What is so great about TPL - multithreading

I have done this POC and verified that when you create 4 threads and run them on Quad core machine, all cores get busy - so, CLR is already scheduling threads on different cores effectively, so why the class TASK?
I agree Task simplifies the creation and use of threads, but apart from that what? Its just a wrapper around threads and threadpools right? Or does it in some way help scheduling threads on multicore machines?
I am specifially looking at whats with Task wrt multicore that wasnt there in 2.0 threads.

"I agree Task simplifies the creation and use of threads"
Isn't that enough? Isn't it fabulous that it provides higher-level building blocks so that us mere mortals can build lock-free multithreaded code which is safe because really smart people like Joe Duffy have done the work for us?
If TPL really just consisted of a way of starting a new task, it wouldn't be much use - the work-stealing etc is nice, but probably not crucial to most of us. It's the building blocks around tasks - and in particular around the idea of a "future" - which provide the value. Do you really want to write Parallel.ForEach yourself? Do you want to want to work out how to perform partitioning efficiently yourself? I know that if I tried doing that, it would take me a long time and I'd certainly do a worse job of it than the PFX team.
Many of the advances in development haven't been about making it possible to do something which was impossible before - they've been about raising the abstraction level so that a problem can be solved once and then that solution reused. Do you feel the same way about the CLR itself? You could do the same thing in assembly yourself, obviously... but by raising the abstraction level, the CLR and C# make us more productive.

Although you could do everything equivalently in TPL or threadpool, for a better abstraction, and scalability patterns TPL is preferred over Threadpool. But it is upto the programmer, and if you know exactly what you are doing, and based on your scheduling and synchronization requirements play out in your specific application you could use Threadpool more effectively. There are some stuff you get free with TPL which you've got to code up when using Threadpool, like following few I can think of now.
work stealing
worker thread local pool
scheduling groups of actions like Parallel.For

The TPL lets you program in terms of Tasks not threads. Thinking of tasks solely as a better thread abstraction would be a mistake. Tasks allow you to specify the work you want to get executed not how you want the work executed (threads). This allows you to express the potential parallelism of your application and have the TPL runtime--the scheduler and thread pool--handle how that work gets executed. This means that the TPL will take a lot of the burden off you of having your application deal with ensuring the best perfromance on a wide variety of hardware with different numbers of cores.
For example, the TPL makes it easy to implement key several design patterns that allow you to express the potential parallelism of your application.
http://msdn.microsoft.com/en-us/library/ff963553.aspx
Like Futures (mentioned by Jon) as well as pipelines and parallel loops.

Related

When Should I Use Threads?

