpreted )
Ok, modules loaded: Main.
*Main> fact 3
6
*Main> fact 10
3628800
I assume it's a very similar process with Hugs. I think hugs requires the file name to be capitalized. ghci simply creates a "Main" module and puts your code in it; that's why the prompt changes from Prelude> to *Main>
When I work on small Haskell functions, I usually keep two terminals open: one for vim and one for ghci. When I change the file in vim (and save it), I just use :r in ghci to reload the new definitions.
*Main> :r
Ok, modules loaded: Main.

It should be mentioned that the most elegant way to write this function is:
fac n = product [1..n]
See http://www.willamette.edu/~fruehr/haskell/evolution.html for details.

Related

Haskell error - 'parse error on input `->'

I am trying to declare a function in Haskell GHCi as
fact :: Int -> Int
But I am getting this error - error: parse error on input `->'
I do not understand why this is happening. Can anyone please explain it to me? Thanks.
First off, it looks like you're using a pretty old version of GHC. In newer versions, the GHCi syntax has been relaxed a bit.
But still: what you type in GHCi does not have the same rules as what you write in a Haskell source file. Specifically, the GHCi prompt is essentially an IO monad chain evaluator, the reason being that you can write stuff like
Prelude> putStrLn "Hello"
Hello
or
Prelude> readFile "test.txt"
"fubar\nbaz"
and actually have it execute right there. By contrast, in a Haskell source file, you only declare bindings, and these can then be invoked in the main action or a GHCi session.
But in this case, you want to declare a binding within GHCi itself. You can do that too, but it's a bit awkward, basically you need to start with let and then squeeze everything in a single line:
Prelude> let fact :: Int -> Int; fact n = product [1..n]
Actually, newer GHCi version allow you to omit the let, and you can have multiple-line definitions by using a special bracket syntax:
Prelude> :{
Prelude| fact :: Int -> Int
Prelude| fact n = product [1..n]
Prelude| :}
but I would recommend against this. If you actually have some bigger definitions, better put them in a proper Haskell source and load that into GHCi.

Haskell: Parse error: module header, import declaration or top-level declaration expected

I am saving some commands in a Haskell script in a .hs file while working thru a Haskell textbook. Here's a small example.
fst (1,2)
snd (1,2)
When I run these commands from the prelude in GHCi, they work fine. When I try to compile the .hs file with these two lines, I get the following:
ch4_test.hs:2:1: error:
Parse error: module header, import declaration
or top-level declaration expected.
|
2 | fst (1,2)
| ^^^^^^^^^
Failed, no modules loaded.
I've googled this error and can't find any explanation what I'm doing wrong.
From a newbie to future newbies: The interactive environment ghci would lead you to believe that you can punch some expressions into an .hs file and run the thing (in a similar fashion to languages like swift and ruby). This is not the case.
Haskell needs an entrypoint called main. Quoting:
Here is a simple program to read and then print a character:
main :: IO ()
main = do c <- getChar
putChar c
The use of the name main is important: main is defined to be the entry point of a Haskell program (similar to the main function in C), and must have an IO type, usually IO ()
Source: https://www.haskell.org/tutorial/io.html
You can't just put any expression in a hs file.
As the error message says, you need a declaration here. For example:
main =
print (fst (1,2)) >>
print (snd (1,2))
I am getting this error but the cause appears to be completely different from anything posted here. And the error message is not at all helpful.
Using Cabal version 3.6.2.0 with GHCI 8.10.7 on MacOS High Sierra (10.13)
I'm working from this page: https://www.tutorialspoint.com/haskell/haskell_modules.htm
specifically the "custom modules" section. There you can see the code I copied and pasted.
Besides the tutorial not mentioning I needed to add "other-modules: Custom" to myfirstapp.cabal, and besides the fact that the sample Custom.hs file includes "if x 'rem' 2 == 0" rather than "if x rem 2 == 0", here is the problem:
Indentation matters!
This line (inside the quotes) does NOT work "if x rem 2 == 0".
This line DOES work " if x rem 2 == 0"!
Indenting by one space is the difference between success and failure.
I'm totally new to Haskell. I've programmed extensively in PHP, Javascript, and Applescript, and dabbled in a dozen others, and this is the first time I've seen white space matter. I assume this is commonly known amongst Haskell veterans, but it would certainly be nice if that was included prominently in the documentation.

What is wrong in this Haskell function?

