I want to turn a data-only input file, i.e. something like this:
.data
.org 0
.equ foo, 42
.asciz "foo"
label:
.long 0xffffffff
.long 0x12345678
.byte foo
.long label
.long bar
.equ bar, 'x'
into a file with the corresponding byte sequence 'f','o','o', 0, 0xff, 0xff, 0xff, 0xff, 0x78, 0x56, 0x34, 0x12, 42, 4, 0, 0, 0, 'x', 0 , 0, 0.
When I assemble this with GNU as (as -o foo.o -s foo.S), I get an 400+ bytes ELF file. How can I make GNU as (or NASM or any other assembler) give me the plain binary representation? I've studied the GNU as options but to no avail. I can modify the input format, if that makes the answer easier (i.e. use more and different pseudo ops).
Any hints deeply appreciated!
Regards, Jens
in MASM you would assemble MASM into an .obj file, LINK into an .exe file and then postprocess the result exefile with the EXE2BIN utility.
in TASM you would assemble into an .obj file and then link TLINK with the /t/x parameters.
I dug around a bit and found a solution using nasm, grabbed from http://www.nasm.us/.
The equivalent directives for the original data would be something like this:
org 0
foo equ 42
db "foo", 0
label:
dd 0xffffffff
dd 0x12345678
db foo
dd label
dd bar
bar equ 'x'
Assemble this with nasm -f bin -o file.bin file.S. Voila! Plain binary in file.bin. Guess that makes me a self-learner :-)
Related
I'm trying to create a Linux i386 a.out executable shorter than 4097 bytes, but all my efforts have failed so far.
I'm compiling it with:
$ nasm -O0 -f bin -o prog prog.nasm && chmod +x prog
I'm testing it in a Ubuntu 10.04 i386 VM running Linux 2.6.32 with:
$ sudo modprobe binfmt_aout
$ sudo sysctl vm.mmap_min_addr=4096
$ ./prog; echo $?
Hello, World!
0
This is the source code of the 4097-byte executable which works:
; prog.nasm
bits 32
cpu 386
org 0x1000 ; Linux i386 a.out QMAGIC file format has this.
SECTION_text:
a_out_header:
dw 0xcc ; magic=QMAGIC; Demand-paged executable with the header in the text. The first page (0x1000 bytes) is unmapped to help trap NULL pointer references.
db 0x64 ; type=M_386
db 0 ; flags=0
dd SECTION_data - SECTION_text ; a_text=0x1000 (byte size of .text; mapped as r-x)
dd SECTION_end - SECTION_data ; a_data=0x1000 (byte size of .data; mapped as rwx, not just rw-)
dd 0 ; a_bss=0 (byte size of .bss)
dd 0 ; a_syms=0 (byte size of symbol table data)
dd _start ; a_entry=0x1020 (in-memory address of _start == file offset of _start + 0x1000)
dd 0 ; a_trsize=0 (byte size of relocation info or .text)
dd 0 ; a_drsize=0 (byte size of relocation info or .data)
_start: mov eax, 4 ; __NR_write
mov ebx, 1 ; argument: STDOUT_FILENO
mov ecx, msg ; argument: address of string to output
mov edx, msg_end - msg ; argument: number of bytes
int 0x80 ; syscall
mov eax, 1 ; __NR_exit
xor ebx, ebx ; argument: EXIT_SUCCESS == 0.
int 0x80 ; syscall
msg: db 'Hello, World!', 10
msg_end:
times ($$ - $) & 0xfff db 0 ; padding to multiple of 0x1000 ; !! is this needed?
SECTION_data: db 0
; times ($$ - $) & 0xfff db 0 ; padding to multiple of 0x1000 ; !! is this needed?
SECTION_end:
How can I make the executable file smaller? (Clarification: I still want a Linux i386 a.out executable. I know that that it's possible to create a smaller Linux i386 ELF executable.) There is several thousands bytes of padding at the end of the file, which seems to be required.