As far as I'm concerned, the ideal amount of threads is 3: one for the UI, one for CPU resources, and one for IO resources.
But I'm probably wrong.
I'm just getting introduced to them, but I've always used one for the UI and one for everything else.
When should I use threads and how? How do I know if I should be using them?
Unfortunately, there are no hard and fast rules to using Threads. If you have too many threads the processor will spend all its time generating and switching between them. Use too few threads you will not get the throughput you want in your application. Additionally using threads is not easy. A language like C# makes it easier on you because you have tools like ThreadPool.QueueUserWorkItem. This allows the system to manage thread creation and destruction. This helps mitigate the overhead of creating a new thread to pass the work onto. You have to remember that the creation of a thread is not an operation that you get for "free." There are costs associated with starting a thread so that should always be taken into consideration.
Depending upon the language you are using to write your application you will dictate how much you need to worry about using threads.
The times I find most often that I need to consider creating threads explicitly are:
Asynchronous operations
Operations that can be parallelized
Continual running background operations
The answer totally depends on what you're planning on doing. However, one for CPU resources is a bad move - your CPU may have up to six cores, plus hyperthreading, in a retail CPU, and most CPUs will have two or more. In this case, you should have as many threads as CPU cores, plus a few more for scheduling mishaps. The whole CPU is not a single-threaded beast, it may have many cores and need many threads for 100% utilization.
You should use threads if and only if your target demographic will virtually all have multi-core (as is the case in current desktop/laptop markets), and you have determined that one core is not enough performance.
Herb Sutter wrote an article for Dr. Dobb's Journal in which he talks about the three pillars of concurrency. This article does a very good job of breaking down which problems are good candidates for being solved via threading constructs.
From the SQLite FAQ: "Threads are evil. Avoid Them." Only use them when you absolutely have to.
If you have to, then take steps to avoid the usual carnage. Use thread pools to execute fine-grained tasks with no interdependencies, using GUI-framework-provided facilities to dispatch outcomes back to the UI. Avoid sharing data between long-running threads; use message queues to pass information between them (and to synchronise).
A more exotic solution is to use languages such as Erlang that are explicit designed for fine-grained parallelism without sacrificing safety and comprehensibility. Concurrency itself is of fundamental importance to the future of computation; threads are simply a horrible, broken way to express it.
The "ideal number of threads" depends on your particular problem and how much parallelism you can exploit. If you have a problem that is "embarassingly parallel" in that it can be subdivided into independent problems with little to no communication between them required, and you have enough cores that you can actually get true parallelism, then how many threads you use depends on things like the problem size, the cache line size, the context switching and spawning overhead, and various other things that is really hard to compute before hand. For such situations, you really have to do some profiling in order to choose an optimal sharding/partitioning of your problem across threads. It typically doesn't make sense, though, to use more threads than you do cores. It is also true that if you have lots of synchronization, then you may, in fact, have a performance penalty for using threads. It's highly dependent on the particular problem as well as how interdependent the various steps are. As a guiding principle, you need to be aware that spawning threads and thread synchronization are expensive operations, but performing computations in parallel can increase throughput if communication and other forms of synchronization is minimal. You should also be aware that threading can lead to very poor cache performance if your threads end up invalidating a mutually shared cache line.

