Pretty printing a syntax tree in Haskell - haskell

I don't understand this type error:
Couldn't match expected type `[t0]' with actual type `IO ()'
In the return type of a call of `printv'
In a stmt of a 'do' expression: px <- printv x
In the expression:
do { px <- printv x;
sep <- print ", ";
rest <- prints xs;
return (px : sep : rest) }
From:
data Value = IntValue Int
| TruthValue Bool
deriving (Eq, Show)
printv :: Value -> IO()
printv (IntValue i) = print i
printv (TruthValue b) = print ("boolean" ++ show b)
prints :: [Value] -> [IO()]
prints [] = []
prints (x:xs) = do px <- printv x
sep <- print ", "
rest <- prints xs
return (px:sep:rest)
It looks to me like every element (px) is converted into an IO() action, and then that is added to a list of the same things, thus producing an [IO()] list.
What am I missing here? Converting it to a list of strings, by removing the print's, works fine.

You're missing the return on the [] case of prints:
prints [] = return []
However, your prints is very strange. It returns a [()], because print is outputting strings to the console, not returning them.
Do you mean to return strings from your printv function?
Since you're trying to pretty print a syntax tree, here's roughly the right way to do it:
Use pretty-printing combinators
Use a pretty typeclass
Like so:
import Text.PrettyPrint
import Data.List
data Value
= VInt Int
| VBool Bool
deriving (Eq, Show)
class Pretty a where
pretty :: a -> Doc
instance Pretty Value where
pretty (VInt i) = int i
pretty (VBool b) = text "Boolean" <+> text (show b)
draw :: [Value] -> String
draw = intercalate ", " . map (render.pretty)
main = putStrLn $ draw [VInt 7, VBool True, VInt 42]
Running it:
*A> main
7, Boolean True, 42

Take a closer look at the type of your function:
prints :: [Value] -> [IO()]
But if we now take a look at prints [] = [], this can't match, because the type of that one is
prints :: [t] -> [a]
Therefore, you missed using prints [] = return [], to make it work.

If you're not evaluating an IO action, you don't need a do block. Just treat IO () as a normal type.
prints (x:xs) = printv x : print ", " : prints xs

You don't want prints to return an array of IO actions. You want it to return a single IO action that represents each of the IO actions bound together. Something like:
prints xs = mapM_ (\x -> printv x >> putStr ", ") xs
Except that I don't think the new lines are going to end up where you want them.
Look at the documentation for mapM and sequence for more information. In particular, the implementation of sequence is probably similar to what you're trying to do.
However, I would really recommend that instead doing all the work in an IO function, you should write a pure function to render the textual format you want, and then just print that. In particular, it seems that an instance of Show for Value would be appropriate.
instance Show Value where
show (IntValue i) = show i
show (TruthValue b) = "boolean " ++ show b
That way you can just call print value rather than printv value, and if you really wanted to you could define prints as follows.
import Data.List
prints :: (Show a) => [a] -> IO ()
prints = putStrLn . intercalate ", " . map show`.

Related

How can you use the result of a function as a variable in another function in Haskell?

