Managment/Filenames of shared libraries - linux

I'm currently dealing with shared libraries and there is one thing I do not really understand. I'll start of with a quote from Wikipedia:
Unix and Unix-like platforms more commonly use the term shared library or shared object; consequently, the .so filename extension occurs most commonly to identify shared library files in such environments — often followed by another dot and a version number (for example libc.so.6).
Doesn't sound so confusing, huh? Well it actually is. I just took a look at my /usr/lib directory... lots of .so files. But what I do not understand is the following: Sometimes I do have more than one file for the library (e.g. libz.so - libz.so.1 - libz.so.1.2.5) - ok different version numbers, so no problem... Well it would be no problem, but in every case of multiple libraries, all but one files are just symbolic links which point to the one real file.
So my simple question: Why? Why are there severall files, almost the same filename, and then the just link to another file. And this is nothing that happens just once or twice...
Thanks

The reason this is done is so a program can depend on as specific a version of a library as it wants.
For example, a program may say "I need libs". The current default version of libz.so would point at libz.so.1.2.5.
Another program may say "I need version 1 of libz". The current default version of libz.so.1 points at libz.so.1.2.5.
libz.so.1.2.5 mostly exists so you know exactly what version you have installed. You can have multiple versions, and switch the symlinks around as necessary, but this is generally not done.

Related

How to pack files into one executable file for Linux and Windows?

I'm creating an desktop app on Golang with Muon UI (using Ultralight instead of Chromium) and cross-build my app for Linux and Windows. For now the app work fine but it required Ultralight libraries (*.dll for Windows and *.so for Linux). But I wanna distribution my app as single executable file. How I can create two executable files? First file for Linux, it's should include main executable file for Linux and only *.so libraries. And second file should include main executable file for Windows and only *.dll libraries. How I can to do this?
Are there any CLI utils for this? (for using in gitlab CI inside Docker for example) Or maybe I can to do this via Golang (for example using embed package. Can I embedded libraries into exe file, that it is can run)?
Or can I use cgo for link dynamic libs as static into binary file?
The honest answer would be: "With great difficulty, lots of pain, blood and tears."
The somewhat longer answer is, that a precompiled DLL/.so may contain slightly more than a mere static library. It it possible to "convert" a DLL/.so into a static library? Somewhat. It boils down to dumping its contents into object files, reverting all the relocation entries, possibly dealing with versioned symbols and weak symbols. No, there are no kitchen sink utilities out there, doing all that for you on an executable binary level.
If you can limit yourself to Linux, you may want to look into Flatpak. What this does is wrapping everything up into a sort of "self extracting archive", which upon launch will transparently and invisibly unpack itself into an in-situ temporary mount point (which you won't see from the rest of the system).
Now, one option would be to build all the dependencies of your program yourself, and arranging for those builds to be created as static libraries. In that case you're no longer dealing with DLLs. However some libraries do not want to be built for static linking, so your mileage may vary there.
Truth to be told: Why is distributing multiple files any issue at all? On Linux/*BSD you must ship separate icon and .desktop files anyway, so that stuff shows up in the Desktop application menus. Yes, it'd be nice if instead of dealing with XDG desktop entry files we had the option to place all of that information into a special – let's call it .xdgdata – readonly section, with some well known symbol names, so that we could have truly single file distributable executables.
My honest suggestion: Don't sweat about it. Just ship the whole bunch of files and don't worry too much about "how this looks".