Multithreading in .NET 4.0 and performance

I've been toying around with the Parallel library in .NET 4.0. Recently, I developed a custom ORM for some unusual read/write operations one of our large systems has to use. This allows me to decorate an object with attributes and have reflection figure out what columns it has to pull from the database, as well as what XML it has to output on writes.
Since I envision this wrapper to be reused in many projects, I'd like to squeeze as much speed out of it as possible. This library will mostly be used in .NET web applications. I'm testing the framework using a throwaway console application to poke at the classes I've created.
I've now learned a lesson of the overhead that multithreading comes with. Multithreading causes it to run slower. From reading around, it seems like it's intuitive to people who've been doing it for a long time, but it's actually counter-intuitive to me: how can running a method 30 times at the same time be slower than running it 30 times sequentially?
I don't think I'm causing problems by multiple threads having to fight over the same shared object (though I'm not good enough at it yet to tell for sure or not), so I assume the slowdown is coming from the overhead of spawning all those threads and the runtime keeping them all straight. So:
Though I'm doing it mainly as a learning exercise, is this pessimization? For trivial, non-IO tasks, is multithreading overkill? My main goal is speed, not responsiveness of the UI or anything.
Would running the same multithreading code in IIS cause it to speed up because of already-created threads in the thread pool, whereas right now I'm using a console app, which I assume would be single-threaded until I told it otherwise? I'm about to run some tests, but I figure there's some base knowledge I'm missing to know why it would be one way or the other. My console app is also running on my desktop with two cores, whereas a server for a web app would have more, so I might have to use that as a variable as well.
Thread's don't actually all run concurrently.
On a desktop machine I'm presuming you have a dual core CPU, (maybe a quad at most). This means only 2/4 threads can be running at the same time.
If you have spawned 30 threads, the OS is going to have to context switch between those 30 threads to keep them all running. Context switches are quite costly, so hence the slowdown.
As a basic suggestion, I'd aim for 1 thread per CPU if you are trying to optimise calculations. Any more than this and you're not really doing any extra work, you are just swapping threads in an out on the same CPU. Try to think of your computer as having a limited number of workers inside, you can't do more work concurrently than the number of workers you have available.
Some of the new features in the .net 4.0 parallel task library allow you to do things that account for scalability in the number of threads. For example you can create a bunch of tasks and the task parallel library will internally figure out how many CPUs you have available, and optimise the number of threads is creates/uses so as not to overload the CPUs, so you could create 30 tasks, but on a dual core machine the TP library would still only create 2 threads, and queue the . Obviously, this will scale very nicely when you get to run it on a bigger machine. Or you can use something like ThreadPool.QueueUserWorkItem(...) to queue up a bunch of tasks, and the pool will automatically manage how many threads is uses to perform those tasks.
Yes there is a lot of overhead to thread creation, but if you are using the .net thread pool, (or the parallel task library in 4.0) .net will be managing your thread creation, and you may actually find it creates less threads than the number of tasks you have created. It will internally swap your tasks around on the available threads. If you actually want to control explicit creation of actual threads you would need to use the Thread class.
[Some cpu's can do clever stuff with threads and can have multiple Threads running per CPU - see hyperthreading - but check out your task manager, I'd be very surprised if you have more than 4-8 virtual CPUs on today's desktops]
There are so many issues with this that it pays to understand what is happening under the covers. I would highly recommend the "Concurrent Programming on Windows" book by Joe Duffy and the "Java Concurrency in Practice" book. The latter talks about processor architecture at the level you need to understand it when writing multithreaded code. One issue you are going to hit that's going to hurt your code is caching, or more likely the lack of it.
As has been stated there is an overhead to scheduling and running threads, but you may find that there is a larger overhead when you share data across threads. That data may be flushed from the processor cache into main memory, and that will cause serious slow downs to your code.
This is the sort of low-level stuff that managed environments are supposed to protect us from, however, when writing highly parallel code, this is exactly the sort of issue you have to deal with.
A colleague of mine recorded a screencast about the performance issue with Parallel.For and Parallel.ForEach which may help:
http://rocksolidknowledge.com/ScreenCasts.mvc/Watch?video=ParallelLoops.wmv
You're speaking of an ORM, so I presume some amount of I/O is going on. If this is the case, the overhead of thread creation and context switching is going to be comparatively non-existent.
Most likely, you're experiencing I/O contention: it can be slower (particularly on rotational hard drives, but also on other storage devices) to read the same set of data if you read it out of order than if you read it in-order. So, if you're executing 30 database queries, it's possible they'll run faster sequentially than in parallel if they're all backed by the same I/O device and the queries aren't in cache. Running them in parallel may cause the system to have a bunch of I/O read requests almost simultaneously, which may cause the OS to read little bits of each in turn - causing your drive head to jump back and forth, wasting precious milliseconds.
But that's just a guess; it's not possible to really determine what's causing your slowdown without knowing more.
Although thread creation is "extremely expensive" when compared to say adding two numbers, it's not usually something you'll easily overdo. If your operations are extremely short (say, a millisecond or less), using a thread-pool rather than new threads will noticeably save time. Generally though, if your operations are that short, you should reconsider the granularity of parallelism anyhow; perhaps you're better off splitting the computation into bigger chunks: for instance, by having a fairly low number of worker tasks which handle entire batches of smaller work-items at a time rather than each item separately.

Why might threads be considered "evil"?