I'm trying to learn how to use Haskell and now I have to make a program that takes a integer n and a string k and every letter of that string will be moved n places to the right in the alphabet. At this moment I've got the next code:
import Data.Char
main = do
x <- read getLine :: Int
y <- getLine
caesar x y
result :: String
rotate :: Int -> Char -> [Char]
rotate a b = [chr ((a + ord b) `mod` ord 'z' + ord 'a')]
caesar :: Int -> String -> ()
caesar moving text= do
rotatespecific moving text 0
putStrLn result
rotatespecific :: Int -> String -> Int -> ()
rotatespecific moving text place = do
if place < length text
then
result ++ rotate (moving (text !! place))
rotatespecific (moving text (place + 1))
else
if place == length text
then
result ++ rotate (moving (text !! place))
But I can't compile it because it still gives me the same error message:
parse error (possibly incorrect indentation or mismatched brackets)
|
28 | result ++ rotate (moving (text !! place))
| ^
But I can't see what's wrong with my syntax. I first thought it had something to do with using a Char as parameter for my function but I was wrong because text !! place should give a char and not a [char]. So what's wrong with what I'm doing?
After some edit I got this, but it still doesn't work:
import Data.Char
main = do
xr <- getLine
let x = read xr :: Int
y <- getLine
putStrLn (rotatespecific (x y 0))
rotate :: Int -> Char -> [Char]
rotate a b = [chr ((a + ord b) `mod` ord 'z' + ord 'a')]
rotatespecific :: Int -> String -> Int -> String
rotatespecific moving text place = do
if place < length text
then do
help <- text !! place
h <- rotate (moving help)
a <- rotatespecific (moving text (place + 1))
b <- h ++ a
return b
else
if place == length text
then do
return rotate (moving (text !! place))
else
return ()
The immediate problem is that every if must have an else. You got a parse error at the end because the parser is expecting more, namely an else for that if place == length text.
When you fix this you will have more problems, because you are treating Haskell like an imperative language, and that's not how she likes to be treated. It seems like you think
result ++ newstuff
will mutate result, adding newstuff to the end of it. But Haskell doesn't mutate. Instead, this expression result ++ newstuff is the list that results when you concatenate result and newstuff, but result itself remains unchanged.
ghci> let result = [1,2,3]
ghci> result ++ [4,5,6]
[1,2,3,4,5,6]
ghci> result
[1,2,3]
rotatespecific must return the rotated string, rather than trying to mutate it into existence. The only way functions may communicate is by returning results computed from their arguments -– they may not manipulate any "global" state like result. A function that returns () is guaranteed to be useless.
rotatespecific :: Int -> String -> Int -> String
Delete the result "global variable" (which does not mean what you think it means) and focus on defining rotatespecific in a way that it returns the rotated string.
I would also recommend commenting out main and caesar for now until you have rotatespecific compiling and working when you test it in ghci.
I feel like this is an appropriate time to just show an example, because there are a lot of little problems. I'm not going to fix logic bugs, but I've fixed your syntax. Hopefully this gets you unstuck.
rotatespecific :: Int -> String -> Int -> String