So far I've discovered the following rules:
If a_text or a_data is 0, Linux doesn't run the program. (See relevant Linux source block 1 and 2.)
If a_text is not a multiple of 0x1000 (4096), Linux doesn't run the program. (See relevant Linux source block 1 and 2.)
If the file is shorter than a_text + a_data bytes, Linux doesn't run the program. (See relevant Linux source code location.)
Thus file_size >= a_text + a_data >= 0x1000 + 1 == 4097 bytes.
The combinations nasm -f aout + ld -s -m i386linux and nasm -f elf + ld -s -m i386linux and as -32 + ld -s -m i386linux produce an executable of 4100 bytes, which doesn't even work (because its a_data is 0), and by adding a single byte to section .data makes the executable file 8196 bytes long, and it will work. Thus this path doesn't lead to less than 4097 bytes.
Did I miss something?
TL;DR It doesn't work.
It is impossible to make a Linux i386 a.out QMAGIC executable shorter than 4097 bytes work on Linux 2.6.32, based on evidence in the Linux kernel source code of the binfmt_aout module.
Details:
If a_text is 0, Linux doesn't run the program. (Evidence for this check: a_text is passed as the length argument to mmap(2) here.)
If a_data is 0, Linux doesn't run the program. (Evidence for this check: a_data is passed as the length argument to mmap(2) here.)
If a_text is not a multiple of 0x1000 (4096), Linux doesn't run the program. (Evidence for this check: fd_offset + ex.a_text is passed as the offset argument to mmap(2) here. For QMAGIC, fd_offset is 0.)
If the file is shorter than a_text + a_data bytes, Linux doesn't run the program. (Evidence for this check: file sizes is compared to a_text + a_data + a_syms + ... here.)
Thus file_size >= a_text + a_data >= 0x1000 + 1 == 4097 bytes.
I've also tried OMAGIC, ZMAGIC and NMAGIC, but none of them worked. Details:
For OMAGIC, read(2) is used instead of mmap(2) within here, thus it can work. However, Linux tries to load the code to virtual memory address 0 (N_TXTADDR is 0), and this causes SIGKILL (if non-root and vm.mmap_min_addr is larger than 0) or SIGILL (otherwise), thus it doesn't work. Maybe the reason for SIGILL is that the page allocated by set_brk is not executable (but that should be indicated by SIGSEGV), this could be investigated further.
For ZMAGIC and NMAGIC, read(2) instead of mmap(2) within here if fd_offset is not a multiple of the page size (0x1000). fd_offset is 32 for NMAGIC, and 1024 for ZMAGIC, so good. However, it doesn't work for the same reason (load to virtual memory address 0).
I wonder if it's possible to run OMAGIC, ZMAGIC or NMAGIC executables at all on Linux 2.6.32 or later.
Now I am trying to understand the RISC-V ISA but I have an unclear point about the machine code and assembly.
I have written a C code like this:
int main() {
return 42;
}
Then, I produced the .s file by this command:
$ /opt/riscv/bin/riscv64-unknown-linux-gnu-gcc -S 42.c
The output was:
.file "42.c"
.option nopic
.text
.align 1
.globl main
.type main, #function
main:
addi sp,sp,-16
sd s0,8(sp)
addi s0,sp,16
li a5,42
mv a0,a5
ld s0,8(sp)
addi sp,sp,16
jr ra
.size main, .-main
.ident "GCC: (g5964b5cd727) 11.1.0"
.section .note.GNU-stack,"",#progbits
Now, I run following command to produce an elf.