I was reading the SQLite FAQ, and came upon this passage:
Threads are evil. Avoid them.
I don't quite understand the statement "Thread are evil". If that is true, then what is the alternative?
My superficial understanding of threads is:
Threads make concurrence happen. Otherwise, the CPU horsepower will be wasted, waiting for (e.g.) slow I/O.
But the bad thing is that you must synchronize your logic to avoid contention and you have to protect shared resources.
Note: As I am not familiar with threads on Windows, I hope the discussion will be limited to Linux/Unix threads.
When people say that "threads are evil", the usually do so in the context of saying "processes are good". Threads implicitly share all application state and handles (and thread locals are opt-in). This means that there are plenty of opportunities to forget to synchronize (or not even understand that you need to synchronize!) while accessing that shared data.
Processes have separate memory space, and any communication between them is explicit. Furthermore, primitives used for interprocess communication are often such that you don't need to synchronize at all (e.g. pipes). And you can still share state directly if you need to, using shared memory, but that is also explicit in every given instance. So there are fewer opportunities to make mistakes, and the intent of the code is more explicit.
Simple answer the way I understand it...
Most threading models use "shared state concurrency," which means that two execution processes can share the same memory at the same time. If one thread doesn't know what the other is doing, it can modify the data in a way that the other thread doesn't expect. This causes bugs.
Threads are "evil" because you need to wrap your mind around n threads all working on the same memory at the same time, and all of the fun things that go with it (deadlocks, racing conditions, etc).
You might read up about the Clojure (immutable data structures) and Erlang (message passsing) concurrency models for alternative ideas on how to achieve similar ends.
What makes threads "evil" is that once you introduce more than one stream of execution into your program, you can no longer count on your program to behave in a deterministic manner.
That is to say: Given the same set of inputs, a single-threaded program will (in most cases) always do the same thing.
A multi-threaded program, given the same set of inputs, may well do something different every time it is run, unless it is very carefully controlled. That is because the order in which the different threads run different bits of code is determined by the OS's thread scheduler combined with a system timer, and this introduces a good deal of "randomness" into what the program does when it runs.
The upshot is: debugging a multi-threaded program can be much harder than debugging a single-threaded program, because if you don't know what you are doing it can be very easy to end up with a race condition or deadlock bug that only appears (seemingly) at random once or twice a month. The program will look fine to your QA department (since they don't have a month to run it) but once it's out in the field, you'll be hearing from customers that the program crashed, and nobody can reproduce the crash.... bleah.
To sum up, threads aren't really "evil", but they are strong juju and should not be used unless (a) you really need them and (b) you know what you are getting yourself into. If you do use them, use them as sparingly as possible, and try to make their behavior as stupid-simple as you possibly can. Especially with multithreading, if anything can go wrong, it (sooner or later) will.
I would interpret it another way. It's not that threads are evil, it's that side-effects are evil in a multithreaded context (which is a lot less catchy to say).
A side effect in this context is something that affects state shared by more than one thread, be it global or just shared. I recently wrote a review of Spring Batch and one of the code snippets used is:
private static Map<Long, JobExecution> executionsById = TransactionAwareProxyFactory.createTransactionalMap();
private static long currentId = 0;
public void saveJobExecution(JobExecution jobExecution) {
Assert.isTrue(jobExecution.getId() == null);
Long newId = currentId++;
jobExecution.setId(newId);
jobExecution.incrementVersion();
executionsById.put(newId, copy(jobExecution));
}
Now there are at least three serious threading issues in less than 10 lines of code here. An example of a side effect in this context would be updating the currentId static variable.
Functional programming (Haskell, Scheme, Ocaml, Lisp, others) tend to espouse "pure" functions. A pure function is one with no side effects. Many imperative languages (eg Java, C#) also encourage the use of immutable objects (an immutable object is one whose state cannot change once created).
The reason for (or at least the effect of) both of these things is largely the same: they make multithreaded code much easier. A pure function by definition is threadsafe. An immutable object by definition is threadsafe.
The advantage processes have is that there is less shared state (generally). In traditional UNIX C programming, doing a fork() to create a new process would result in shared process state and this was used as a means of IPC (inter-process communication) but generally that state is replaced (with exec()) with something else.
But threads are much cheaper to create and destroy and they take less system resources (in fact, the operating itself may have no concept of threads yet you can still create multithreaded programs). These are called green threads.
The paper you linked to seems to explain itself very well. Did you read it?
Keep in mind that a thread can refer to the programming-language construct (as in most procedural or OOP languages, you create a thread manually, and tell it to executed a function), or they can refer to the hardware construct (Each CPU core executes one thread at a time).
The hardware-level thread is obviously unavoidable, it's just how the CPU works. But the CPU doesn't care how the concurrency is expressed in your source code. It doesn't have to be by a "beginthread" function call, for example. The OS and the CPU just have to be told which instruction threads should be executed.
His point is that if we used better languages than C or Java with a programming model designed for concurrency, we could get concurrency basically for free. If we'd used a message-passing language, or a functional one with no side-effects, the compiler would be able to parallelize our code for us. And it would work.