rotatespecific moving text place =
if place < length text then
-- use let .. in instead of do/bind (<-) in pure functions.
let help = text !! place
-- multiple arguments are given after the function, no parentheses
h = rotate moving help
-- use parentheses around an argument if it is a complex expression
-- (anything more than a variable name)
a = rotatespecific moving text (place+1)
b = h ++ a
in b
else
if place == length text then
rotate moving (text !! place)
else
undefined -- you must decide what String to return in this case.
After you have this function working as intended, and only then, open this sealed envelope. ♥️
rotatespecific :: Int -> String -> String
rotatespecific moving text = concatMap (rotate moving) text

Technique for reading in multiple lines for Haskell IO

Basically I would like to find a way so that a user can enter the number of test cases and then input their test cases. The program can then run those test cases and print out the results in the order that the test cases appear.
So basically I have main which reads in the number of test cases and inputs it into a function that will read from IO that many times. It looks like this:
main = getLine >>= \tst -> w (read :: String -> Int) tst [[]]
This is the method signature of w: w :: Int -> [[Int]]-> IO ()
So my plan is to read in the number of test cases and have w run a function which takes in each test case and store the result into the [[]] variable. So each list in the list will be an output. w will just run recursively until it reaches 0 and print out each list on a separate line. I'd like to know if there is a better way of doing this since I have to pass in an empty list into w, which seems extraneous.
As #bheklilr mentioned you can't update a value like [[]]. The standard functional approach is to pass an accumulator through a a set of recursive calls. In the following example the acc parameter to the loop function is this accumulator - it consists of all of the output collected so far. At the end of the loop we return it.
myTest :: Int -> [String]
myTest n = [ "output line " ++ show k ++ " for n = " ++ show n | k <- [1..n] ]
main = do
putStr "Enter number of test cases: "
ntests <- fmap read getLine :: IO Int
let loop k acc | k > ntests = return $ reverse acc
loop k acc = do
-- we're on the kth-iteration
putStr $ "Enter parameter for test case " ++ show k ++ ": "
a <- fmap read getLine :: IO Int
let output = myTest a -- run the test
loop (k+1) (output:acc)
allOutput <- loop 1 []
print allOutput
As you get more comfortable with this kind of pattern you'll recognize it as a fold (indeed a monadic fold since we're doing IO) and you can implement it with foldM.
Update: To help explain how fmap works, here are equivalent expressions written without using fmap:
With fmap: Without fmap:
n <- fmap read getLine :: IO [Int] line <- getLine
let n = read line :: Int
vals <- fmap (map read . words) getLine line <- getLine
:: IO [Int] let vals = (map read . words) line :: [Int]
Using fmap allows us to eliminate the intermediate variable line which we never reference again anyway. We still need to provide a type signature so read knows what to do.
The idiomatic way is to use replicateM:
runAllTests :: [[Int]] -> IO ()
runAllTests = {- ... -}
main = do
numTests <- readLn
tests <- replicateM numTests readLn
runAllTests tests
-- or:
-- main = readLn >>= flip replicateM readLn >>= runAllTests