$ /opt/riscv/bin/riscv64-unknown-linux-gnu-gcc -nostdlib -o 42 42.s
So, a binary file is produced. I tried to read that by objdump like this:
$ /opt/riscv/bin/riscv64-unknown-linux-gnu-objdump -d 42
So the output was like this:
42: file format elf64-littleriscv
Disassembly of section .text:
00000000000100b0 <main>:
100b0: 1141 addi sp,sp,-16
100b2: e422 sd s0,8(sp)
100b4: 0800 addi s0,sp,16
100b6: 02a00793 li a5,42
100ba: 853e mv a0,a5
100bc: 6422 ld s0,8(sp)
100be: 0141 addi sp,sp,16
100c0: 8082 ret
What I don't understand is the meaning of the machine code in objdump output.
For example, the first instruction addi is translated into .....0010011 according to this page, (while this is not an official spec). However, the dumped hex is 1141. 1141 can only represent 2 bytes, but the instruction should be 32-bit, 4bytes.
I guess I am missing some points, but how should I read the output of objdump for riscv?
You can tell objdump to show compressed (16-bit) instructions by using -M no-aliases in this way
riscv64-unknown-elf-objdump -d -M no-aliases
In that case, instructions starting with c. are compressed ones.
Unfortunately that will also disable some other aliases, making the asm less nice to read if you're used to them. You can just look at the number of bytes (2 vs. 4) in the hexdump to see if it's a compressed instruction or not.
len: equ 2
len: db 2
Are they the same, producing a label that can be used instead of 2? If not, then what is the advantage or disadvantage of each declaration form? Can they be used interchangeably?
The first is equate, similar to C's:
#define len 2
in that it doesn't actually allocate any space in the final code, it simply sets the len symbol to be equal to 2. Then, when you use len later on in your source code, it's the same as if you're using the constant 2.
The second is define byte, similar to C's:
int len = 2;
It does actually allocate space, one byte in memory, stores a 2 there, and sets len to be the address of that byte.
Here's some pseudo-assembler code that shows the distinction:
line addr code label instruction
---- ---- -------- ----- -----------
1 0000 org 1234h
2 1234 elen equ 2
3 1234 02 dlen db 2
4 1235 44 02 00 mov ax, elen
5 1238 44 34 12 mov ax, dlen
Line 1 simply sets the assembly address to be 1234h, to make it easier to explain what's happening.
In line 2, no code is generated, the assembler simply loads elen into the symbol table with the value 2. Since no code has been generated, the address does not change.
Then, when you use it on line 4, it loads that value into the register.
Line 3 shows that db is different, it actually allocates some space (one byte) and stores the value in that space. It then loads dlen into the symbol table but gives it the value of that address 1234h rather than the constant value 2.
When you later use dlen on line 5, you get the address, which you would have to dereference to get the actual value 2.
Summary
NASM 2.10.09 ELF output:
db does not have any magic effects: it simply outputs bytes directly to the output object file.
If those bytes happen to be in front of a symbol, the symbol will point to that value when the program starts.
If you are on the text section, your bytes will get executed.
Weather you use db or dw, etc. that does not specify the size of the symbol: the st_size field of the symbol table entry is not affected.
equ makes the symbol in the current line have st_shndx == SHN_ABS magic value in its symbol table entry.
Instead of outputting a byte to the current object file location, it outputs it to the st_value field of the symbol table entry.
All else follows from this.
To understand what that really means, you should first understand the basics of the ELF standard and relocation.
SHN_ABS theory
SHN_ABS tells the linker that:
relocation is not to be done on this symbol
the st_value field of the symbol entry is to be used as a value directly
Contrast this with "regular" symbols, in which the value of the symbol is a memory address instead, and must therefore go through relocation.
Since it does not point to memory, SHN_ABS symbols can be effectively removed from the executable by the linker by inlining them.
But they are still regular symbols on object files and do take up memory there, and could be shared amongst multiple files if global.
Sample usage
section .data
x: equ 1
y: db 2
section .text
global _start
_start:
mov al, x
; al == 1
mov al, [y]
; al == 2
Note that since the symbol x contains a literal value, no dereference [] must be done to it like for y.