Threads aren't any more "evil" than hammers or screwdrivers or any other tools; they just require skill to utilize. The solution isn't to avoid them; it's to educate yourself and up your skill set.
Creating a lot of threads without constraint is indeed evil.. using a pooling mechanisme (threadpool) will mitigate this problem.
Another way threads are 'evil' is that most framework code is not designed to deal with multiple threads, so you have to manage your own locking mechanisme for those datastructures.
Threads are good, but you have to think about how and when you use them and remember to measure if there really is a performance benefit.
A thread is a bit like a light weight process. Think of it as an independent path of execution within an application. The thread runs in the same memory space as the application and therefore has access to all the same resources, global objects and global variables.
The good thing about them: you can parallelise a program to improve performance. Some examples, 1) In an image editing program a thread may run the filter processing independently of the GUI. 2) Some algorithms lend themselves to multiple threads.
Whats bad about them? if a program is poorly designed they can lead to deadlock issues where both threads are waiting on each other to access the same resource. And secondly, program design can me more complex because of this. Also, some class libraries don't support threading. e.g. the c library function "strtok" is not "thread safe". In other words, if two threads were to use it at the same time they would clobber each others results. Fortunately, there are often thread safe alternatives... e.g. boost library.
Threads are not evil, they can be very useful indeed.
Under Linux/Unix, threading hasn't been well supported in the past although I believe Linux now has Posix thread support and other unices support threading now via libraries or natively. i.e. pthreads.
The most common alternative to threading under Linux/Unix platforms is fork. Fork is simply a copy of a program including it's open file handles and global variables. fork() returns 0 to the child process and the process id to the parent. It's an older way of doing things under Linux/Unix but still well used. Threads use less memory than fork and are quicker to start up. Also, inter process communications is more work than simple threads.
In a simple sense you can think of a thread as another instruction pointer in the current process. In other words it points the IP of another processor to some code in the same executable. So instead of having one instruction pointer moving through the code there are two or more IP's executing instructions from the same executable and address space simultaneously.
Remember the executable has it's own address space with data / stack etc... So now that two or more instructions are being executed simultaneously you can imagine what happens when more than one of the instructions wants to read/write to the same memory address at the same time.
The catch is that threads are operating within the process address space and are not afforded protection mechanisms from the processor that full blown processes are. (Forking a process on UNIX is standard practice and simply creates another process.)
Out of control threads can consume CPU cycles, chew up RAM, cause execeptions etc.. etc.. and the only way to stop them is to tell the OS process scheduler to forcibly terminate the thread by nullifying it's instruction pointer (i.e. stop executing). If you forcibly tell a CPU to stop executing a sequence of instructions what happens to the resources that have been allocated or are being operated on by those instructions? Are they left in a stable state? Are they properly freed? etc...
So, yes, threads require more thought and responsibility than executing a process because of the shared resources.
For any application that requires stable and secure execution for long periods of time without failure or maintenance, threads are always a tempting mistake. They invariably turn out to be more trouble than they are worth. They produce rapid results and prototypes that seem to be performing correctly but after a couple weeks or months running you discover that they have critical flaws.
As mentioned by another poster, once you use even a single thread in your program you have now opened a non-deterministic path of code execution that can produce an almost infinite number of conflicts in timing, memory sharing and race conditions. Most expressions of confidence in solving these problems are expressed by people who have learned the principles of multithreaded programming but have yet to experience the difficulties in solving them.
Threads are evil. Good programmers avoid them wherever humanly possible. The alternative of forking was offered here and it is often a good strategy for many applications. The notion of breaking your code down into separate execution processes which run with some form of loose coupling often turns out to be an excellent strategy on platforms that support it. Threads running together in a single program is not a solution. It is usually the creation of a fatal architectural flaw in your design that can only be truly remedied by rewriting the entire program.
The recent drift towards event oriented concurrency is an excellent development innovation. These kinds of programs usually prove to have great endurance after they are deployed.
I've never met a young engineer who didn't think threads were great. I've never met an older engineer who didn't shun them like the plague.
Being an older engineer, I heartily agree with the answer by Texas Arcane.
Threads are very evil because they cause bugs that are extremely difficult to solve. I have literally spent months solving sporadic race-conditions. One example caused trams to suddenly stop about once a month in the middle of the road and block traffic until towed away. Luckily I didn't create the bug, but I did get to spend 4 months full-time to solve it...
It's a tad late to add to this thread, but I would like to mention a very interesting alternative to threads: asynchronous programming with co-routines and event loops. This is being supported by more and more languages, and does not have the problem of race conditions like multi-threading has.
It can replace multi-threading in cases where it is used to wait on events from multiple sources, but not where calculations need to be performed in parallel on multiple CPU cores.