Haskell : parsing command line arguments

I want to write a program in Haskell which will take command line arguments. For example: to print the sum of the first 6 elements of the series (which will be calculated by another function), I will write:
sum 6
and the correct answer should be displayed. I have to do this for another 5-7 different commands by checking the command line. How should I do it? Is switch case a good idea? If so, can anyone tell me how it can be done.
SOLUTION:
main = do
--Get some input
f <- getLine
--Split the input into 2 strings; one is COMMAND field and other is the ARGUMENT field using the condition the there is one space between them
let cmd = takeWhile (/=' ') f
let arg = dropWhile (/=' ') f
let val = tail arg
let p = read val::Int
--Check for the COMMAND
case cmd of
"SUM" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val) then print (sum1 p) else do { putStrLn "ERR"; exitWith ExitSuccess}
"NTH" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val) then print (fact p) else do { putStrLn "ERR"; exitWith ExitSuccess}
"BOUNDS" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val == False) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (p > 1) then do { print c; print d} else do { putStrLn"ERR"; exitWith ExitSuccess}
"QUIT" -> if (empty arg) then exitWith ExitSuccess else do { putStrLn "ERR"; exitWith ExitSuccess}
_ -> do { putStrLn "ERR"; exitWith ExitSuccess}
--Repeat main until QUIT
main
optparse-applicative is one example of a library which supports this kind of sub-command parsing.
Let's say your program has two commands for now, "sum" and "mean". We can represent the command and its arguments using an algebraic data type, here called Command.
import Data.Monoid (mconcat)
import Options.Applicative
data Command = Sum Integer
| Mean Integer
-- et cetera
We can build a parser which accepts all of the commands, by writing parsers for each individual command, and composing them.
parseNumber :: Parser Integer
parseNumber = argument auto (metavar "N")
sumParser :: ParserInfo Command
sumParser = info (Sum <$> parseNumber)
(progDesc "Sum first N elements in series")
meanParser :: ParserInfo Command
meanParser = info (Mean <$> parseNumber)
(progDesc "Mean of first N elements in series")
commandParser :: ParserInfo Command
commandParser = info commands $ progDesc "My program" where
commands = subparser $ mconcat [
command "sum" sumParser
, command "mean" meanParser
]
If you are wondering what Parser and ParserInfo are about: Usually we build a Parser, then put it into a ParserInfo, using the info combinator to decorate it with additional information about how it should be run (for example, with progDesc). Parsers may be composed with other Parsers, typically using the applicative combinators, but a ParserInfo is only a Functor, as it represents the entry point to the program.
Since each command is like a little sub-program, we need a ParserInfo for each one. The command and subparser combinators let us take some ParserInfos and wrap them up in a Parser, turning multiple entry points into one.
Once we have a result from the parser, we can dispatch to the appropriate routine by pattern matching on the result.
main :: IO ()
main = do
cmd <- execParser commandParser
case cmd of
Sum n -> return () -- TODO perform sum command
Mean n -> return () -- TODO perform mean command
Of course, if you have the time and the need, is much better to use a command line parser library than a switch case. A proper parser gives you the ability to have flags in any order, automatic documenation etc ... Although if you don't need any of this now, you might need it later.
However, pattern matching allows you check value(s) within a list, but although the size of the list, and this at the same time. This makes writing poor man command line parsing dead-easy in Haskell.
Example
main = do
args <- getArg
case args of
["command1", a, b] -> command1 a b -- 2 argument
["command2", a ] -> command2 a -- 1 argument
"command3":as -> command3 as -- n arguments
otherwise -> putStrLn "Please read the code to see which arguments are acceptable :-)"
So even though I would propably recommend using a parsing library, if you only need a couple of options without flags , and don't have time to learn/choose one, a simple case ... of is pretty neat and much quicker/simpler to write.
You can write your own simple applicative-style parser in just a few lines. The idea is: accept a list of string pairs, where the first string is an option name and the second string is an option value, lookup for a current option name, and if it's found, treat the associated value somehow and delete the pair from the list. If it's not found, return Nothing. So Parser is defined like this:
type Parser = StateT [(String, String)] Maybe
And here is the main function:
option :: (String -> Maybe a) -> String -> Parser a
option f str = StateT $ \xs -> do
(v, xs') <- lookupDelete str xs
v' <- f v
return (v', xs')
where lookupDelete does what it says. Actual option parsers are:
sopt :: String -> Parser String
sopt = option Just
opt :: Read a => String -> Parser a
opt = option $ reads >>> listToMaybe >=> finish
finish (x, []) = Just x
finish _ = Nothing
The opt parser tries to read a string, and it succeeds if the string is read fully.
optPairs [] = Just []
optPairs (('-':'-':name):opt:xs) = ((name, opt) :) <$> optPairs xs
optPairs _ = Nothing
This function splits input into pairs. And lastly
parse :: Parser a -> String -> Maybe a
parse p = words >>> optPairs >=> runStateT p >=> finish
Here is an example:
data SubCommand = SubCommand String (Double, Double)
deriving (Show)
data Command = Sum [Integer]
| Sub SubCommand
deriving (Show)
subcommandParser :: Parser SubCommand
subcommandParser = SubCommand <$> sopt "str" <*> opt "dbls"
commandParser :: Parser Command
commandParser = Sum <$> opt "sum" <|> Sub <$> subcommandParser
main = mapM_ (print . parse commandParser)
[ "--sum [1,2,3,4]"
, "--str option --dbls (2.2,0)"
, "--dbls (2.2,0) --str option"
, "--smth smth"
]
Results in
Just (Sum [1,2,3,4])
Just (Sub (SubCommand "option" (2.2,0.0)))
Just (Sub (SubCommand "option" (2.2,0.0)))
Nothing
The whole code: http://lpaste.net/114365

