Is it possible to pass an std::string via Microsoft RPC? - visual-c++

I tried passing an std::string via RPC, but I got the following error:
MIDL2025: syntax error: expecting a
type specification or a storage
specifer or a type qualifier near
"string"
Extract from code:
interface TestInterface
{
unsigned int HelloUser([in] const string user);
}
Is this possible?

You must use a BSTR. Also, no const. By specifying the argument as [in], it is already understood that the callee will not modify the string, and even if it did modify, it won't be marshaled back to the caller.
The _bstr_t class will help with conversion. Note that BSTR is always based on WCHAR, which is 16-bit. Thus, use std::wstring.

Related

TS: Cannot invoke an expression whose type lacks a call signature when defined dynamically, but it works

I'm still quite new to typescript, so please be gentle with me if I'm doing something with no sense for this technology!
The problem that I'm trying to solve is having a dynamic way to define how my application errors should be structured, but leaving to the users the faculty to enrich the messages.
So I tried to create this logic in a module that could be extended easily from the application, but I'm currently facing the problem:
Error:(35, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
What I thought it was a good idea (but please tell me if I'm wrong), was to use a register and a map to have the possibility to extend this mapping every time I want. So I created my ErrorMessage interface to be like the following:
export interface ErrorMessage {
actionMessage: string;
actionSubject: string;
originalErrorMessage?: string;
toString: () => string;
}
and a register for these, called ErrorResponseRegister, as it follows:
export enum defaultErrors {
ExceptionA = 'ExceptionA',
ExceptionB = 'ExceptionB',
}
export class ErrorResponseRegister {
private mapping: Map<string, ErrorMessage>;
constructor() {
this.mapping = new Map()
.set(defaultErrors.ExceptionA, exceptionAErrorMessage)
.set(defaultErrors.ExceptionB, exceptionBErrorMessage);
}
}
So at the end, every ErrorMessage function should look like:
export function exceptionAErrorMessage(originalErrorMessage?: string): ErrorMessage {
return {
enrichment1: "Something happened",
enrichment2: "in the application core",
originalErrorMessage: originalErrorMessage,
toString(): string {
return `${this.enrichment1} ${this.enrichment2}. Original error message: ${originalErrorMessage}`;
},
};
}
Please note I haven't used classes for this ones, as it doesn't really need to be instantiated
and I can have a bunch of them where the toString() method can vary. I just want to enforce the errors should have an enrichment1 and enrichment2 that highlight the problem in a better way for not-technical people.
So, now, back to code. When I'm trying to use the exceptionAErrorMessage statically, I can't see any problem:
console.log(exceptionAErrorMessage(originalErrorMessage).toString())
But when I try dynamically, using the map defined in the ErrorResponseRegister, something weird happens:
// In ErrorResponseRegister
public buildFor(errorType: string, originalErrorMessage?: string): Error {
const errorMessageBuilder = this.mapping.get(errorType);
if (errorMessageBuilder) {
return errorMessageBuilder(originalErrorMessage).toString();
}
return "undefined - do something else";
}
The code works as expected, the error returned is in the right format, so the toString function is executed correctly.
BUT, the following error appears in the IDE:
Error:(32, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
The line that causes the problem is
errorMessageBuilder(originalPosErrorMessage).toString()
Can someone help me to understand what I'm doing wrong?
It looks like your problem is you've mistyped mapping... it doesn't hold ErrorMessage values; it holds (x?: string)=>ErrorMessage values:
private mapping: Map<string, (x?: string) => ErrorMessage>;
What's unfortunate is that you initialize this variable via new Map().set(...) instead of the using an iterable constructor argument.
The former returns a Map<any, any> which is trivially assignable to mapping despite the mistyping. That is, you ran smack into this known issue where the standard library's typings for the no-argument Map constructor signature produces Map<any, any> which suppresses all kinds of otherwise useful error messages. Perhaps that will be fixed one day, but for now I'd suggest instead that you use the iterable constructor argument, whose type signature declaration will infer reasonable types for the keys/values:
constructor() {
this.mapping = new Map([
[defaultErrors.ExceptionA, exceptionAErrorMessage],
[defaultErrors.ExceptionB, exceptionBErrorMessage]
]); // inferred as Map<defaultErrors, (orig?: string)=>ErrorMessage>
}
If you had done so, it would have flagged the assignment as an error with your original typing for mapping (e.g., Type 'Map<defaultErrors, (originalErrorMessage?: string | undefined) => ErrorMessage>' is not assignable to type 'Map<string, ErrorMessage>'.) Oh well!
Once you make those changes, things should behave more reasonably for you. Hope that helps; good luck!
Link to code