I decided to dive in functional programming world recently, and a friend told me about Haskell. I started my own researches on the language particularity and soon I got the main concepts. Then, I started working with lists and decided to rewrite some existent functions, just to practice.
I made my version of the reverse function, and called it revert. The function is defined as below:
revert :: [a] -> [a]
revert [] = []
revert a = revert (tail a) ++ [head a]
It works perfectly for me, as you can see in the image:
But then, I decided to make another test, receiving the result of the revert function on the same variable that I passed as a parameter, as you can see below:
It seems to execute the function normally, but when I check the value of x, it looks like it goes into a loop, and I need to interrupt the operation.
If I set the value on another variable, it works perfectly:
let y = revert x
Why does it happen? Is it some concept of functional programming that I am missing? Or some peculiarity with Haskell? I did some googling but was not able to get to an answer
PS: Sorry for the bad english
You're defining
x = revert x
So, substituting on the right, this gives
x = revert (revert x)
And so on. Another example would be
a = a + 1
To find out what a is, we need to evaluate the right hand side of the definition.
a = (a + 1) + 1
a = ((a+1)+1) + 1
And so on.
Bootom line: Haskell's = is very different from = in languages like C#, where it means assignment. In Haskell it means is defined as and this means we can substitute any occurance of an identifier with its definition without changing the meaning of the program. This is called referential transpareny.

How to introspect an Haskell file to get the types of its definitions

I have many files that must be processed automatically. Each file holds the response of one student to an exercise which asks the student to give definitions for some functions given a type for each function.
My idea is to have an Haskell script that loads each student file, and verifies if each function has the expected type.
A constraint is that the student files are not defined as modules.
How can I do this?
My best alternative so far is to spawn a GHCi process that will read stdin from a "test file" with GHCi commands, for example:
:load student1.hs
:t g
... and so on ...
then parse the returned output from GHCi to find the types of the functions in the student file.
Is there another clean way to load an arbitrary Haskell file and introspect its code?
Thanks
Haskell does not save type information at runtime. In Haskell, types are used for pre-runtime type checking at the static analysis phase and are later erased. You can read more about Haskell's type system here.
Is there a reason you want to know the type of a function at runtime? maybe we can help with the problem itself :)
Edit based on your 2nd edit:
I don't have a good solution for you, but here is one idea that might work:
Run a script that for each student module will:
Take the name of the module and produce a file Test.hs:
module Test where
import [module-name]
test :: a -> b -> [(b,a)]
test = g
run ghc -fno-code Test.hs
check the output does not contain type errors
write results into a log file
I think if you have a dynamically determined number of .hs files, which you need to load, parse and introspect, you could/should use the GHC API instead.
See for example:
Using GHC API to compile Haskell sources to CORE and CORE to binary
https://mail.haskell.org/pipermail/haskell-cafe/2009-April/060705.html
These might not be something you can use directly — and I haven't done anything like this myself so far either — but these should get you started.
See also:
https://wiki.haskell.org/GHC/As_a_library
https://hackage.haskell.org/package/hint
The closest Haskell feature to that is Data.Typeable.typeOf. Here's a GHCi session:
> import Data.Typeable
> typeOf (undefined :: Int -> Char)
Int -> Char
> typeOf (undefined :: Int -> [Char])
Int -> [Char]
> typeOf (undefined :: Int -> Maybe [Char])
Int -> Maybe [Char]
> :t typeOf
typeOf :: Typeable a => a -> TypeRep
Under the hood, the Typeable a constraint forces Haskell to retain some type tags until runtime, so that they can be retrieved by typeOf. Normally, no such tags exist at runtime. The TypeRep type above is the type for such tags.
That being said, having such information is almost never needed in Haskell. If you are using typeOf to implement something, you are likely doing it wrong.
If you are using that to defer type checks to run time, when they could have been performed at compile time, e.g. using a Dynamic-like type for everything, then you are definitely doing it wrong.
If the function is supposed to be exported with a specific name, I think probably the easiest way would be to just write a test script that calls the functions and checks they return the right results. If the test script doesn't compile, the student's submission is incorrect.
The alternative is to use either the GHC API (kinda hard), or play with Template Haskell (simpler, but still not that simple).
Yet another possibility is to load the student's code into GHCi and use the :browse command to dump out everything that's exported. You can then grep for the term you're interested in. That should be quite easy to automate.
There's a catch, however: foo :: x -> x and foo :: a -> a are the same type, even though textually they don't match at all. You might contemplate trying to normalise the variable names, but it's worse: foo :: Int -> Int and foo :: Num x => x -> x don't look remotely the same, yet one type is an instance of the other.
...which I guess means I'm saying that my answer is bad? :-(

Haskell functions in GHCi

I am completely new to Haskell. I have been trying to learn how to write functions, lets say to add two integer numbers. I am currently using GHCi to code Haskell. I tried learning from http://www.haskell.org/tutorial/functions.html, however this does not work, I get a not in scope error. I greatly appreciate any help with this. Am I supposed to not use GHCi to code haskell in order to create functions? GHCi, seems to work okay so far, for everything other than functions.
Many thanks in advance.
You have to use let to declare functions in GHCI
ghci>let add x y = x + y
ghci>add 3 3
6
In general though I would advice you to open up a text editor and write your functions in there, save as .hs and open it with :l in ghci
Like this ( from RWH)
-- file: ch03/add.hs
add a b = a + b
Then:
ghci> :l add.hs
[1 of 1] Compiling Main ( add.hs, interpreted )
Ok, modules loaded: Main.
ghci> add 1 2
3

Resources