How do I recursively use newStdGen in Haskell? (to get different random results on each iteration)

I use System.Random and System.Random.Shuffle to shuffle the order of characters in a string, I shuffle it using:
shuffle' string (length string) g
g being a getStdGen.
Now the problem is that the shuffle can result in an order that's identical to the original order, resulting in a string that isn't really shuffled, so when this happens I want to just shuffle it recursively until it hits a a shuffled string that's not the original string (which should usually happen on the first or second try), but this means I need to create a new random number generator on each recursion so it wont just shuffle it exactly the same way every time.
But how do I do that? Defining a
newg = newStdGen
in "where", and using it results in:
Jumble.hs:20:14:
Could not deduce (RandomGen (IO StdGen))
arising from a use of shuffle'
from the context (Eq a)
bound by the inferred type of
shuffleString :: Eq a => IO StdGen -> [a] -> [a]
at Jumble.hs:(15,1)-(22,18)
Possible fix:
add an instance declaration for (RandomGen (IO StdGen))
In the expression: shuffle' string (length string) g
In an equation for `shuffled':
shuffled = shuffle' string (length string) g
In an equation for `shuffleString':
shuffleString g string
= if shuffled == original then
shuffleString newg shuffled
else
shuffled
where
shuffled = shuffle' string (length string) g
original = string
newg = newStdGen
Jumble.hs:38:30:
Couldn't match expected type `IO StdGen' with actual type `StdGen'
In the first argument of `jumble', namely `g'
In the first argument of `map', namely `(jumble g)'
In the expression: (map (jumble g) word_list)
I'm very new to Haskell and functional programming in general and have only learned the basics, one thing that might be relevant which I don't know yet is the difference between "x = value", "x <- value", and "let x = value".
Complete code:
import System.Random
import System.Random.Shuffle
middle :: [Char] -> [Char]
middle word
| length word >= 4 = (init (tail word))
| otherwise = word
shuffleString g string =
if shuffled == original
then shuffleString g shuffled
else shuffled
where
shuffled = shuffle' string (length string) g
original = string
jumble g word
| length word >= 4 = h ++ m ++ l
| otherwise = word
where
h = [(head word)]
m = (shuffleString g (middle word))
l = [(last word)]
main = do
g <- getStdGen
putStrLn "Hello, what would you like to jumble?"
text <- getLine
-- let text = "Example text"
let word_list = words text
let jumbled = (map (jumble g) word_list)
let output = unwords jumbled
putStrLn output
This is pretty simple, you know that g has type StdGen, which is an instance of the RandomGen typeclass. The RandomGen typeclass has the functions next :: g -> (Int, g), genRange :: g -> (Int, Int), and split :: g -> (g, g). Two of these functions return a new random generator, namely next and split. For your purposes, you can use either quite easily to get a new generator, but I would just recommend using next for simplicity. You could rewrite your shuffleString function to something like
shuffleString :: RandomGen g => g -> String -> String
shuffleString g string =
if shuffled == original
then shuffleString (snd $ next g) shuffled
else shuffled
where
shuffled = shuffle' string (length string) g
original = string
End of answer to this question
One thing that might be relevant which I don't know yet is the difference between "x = value", "x <- value", and "let x = value".
These three different forms of assignment are used in different contexts. At the top level of your code, you can define functions and values using the simple x = value syntax. These statements are not being "executed" inside any context other than the current module, and most people would find it pedantic to have to write
module Main where
let main :: IO ()
main = do
putStrLn "Hello, World"
putStrLn "Exiting now"
since there isn't any ambiguity at this level. It also helps to delimit this context since it is only at the top level that you can declare data types, type aliases, and type classes, these can not be declared inside functions.
The second form, let x = value, actually comes in two variants, the let x = value in <expr> inside pure functions, and simply let x = value inside monadic functions (do notation). For example:
myFunc :: Int -> Int
myFunc x =
let y = x + 2
z = y * y
in z * z
Lets you store intermediate results, so you get a faster execution than
myFuncBad :: Int -> Int
myFuncBad x = (x + 2) * (x + 2) * (x + 2) * (x + 2)
But the former is also equivalent to
myFunc :: Int -> Int
myFunc x = z * z
where
y = x + 2
z = y * y
There are subtle difference between let ... in ... and where ..., but you don't need to worry about it at this point, other than the following is only possible using let ... in ..., not where ...:
myFunc x = (\y -> let z = y * y in z * z) (x + 2)
The let ... syntax (without the in ...) is used only in monadic do notation to perform much the same purpose, but usually using values bound inside it:
something :: IO Int
something = do
putStr "Enter an int: "
x <- getLine
let y = myFunc (read x)
return (y * y)
This simply allows y to be available to all proceeding statements in the function, and the in ... part is not needed because it's not ambiguous at this point.
The final form of x <- value is used especially in monadic do notation, and is specifically for extracting a value out of its monadic context. That may sound complicated, so here's a simple example. Take the function getLine. It has the type IO String, meaning it performs an IO action that returns a String. The types IO String and String are not the same, you can't call length getLine, because length doesn't work for IO String, but it does for String. However, we frequently want that String value inside the IO context, without having to worry about it being wrapped in the IO monad. This is what the <- is for. In this function
main = do
line <- getLine
print (length line)
getLine still has the type IO String, but line now has the type String, and can be fed into functions that expect a String. Whenever you see x <- something, the something is a monadic context, and x is the value being extracted from that context.
So why does Haskell have so many different ways of defining values? It all comes down to its type system, which tries really hard to ensure that you can't accidentally launch the missiles, or corrupt a file system, or do something you didn't really intend to do. It also helps to visually separate what is an action, and what is a computation in source code, so that at a glance you can tell if an action is being performed or not. It does take a while to get used to, and there are probably valid arguments that it could be simplified, but changing anything would also break backwards compatibility.
And that concludes today's episode of Way Too Much Information(tm)
(Note: To other readers, if I've said something incorrect or potentially misleading, please feel free to edit or leave a comment pointing out the mistake. I don't pretend to be perfect in my descriptions of Haskell syntax.)