Setting types of parsed values in Antlr

I have a rule that looks like this:
INTEGER : [0-9]+;
myFields : uno=INTEGER COMMA dos=INTEGER
Right now to access uno I need to code:
Integer i = Integer.parseInt(myFields.uno.getText())
It would be much cleaner if I could tell antler to do that conversion for me; then I would just need to code:
Integer i = myFields.uno
What are my options?
You could write the code as action, but it would still be explicit conversion (eventually). The parser (like every parser) parses the text and then it's up to "parsing events" (achieved by listener or visitor or actions in ANTLR4) to create meaningful structures/objects.
Of course you could extend some of the generated or built-in classes and then get the type directly, but as mentioned before, at some point you'll always need to convert text to some type needed.
A standard way of handling custom operations on tokens is to embed them in a custom token class:
public class MyToken extends CommonToken {
....
public Integer getInt() {
return Integer.parseInt(getText()); // TODO: error handling
}
}
Also create
public class MyTokenFactory extends TokenFactory { .... }
to source the custom tokens. Add the factory to the lexer using Lexer#setTokenFactory().
Within the custom TokenFactory, override the method
Symbol create(int type, String text); // (typically override both factory methods)
to construct and return a new MyToken.
Given that the signature includes the target token type type, custom type-specific token subclasses could be returned, each with their own custom methods.
Couple of issues with this, though. First, in practice, it is not typically needed: the assignment var is statically typed, so as in the the OP example,
options { TokenLabelType = "MyToken"; }
Integer i = myFields.uno.getInt(); // no cast required
If Integer is desired & expected, use getInt(). If Boolean ....
Second, ANTLR options allows setting a TokenLabelType to preclude the requirement to manually cast custom tokens. Use of only one token label type is supported. So, to use multiple token types, manual casting is required.

Why C++ CLI has no default argument on managed types?

The following line has the error Default argument is not allowed.
public ref class SPlayerObj{
private:
void k(int s = 0){ //ERROR
}
}
Why C++ has no default argument on managed types ?
I would like to know if there is a way to fix this.
It does have optional arguments, they just don't look the same way as the C++ syntax. Optional arguments are a language interop problem. It must be implemented by the language that makes the call, it generates the code that actually uses the default argument. Which is a tricky problem in a language that was designed to make interop easy, like C++/CLI, you of course don't know what language is going to make the call. Or if it even has syntax for optional arguments. The C# language didn't until version 4 for example.
And if the language does support it, how that compiler knows what the default value is. Notable is that VB.NET and C# v4 chose different strategies, VB.NET uses an attribute, C# uses a modopt.
You can use the [DefaultParameterValue] attribute in C++/CLI. But you shouldn't, the outcome is not predictable.
In addition to the precise answer from Hans Passant, the answer to the second part on how to fix this, you are able to use multiple methods with the same name to simulate the default argument case.
public ref class SPlayerObj {
private:
void k(int s){ // Do something useful...
}
void k() { // Call the other with a default value
k(0);
}
}
An alternative solution is to use the [OptionalAttribute] along side a Nullable<int> typed parameter. If the parameter is not specified by the caller it will be a nullptr.
void k([OptionalAttribute]Nullable<int>^ s)
{
if(s == nullptr)
{
// s was not provided
}
else if(s->HasValue)
{
// s was provided and has a value
int theValue = s->Value;
}
}
// call with no parameter
k();
// call with a parameter value
k(100);