If we wanted to use x from a C program, we'd need something like:
extern char x;
printf("%d", &x);
and set on the asm:
global x
Empirical observation of generated output
We can observe what we've said before with:
nasm -felf32 -o equ.o equ.asm
ld -melf_i386 -o equ equ.o
Now:
readelf -s equ.o
contains:
Num: Value Size Type Bind Vis Ndx Name
4: 00000001 0 NOTYPE LOCAL DEFAULT ABS x
5: 00000000 0 NOTYPE LOCAL DEFAULT 1 y
Ndx is st_shndx, so we see that x is SHN_ABS while y is not.
Also see that Size is 0 for y: db in no way told y that it was a single byte wide. We could simply add two db directives to allocate 2 bytes there.
And then:
objdump -dr equ
gives:
08048080 <_start>:
8048080: b0 01 mov $0x1,%al
8048082: a0 88 90 04 08 mov 0x8049088,%al
So we see that 0x1 was inlined into instruction, while y got the value of a relocation address 0x8049088.
Tested on Ubuntu 14.04 AMD64.
Docs
http://www.nasm.us/doc/nasmdoc3.html#section-3.2.4:
EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label. The action of EQU is to define the given label name to the value of its (only) operand. This definition is absolute, and cannot change later. So, for example,
message db 'hello, world'
msglen equ $-message
defines msglen to be the constant 12. msglen may not then be redefined later. This is not a preprocessor definition either: the value of msglen is evaluated once, using the value of $ (see section 3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever it is referenced and using the value of $ at the point of reference.
See also
Analogous question for GAS: Difference between .equ and .word in ARM Assembly? .equiv seems to be the closes GAS equivalent.
equ: preprocessor time. analogous to #define but most assemblers are lacking an #undef, and can't have anything but an atomic constant of fixed number of bytes on the right hand side, so floats, doubles, lists are not supported with most assemblers' equ directive.
db: compile time. the value stored in db is stored in the binary output by the assembler at a specific offset. equ allows you define constants that normally would need to be either hardcoded, or require a mov operation to get. db allows you to have data available in memory before the program even starts.
Here's a nasm demonstrating db:
; I am a 16 byte object at offset 0.
db '----------------'
; I am a 14 byte object at offset 16
; the label foo makes the assembler remember the current 'tell' of the
; binary being written.
foo:
db 'Hello, World!', 0
; I am a 2 byte filler at offset 30 to help readability in hex editor.
db ' .'
; I am a 4 byte object at offset 16 that the offset of foo, which is 16(0x10).
dd foo
An equ can only define a constant up to the largest the assembler supports
example of equ, along with a few common limitations of it.
; OK
ZERO equ 0
; OK(some assemblers won't recognize \r and will need to look up the ascii table to get the value of it).
CR equ 0xD
; OK(some assemblers won't recognize \n and will need to look up the ascii table to get the value of it).
LF equ 0xA
; error: bar.asm:2: warning: numeric constant 102919291299129192919293122 -
; does not fit in 64 bits
; LARGE_INTEGER equ 102919291299129192919293122
; bar.asm:5: error: expression syntax error
; assemblers often don't support float constants, despite fitting in
; reasonable number of bytes. This is one of the many things
; we take for granted in C, ability to precompile floats at compile time
; without the need to create your own assembly preprocessor/assembler.
; PI equ 3.1415926
; bar.asm:14: error: bad syntax for EQU
; assemblers often don't support list constants, this is something C
; does support using define, allowing you to define a macro that
; can be passed as a single argument to a function that takes multiple.
; eg
; #define RED 0xff, 0x00, 0x00, 0x00
; glVertex4f(RED);
; #undef RED
;RED equ 0xff, 0x00, 0x00, 0x00
the resulting binary has no bytes at all because equ does not pollute the image; all references to an equ get replaced by the right hand side of that equ.
When i declare a string in assembly like that:
string DB "My string", 0
where is the string saved?