When is multi-threading not a good idea? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
I was recently working on an application that sent and received messages over Ethernet and Serial. I was then tasked to add the monitoring of DIO discretes. I throught,
"No reason to interrupt the main
thread which is involved in message
processing, I'll just create
another thread that monitors DIO."
This decision, however, proved to be poor. Sometimes the main thread would be interrupted between a Send and a Receive serial message. This interruption would disrupt the timing and alas, messages would be lost (forever).
I found another way to monitor the DIO without using another thread and Ethernet and Serial communication were restored to their correct functionality.
The whole fiasco, however, got me thinking. Are their any general guidelines about when not to use multiple-threads and/or does anyone have anymore examples of situations when using multiple-threads is not a good idea?
**EDIT:Based on your comments and after scowering the internet for information, I have composed a blog post entitled When is multi-threading not a good idea?
On a single processor machine and a desktop application, you use multi threads so you don't freeze the app but for nothing else really.
On a single processor server and a web based app, no need for multi threading because the web server handles most of it.
On a multi-processor machine and desktop app, you are suggested to use multi threads and parallel programming. Make as many threads as there are processors.
On a multi-processor server and a web based app, no need again for multi threads because the web server handles it.
In total, if you use multiple threads for other than un-freezing desktop apps and any other generic answer, you will make the app slower if you have a single core machine due to the threads interrupting each other.
Why? Because of the hardware switches. It takes time for the hardware to switch between threads in total. On a multi-core box, go ahead and use 1 thread for each core and you will greatly see a ramp up.
To paraphrase an old quote: A programmer had a problem. He thought, "I know, I'll use threads." Now the programmer has two problems. (Often attributed to JWZ, but it seems to predate his use of it talking about regexes.)
A good rule of thumb is "Don't use threads, unless there's a very compelling reason to use threads." Multiple threads are asking for trouble. Try to find a good way to solve the problem without using multiple threads, and only fall back to using threads if avoiding it is as much trouble as the extra effort to use threads. Also, consider switching to multiple threads if you're running on a multi-core/multi-CPU machine, and performance testing of the single threaded version shows that you need the performance of the extra cores.
Multi-threading is a bad idea if:
Several threads access and update the same resource (set a variable, write to a file), and you don't understand thread safety.
Several threads interact with each other and you don't understand mutexes and similar thread-management tools.
Your program uses static variables (threads typically share them by default).
You haven't debugged concurrency issues.
Actually, multi threading is not scalable and is hard to debug, so it should not be used in any case if you can avoid it. There is few cases where it is mandatory : when performance on a multi CPU matters, or when you deal whith a server that have a lot of clients taking a long time to answer.
In any other cases, you can use alternatives such as queue + cron jobs or else.
You might want to take a look at the Dan Kegel's "The C10K problem" web page about handling multiple data sources/sinks.
Basically it is best to use minimal threads, which in sockets can be done in most OS's w/ some event system (or asynchronously in Windows using IOCP).
When you run into the case where the OS and/or libraries do not offer a way to perform communication in a non-blocking manner, it is best to use a thread-pool to handle them while reporting back to the same event loop.
Example diagram of layout:
Per CPU [*] EVENTLOOP ------ Handles nonblocking I/O using OS/library utilities
| \___ Threadpool for various blocking events
Threadpool for handling the I/O messages that would take long
Multithreading is bad except in the single case where it is good. This case is
The work is CPU Bound, or parts of it is CPU Bound
The work is parallelisable.
If either or both of these conditions are missing, multithreading is not going to be a winning strategy.
If the work is not CPU bound, then you are waiting not on threads to finish work, but rather for some external event, such as network activity, for the process to complete its work. Using threads, there is the additional cost of context switches between threads, The cost of synchronization (mutexes, etc), and the irregularity of thread preemption. The alternative in most common use is asynchronous IO, in which a single thread listens to several io ports, and acts on whichever happens to be ready now, one at a time. If by some chance these slow channels all happen to become ready at the same time, It might seem like you will experience a slow-down, but in practice this is rarely true. The cost of handling each port individually is often comparable or better than the cost of synchronizing state on multiple threads as each channel is emptied.