Non-exhaustive patterns in lambda

I am getting Non-exhaustive patterns in lambda. I am not sure of the cause yet. Please anyone how to fix it. The code is below:
import Control.Monad
import Data.List
time_spent h1 h2 = max (abs (fst h1 - fst h2)) (abs (snd h1 - snd h2))
meeting_point xs = foldl' (find_min_time) maxBound xs
where
time_to_point p = foldl' (\tacc p' -> tacc + (time_spent p p')) 0 xs
find_min_time min_time p = let x = time_to_point p in if x < min_time then x else min_time
main = do
n <- readLn :: IO Int
points <- fmap (map (\[x,y] -> (x,y)) . map (map (read :: String->Int)) . map words . lines) getContents
putStrLn $ show $ meeting_point points
This is the lambda with the non-exhaustive patterns: \[x,y] -> (x,y).
The non-exhaustive pattern is because the argument you've specified, [x,y] doesn't match any possible list - it only matches lists with precisely two elements.
I would suggest replacing it with a separate function with an error case to print out the unexpected data in an error message so you can debug further, e.g.:
f [x,y] = (x, y)
f l = error $ "Unexpected list: " ++ show l
...
points <- fmap (map f . map ...)
As an addition to #GaneshSittampalam's answer, you could also do this with more graceful error handling using the Maybe monad, the mapM function from Control.Monad, and readMaybe from Text.Read. I would also recommend refactoring your code so that the parsing is its own function, it makes your main function much cleaner and easier to debug.
import Control.Monad (mapM)
import Text.Read (readMaybe)
toPoint :: [a] -> Maybe (a, a)
toPoint [x, y] = Just (x, y)
toPoint _ = Nothing
This is just a simple pattern matching function that returns Nothing if it gets a list with length not 2. Otherwise it turns it into a 2-tuple and wraps it in Just.
parseData :: String -> Maybe [(Int, Int)]
parseData text = do
-- returns Nothing if a non-Int is encountered
values <- mapM (mapM readMaybe . words) . lines $ text
-- returns Nothing if a line doesn't have exactly 2 values
mapM toPoint values
Your parsing can actually be simplified significantly by using mapM and readMaybe. The type of readMaybe is Read a => String -> Maybe a, and in this case since we've specified the type of parseData to return Maybe [(Int, Int)], the compiler can infer that readMaybe should have the local type of String -> Maybe Int. We still use lines and words in the same way, but now since we use mapM the type of the right hand side of the <- is Maybe [[Int]], so the type of values is [[Int]]. What mapM also does for us is if any of those actions fails, the overall computation exits early with Nothing. Then we simply use mapM toPoint to convert values into a list of points, but also with the failure mechanism built in. We actually could use the more general signature of parseData :: Read a => String -> Maybe [(a, a)], but it isn't necessary.
main = do
n <- readLn :: IO Int
points <- fmap parseData getContents
case points of
Just ps -> print $ meeting_point ps
Nothing -> putStrLn "Invalid data!"
Now we just use fmap parseData on getContents, making points have the type Maybe [(Int, Int)]. Finally, we pattern match on points to print out the result of the meeting_point computation or print a helpful message if something went wrong.
If you wanted even better error handling, you could leverage the Either monad in a similar fashion:
toPoint :: [a] -> Either String (a, a)
toPoint [x, y] = Right (x, y)
toPoint _ = Left "Invalid number of points"
readEither :: Read a => String -> Either String a
readEither text = maybe (Left $ "Invalid parse: " ++ text) Right $ readMaybe text
-- default value ^ Wraps output on success ^
-- Same definition with different type signature and `readEither`
parseData :: String -> Either String [(Int, Int)]
parseData text = do
values <- mapM (mapM readEither . words) . lines $ text
mapM toPoint values
main = do
points <- fmap parseData getContents
case points of
Right ps -> print $ meeting_point ps
Left err -> putStrLn $ "Error: " ++ err

Resources