C90 Cast to underlying abstract type

A logging structure that depends on logging related functions looks like this:
typedef struct
{
TFkt_vlogf vlogf;
TFkt_outf outf;
void* logData;
} TLogger;
In this logging function there is an abstract logData that is assigned with different pointers depending on the job that the logger has.
A Filelogger would at one point access a stored filehandle like this.
FILE * fileHandle = (FILE *)(logger->logData);
Although this compiles SPLint is unhappy about this and complains with this message:
Cast to underlying abstract type FILE *: (FILE *)(logger->logData)
What can i do to satisfy SPLint?
i tried to sprinkle some /*#abstract#*/ around but it did not help
Is there a better way in C90 to store and access data while still keeping the structure signature to pass the type around independent of its implementation?
The better Solution is to use a union and have all possible Data inside that union.
typedef union
{
FILE * fileHandle;
char something;
long int other;
} TLog_data;
typedef struct
{
TFkt_vlogf vlogf;
TFkt_outf outf;
TLog_data logData;
} TLogger;
At some point during execution you would use:
((TLogger*) logger)->logData.fileHandle

Why the bad_alloc(const char*) was made private in Visual C++ 2012?

I am just trying to compile a bit bigger project using the Visual Studio 2012 Release Candidate, C++. The project was/is compiled using the VS2010 now. (I am just greedy to get the C++11 things, so I tried. :)
Apart of things that I can explain by myself, the project uses the code like this:
ostringstream ostr;
ostr << "The " __FUNCTION__ "() failed to malloc(" << i << ").";
throw bad_alloc(ostr.str().c_str());
The compiler now complains
error C2248: 'std::bad_alloc::bad_alloc' : cannot access private member declared
in class 'std::bad_alloc'
... which is true. That version of constructor is now private.
What was the reason to make that version of constructor private? Is it recommended by C++11 standard not to use that constructor with the argument?
(I can imagine that if allocation failed, it may cause more problems to try to construct anything new. However, it is only my guess.)
Thanks,
Petr
The C++11 Standard defines bad_alloc as such (18.6.2.1):
class bad_alloc : public exception {
public:
bad_alloc() noexcept;
bad_alloc(const bad_alloc&) noexcept;
bad_alloc& operator=(const bad_alloc&) noexcept;
virtual const char* what() const noexcept;
};
With no constructor that takes a string. A vendor providing such a constructor would make the code using it not portable, as other vendors are not obliged to provide it.
The C++03 standard defines a similar set of constructors, so VS didn't follow this part of the standard even before C++11. MS does try to make VS as standard compliant as possible, so they've probably just used the occasion (new VS, new standard) to fix an incompatibility.
Edit: Now that I've seen VS2012's code, it is also clear why the mentioned constructor is left private, instead of being completely removed: there seems to be only one use of that constructor, in the bad_array_new_length class. So bad_array_new_length is declared a friend in bad_alloc, and can therefore use that private constructor. This dependency could have been avoided if bad_array_new_length just stored the message in the pointer used by what(), but it's not a lot of code anyway.
If you are accustomed to passing a message when you throw a std::bad_alloc, a suitable technique is to define an internal class that derives from std::bad_alloc, and override ‘what’ to supply the appropriate message.
You can make the class public and call the assignment constructor directly, or make a helper function, such as throw_bad_alloc, which takes the parameters (and additional scalar information) and stores them in the internal class.
The message is not formatted until ‘what’ is called. In this way, stack unwinding may have freed some memory so the message can be formatted with the actual reason (memory exhaustion, bad request size, heap corruption, etc.) at the catch site. If formatting fails, simply assign and return a static message.
Trimmed example:
(Tip: The copy constructor can just assign _Message to nullptr, rather than copy the message since the message is formatted on demand. The move constructor, of course can just confiscate it :-).
class internal_bad_alloc: public std::bad_alloc
{
public:
// Default, copy and move constructors....
// Assignment constructor...
explicit internal_bad_alloc(int errno, size_t size, etc...) noexcept:
std::bad_alloc()
{
// Assign data members...
}
virtual ~internal_bad_alloc(void) noexcept
{
// Free _Message data member (if allocated).
}
// Override to format and return the reason:
virtual const char* what(void) const noexcept
{
if (_Message == nullptr)
{
// Format and assign _Message. Assign the default if the
// format fails...
}
return _Message;
}
private:
// Additional scalar data (error code, size, etc.) pass into the
// constructor and used when the message is formatted by 'what'...
mutable char* _Message;
static char _Default[];
}
};
//
// Throw helper(s)...
//
extern void throw_bad_alloc(int errno, size_t size, etc...)
{
throw internal_bad_alloc(errno, size, etc...);
}

Resources