Many tasks may be compute bound, but still not practical to use a multithreaded approach because the process must synchronise on the entire state. Such a program cannot benefit from multithreading because no work can be performed concurrently. Fortunately, most programs that require enormous amounts of CPU can be parallelized to some level.
Multi-threading is not a good idea if you need to guarantee precise physical timing (like in your example). Other cons include intensive data exchange between threads. I would say multi-threading is good for really parallel tasks if you don't care much about their relative speed/priority/timing.
A recent application I wrote that had to use multithreading (although not unbounded number of threads) was one where I had to communicate in several directions over two protocols, plus monitoring a third resource for changes. Both protocol libraries required a thread to run the respective event loop in, and when those were accounted for, it was easy to create a third loop for the resource monitoring. In addition to the event loop requirements, the messages going through the wires had strict timing requirements, and one loop couldn't be risked blocking the other, something that was further alleviated by using a multicore CPU (SPARC).
There were further discussions on whether each message processing should be considered a job that was given to a thread from a thread pool, but in the end that was an extension that wasn't worth the work.
All-in-all, threads should if possible only be considered when you can partition the work into well defined jobs (or series of jobs) such that the semantics are relatively easy to document and implement, and you can put an upper bound on the number of threads you use and that need to interact. Systems where this is best applied are almost message passing systems.
In priciple everytime there is no overhead for the caller to wait in a queue.
A couple more possible reasons to use threads:
Your platform lacks asynchronous I/O operations, e.g. Windows ME (No completion ports or overlapped I/O, a pain when porting XP applications that use them.) Java 1.3 and earlier.
A third-party library function that can hang, e.g. if a remote server is down, and the library provides no way to cancel the operation and you can't modify it.
Keeping a GUI responsive during intensive processing doesn't always require additional threads. A single callback function is usually sufficient.
If none of the above apply and I still want parallelism for some reason, I prefer to launch an independent process if possible.
I would say multi-threading is generally used to:
Allow data processing in the background while a GUI remains responsive
Split very big data analysis onto multiple processing units so that you can get your results quicker.
When you're receiving data from some hardware and need something to continuously add it to a buffer while some other element decides what to do with it (write to disk, display on a GUI etc.).
So if you're not solving one of those issues, it's unlikely that adding threads will make your life easier. In fact it'll almost certainly make it harder because as others have mentioned; debugging mutithreaded applications is considerably more work than a single threaded solution.
Security might be a reason to avoid using multiple threads (over multiple processes). See Google chrome for an example of multi-process safety features.
Multi-threading is scalable, and will allow your UI to maintain its responsivness while doing very complicated things in the background. I don't understand where other responses are acquiring their information on multi-threading.
When you shouldn't multi-thread is a mis-leading question to your problem. Your problem is this: Why did multi-threading my application cause serial / ethernet communications to fail?
The answer to that question will depend on the implementation, which should be discussed in another question. I know for a fact that you can have both ethernet and serial communications happening in a multi-threaded application at the same time as numerous other tasks without causing any data loss.
The one reason to not use multi-threading is:
There is one task, and no user interface with which the task will interfere.
The reasons to use mutli-threading are:
Provides superior responsiveness to the user
Performs multiple tasks at the same time to decrease overall execution time
Uses more of the current multi-core CPUs, and multi-multi-cores of the future.
There are three basic methods of multi-threaded programming that make thread safety implemented with ease - you only need to use one for success:
Thread Safe Data types passed between threads.
Thread Safe Methods in the threaded object to modify data passed between.
PostMessage capabilities to communicate between threads.
Are the processes parallel? Is performance a real concern? Are there multiple 'threads' of execution like on a web server? I don't think there is a finite answer.
A common source of threading issues is the usual approaches employed to synchronize data. Having threads share state and then implement locking at all the appropriate places is a major source of complexity for both design and debugging. Getting the locking right to balance stability, performance, and scalability is always a hard problem to solve. Even the most experienced experts get it wrong frequently. Alternative techniques to deal with threading can alleviate much of this complexity. The Clojure programming language implements several interesting techniques for dealing with concurrency.