Loading Linux libraries at runtime

I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
Here is my specific problem: I want to publish a Linux program in ELF binary form that should run on as many distributions as possible so my mandatory dependencies are as low as it gets: The only libraries required under any circumstances are libpthread, libX11, librt and libm (and glibc of course). I'm linking dynamically against these libraries when I build my program using gcc.
Optionally, however, my program should also support ALSA (sound interface), the Xcursor, Xfixes, and Xxf86vm extensions as well as GTK. But these should only be used if they are available on the user's system, otherwise my program should still run but with limited functionality. For example, if GTK isn't there, my program will fall back to terminal mode. Because my program should still be able to run without ALSA, Xcursor, Xfixes, etc. I cannot link dynamically against these libraries because then the program won't start at all if one of the libraries isn't there.
So I need to manually check if the libraries are present and then open them one by one using dlopen() and import the necessary function symbols using dlsym(). This, however, leads to all kinds of problems:
1) Library naming conventions:
Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000". These extensions seem to differ from system to system. So which one should I choose when calling dlopen()? Using a hardcoded name here seems like a very bad idea because the names differ from system to system. So the only workaround that comes to my mind is to scan the whole library path and look for filenames starting with a "libXcursor.so" prefix and then do some custom version matching. But how do I know that they are really compatible?
2) Library search paths: Where should I look for the *.so files after all? This is also different from system to system. There are some default paths like /usr/lib and /lib but *.so files could also be in lots of other paths. So I'd have to open /etc/ld.so.conf and parse this to find out all library search paths. That's not a trivial thing to do because /etc/ld.so.conf files can also use some kind of include directive which means that I have to parse even more .conf files, do some checks against possible infinite loops caused by circular include directives etc. Is there really no easier way to find out the search paths for *.so?
So, my actual question is this: Isn't there a more convenient, less hackish way of achieving what I want to do? Is it really so complicated to create a Linux program that has some optional dependencies like ALSA, GTK, libXcursor... but should also work without it! Is there some kind of standard for doing what I want to do? Or am I doomed to do it the hackish way?
Thanks for your comments/solutions!
I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
This isn't a design flaw as far as creators of the system are concerned; it's an advantage -- it encourages you to distribute programs in source form. Oh, you wanted to sell your software? Sorry, that's not the use case Linux is optimized for.
Library naming conventions: Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000".
Yes, this is called external library versioning. Read about it here. As should be clear from that description, if you compiled your binaries using headers on a system that would normally give you libXcursor.so.1 as a runtime reference, then the only shared library you are compatible with is libXcursor.so.1, and trying to dlopen libXcursor.so.0.2000 will lead to unpredictable crashes.
Any system that provides libXcursor.so but not libXcursor.so.1 is either a broken installation, or is also incompatible with your binaries.
Library search paths: Where should I look for the *.so files after all?
You shouldn't be trying to dlopen any of these libraries using their full path. Just call dlopen("libXcursor.so.1", RTLD_GLOBAL);, and the runtime loader will search for the library in system-appropriate locations.

Finding the shared library name to use with dlload

In my open-source project Artha I use libnotify for showing passive desktop notifications to the user.
Instead of statically linking libnotify, a lookup at runtime is made for the shared object (.so) file via dlload, if available on the target machine, Artha exposes the notification feature in it's GUI. On app. start, a call to dlload with filename param as libnotify.so.1 is made and if it returns a non-null pointer, then the feature is exposed.
A recurring problem with this model is that every time the version number of the library is bumped, Artha's code needs to be updated, currently libnotify.so.4 is the latest to entail such an occurance.
Is there a linux system call (irrespective of the distro the app. is running on), which can tell me if a particular library's shared object is available at runtime? I know that there exists the bruteforce option of enumerating the library by going from 1 to say 10, I find the solution ugly and inelegant.
Also, if this can be addressed via autoconf, then that solution is welcome too I.e. at build time, based on the target machine, the configure.h generated should've the right .so name that can be passed to dlload.
P.S.: I think good distros follow the style of creating links to libnotify.so.x so that a programmer can just do dlload("libnotify.so", RTLD_LAZY) and the right version numbered .so is loaded; unfortunately not all distros follow this, including Ubuntu.
The answer is: you don't.
dlopen() is not designed to deal with things like that, and trying to load whichever soversion you find on the system just because it happens to have the symbols you need is not a good way to do it.
Different sonames have different ABIs, and different ABIs means that you may be calling the same exact symbol name that is expecting a different set (or different size) of parameters, which will cause crashes or misbehaviour that are extremely difficult do debug.
You should have a read on how shared object versions work and what an ABI is.
The libfoo.so link is there for the link editor (ld) and is usually installed with the -devel packages for that reason; it might also very well not be a link but rather a text file with a linker script, often times on purpose to avoid exactly what you're trying to do.

Use of archive files for compilation: why, and is there any alternative?

In the middle of compilation, Linux kernel creates liba.a that contains many built-in.o and other object files from different directories, and use it as a major component of the final vmlinux linking. I have seen similar use of archive files in glibc compilation, and am now wondering why those projects use archive files and what would be the benefit for it.
As far as I know, archive files generated with ar are simply containers for individual files included in them. I do not see much benefit of using it other than reducing file search time for each of object files. Is this the reasoning behind the use of archive files in the middle of compilation?
If so, I would be surprised that file name search takes that significant to make kernel people care about, and I wonder how much the cost of not using archive files is, and if there is any alternative for the similar problem without spatial inefficiency of .a files.
Re: I do not see much benefit of using it other than reducing file search time for each of object files.
Your understanding of the benefit is not quite right. Archives reduce the workload of resolving individual symbols.
If you link a program out of many individual .o files, the linker has to consider them all at the same time. The references can go in any direction. The very last .o on the command line can call a function in the very first .o and vice versa.
This is not the case (by default, at least) with archives. With archives, functions in the earlier archives can only make references to symbols whose definitions appear in the later archives. (This is also related to the the traditional Unix convention why the -l linker options go at the end of the command line!!! Your .o files first, then the command line.)
This means that once an archive appears which defines a symbol, you can be sure that the later archives do not use that symbol any more. Which means that you can remove it from your data structures. You are basically "done" linking that particular library; it has satisfied the prior references, and all that remains is to satisfy ITS unresolved references. If you order the linking process right, and the software is nicely layered, you can minimize how many symbols are outstanding at any time.
Linux is more than 20 years old now and its build system has a long and rich history, just like the code. Archives were not used originally; I think that started in 2.6 only. Also, dependencies were once generated by a GNU awk script. People built the kernel on 25 Mhz 386 boxes with 4 megs of RAM, haha.
Archives are used today because there was a need for them with the kernel getting larger. It's not just for the heck of it!
A few reasons off the top of my head:
To expand on what Duck sez: the "link editor" ("ld"), a.k.a. "linker", ("man ld") takes a bunch of compiled object files (.o files) and libraries ("archive", as you call them) which can be "static" libraries (.a files) or "shared libraries" (.so files) and "links" them into an "executable" (a "program"). One tells ld which libraries to use by specifying multiple occurences of the -l options. Imagine having to specify a few thousand -l options, one for each component .o file, instead of just a couple of dozens or fewer, one for each library.
Code relating to one area of functionality can be put into one library for use and re-use by other code. For example, /usr/lib/libcrypt.* provides encryption capabilities, /usr/lib/libssl* provides supporting code for Secure Socket Layer, etc.
Also, I don't know which point in time Kaz meant when s/he said "Archives were not used originally..." but "archives", static libraries, were already in use as "recently" as 1983 (!). I did not encounter dynamic shared libraries until the early 90s.

How to get a list of paths in /etc/ld.so.conf on Linux

What is the most portable and robust way to get the list of paths, configured by /etc/ld.so.conf and files included from it? Parsing the file manually seems to be not a good idea — the format is likely to change in the future revisions.
To allow better understanding of the question, I will give you specific details below. Note that, despite these details, this is a general programming question, applicable to other situations.
There is a program, called LuaRocks. It is a package manager for Lua programming language (somewhat like Ruby gems or Python eggs). LuaRocks packages are called "rocks".
As a convenience feature, LuaRocks allows a rock author to specify a list of external dependencies for a rock, formulated as a list of C header files and / or dynamic library files. (.so on Linux.) If the specified file does not exist, the rock can't be installed.
Currently, on Linux, LuaRocks by default checks .so file existance by searching for the file in two hardcoded paths, /usr/lib and /usr/local/lib.
I believe that this is incorrect behaviour, and it is broken by the recent changes in the Ubuntu and other Debian distributions.
Update: the paths are not hardcoded per se, but are user-configurable in the config file. Still, IMO, not a best solution.
Instead (as I understand it), LuaRocks should look up file in the paths, specified by /etc/ld.so.conf and files included from it.
(Now please re-read the question above ;-) )
You shouldn't need to parse /etc/ld.so.conf or any of the config files - if you run 'ldconfig', it will scan the configured directories and generate a cache file.
Then, subsequently when you attempt a dlopen it'll automatically find the files by iterating through the cached library directories. Same thing with compiling and giving -lSomeLib, you shouldn't need to specify -L/my/other/path if you've got it configured in ld.so.conf(.d)
autoconf accomplishes this by attempting to compile a test program that links to the shared library, but that's just a functional wrapper around the dlopen() call.
So, while other methods may not necessarily be 'wrong', at the root of it attempting to link to the library or doing a dlopen() are the 'most right' ways of doing it.
Consider this, if you attempt to link to a library in a directory that ISN'T cached in /etc/ld.so.cache, when you try to run the program it will fail because it won't be able to dlopen() the library!
Hence, any 'good' shared library will be in /etc/ld.so.cache and be linkable/dlopen()able, this means that gcc can use it to link and that the user-generated library or executable will be able to open it when it executes.
You can circumvent this by expressly setting the environment variable LD_LIBRARY_PATH, or LD_PRELOAD_PATH - but each of these has it's own caveats and should be avoided if possible for 'standard' use.
A good write-up on writing shared libraries covers some of these issues, and is a good read for anyone working on programmatic consuming of other-shared libraries. Ulrich Drepper's How to write shared libraries.
According to the FHS, the following are valid locations for dynamic libraries:
/lib*/
/opt/*/lib*/
/usr/lib*/
/usr/local/lib*/
(And most likely ~/lib*/ as well.)
All entries in my /etc/ld.so.conf.d/* conform to this. Some entries reference subdirectories below the FHS dirs, which probably means that you can use the libraries in there without path information.
Now I don't know enough about LuaRocks. If you're limited to Lua-path-style globs (only ?), you cannot match these and have to parse the configs. Otherwise, you could just try to find them anywhere in these directories.
This would break on non-FHS-conforming systems (only option: parse config) and if a directory is not included in the config, the installer might see libraries that the linker cannot find.
These two seem acceptable to me, therefore I'd simply ignore the config and look at these dirs.
(Another possibility could be trying to link the library, this should automagically use the right path. However, this is platform-specific and maybe dangerous.)

Resources