Does it make sense to mix an RTOS and cyclic executive?

On a small embedded system project we have some code which we would like to run in a thread so we are electing to build in top of an embedded RTOS (eCos).
Previously, we have used a cyclic executive in main() that drove tasks each implemented as a state machine. For some tasks we encountered problems where the task would need to be broken up into many fine grained states thus making the code extra complex.
When switching to an RTOS we found the memory usage for each thread's stack adds up quickly if we give each separate task it's own thread. (we only have 64k and need the memory for our communications buffers)
We are considering using a tread for our communications task and an other thread for a cyclic executive. The cyclic executive will drive the other logical tasks.
Does it make sense to mix an RTOS and cyclic executive like this?
This is a perfectly valid design.
In one of our product, we used a similar design, where the asynchronous I/O channels (TCP/IP, 2 serial streams) were in their own tasks and we had a "main" task which would be responsible for multiple areas of functionality.
Think of tasks as simply a partitioning mechanism that allows you to simplify your design.
Yes, having a cyclic executive in one OS thread running multiple 'tasks' can make sense. In fact unless two tasks conflict with scheduling needs (one needs to block, one is higher priority than the other and the low-priority one takes a long time to execute, etc.), I'd recommend putting them in the same thread.
This is especially true in the case where you are using a light-weight RTOS with no memory protection: separate threads aren't any safer than one thread (no MMU protection of address spaces), in fact they are potentially more dangerous because of the greater need for concurrency protection. Even if your IPC scheme is robust and not susceptible to misuse by programmers, it's overhead is usually non-zero, so avoiding the need for it can result in performance gains.
If you look at FreeRTOS, they actually run another scheduler in a task, sort of :)
And to echo others, nothing sounds wrong in the design. No reason (some of) your tasks can't be state machines if there's a clear way to express something that way.
It is a valid design, but I think I missed the reason for having the OS at all.
What facilities of the OS are you planning to use?
From the information available it seems that you will end up moving the complexity of the tasks to your new main loop.

Resources