Can i determine where it will be saved when declaring it?
db assembles output bytes to the current position in the output file. You control exactly where they go.
There is no indirection or reference to any other location, it's like char string[] = "blah blah", not char *string = "blah blah" (but without the implicit zero byte at the end, that's why you have to use ,0 to add one explicitly.)
When targeting a modern OS (i.e. not making a boot-sector or something), your code + data will end up in an object file and then be linked into an executable or library.
On Linux (or other ELF platforms), put read-only constant data including strings in section .rodata. This section (along with section .text where you put code) becomes part of the text segment after linking.
Windows apparently uses section .rdata.
Different assemblers have different syntax for changing sections, but I think section .whatever works in most of the one that use DB for data bytes.
;; NASM source for the x86-64 System V ABI.
section .rodata ; use section .rdata on Windows
string DB "My string", 0
section .data
static_storage_for_something: dd 123 ; one dword with value = 123
;; usually you don't need .data and can just use registers or the stack
section .bss ; zero-initialized memory, bytes not stored in the executable, just size
static_array: resd 12300000 ;; 12300000 dwords with value = 0
section .text
extern puts ; defined in libc
global main
main:
mov edi, string ; RDI = address of string = first function arg
;mov [rdi], 1234 ; would segfault because .rodata is mapped read-only
jmp puts ; tail-call puts(string)
peter#volta:/tmp$ cat > string.asm
(and paste the above, then press control-D)
peter#volta:/tmp$ nasm -f elf64 string.asm && gcc -no-pie string.o && ./a.out
My string
peter#volta:/tmp$ echo $?
10
10 characters is the return value from puts, which is the return value from main because we tail-called it, which becomes the exit status of our program. (Linux glibc puts apparently returns the character count in this case. But the manual just says it returns non-negative number on success, so don't count on this)
I used -no-pie because I used an absolute address for string with mov instead of a RIP-relative LEA.
You can use readelf -a a.out or nm to look at what went where in your executable.
I am reading the copy_from_user function, in copy_from_user function, the macro __get_user_asm is used.
there is a mmap syscall in linux, mmap syscall will call function copy_from_user. this function will use the macro __get_user_asm if the size is constant. the content of __get_user_asm is
#define __get_user_asm(x, addr, err, itype, rtype, ltype, errret) \
asm volatile("1: mov"itype" %2,%"rtype"1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: mov %3,%0\n" \
" xor"itype" %"rtype"1,%"rtype"1\n" \
" jmp 2b\n" \
".previous\n" \
_ASM_EXTABLE(1b, 3b) \
: "=r" (err), ltype(x) \
: "m" (__m(addr)), "i" (errret), "0" (err))
when i try to translate
__get_user_asm(*(u8 *)dst, (u8 __user *)src, ret, "b", "b", "=q", 1); to the real source,
1: movb %2,%b1\n
2:\n
.section .fixup, "ax" \n
3: mov %3, %0 \n
**xorb %b1, %b1\n**
jmp 2b\n
.previous\n
: "=r" (ret), =q(dst)
:"m"(dst), "i"(1), "0"(ret)
.quad "1b", "2b"\n
.previous\n```
,
there are somewhere i can't understand.
1, in xorb %b1, %b1, what's %b1(b one, not b L)?
2, in jmp 2b, is 2b a label or a memroy address? if 2b is a label, how can i find this lable?
3, what's the function of .quad "1b", "2b"?
where can i get the knowledge that make me to understand the linux kernel source in semantics layer?
Reading the docs for gcc's extended asm, we see that %1 refers to the second parameter (because parameter numbers are zero based). In your example, that's dst.
Adding b (ie %b1) is described here:
Modifier Description Operand masm=att masm=intel
b Print the QImode name of the register. %b0 %al al
jmp 2b means look backward for a label named 2.
The .quad directive is defined here:
.quad expects zero or more bignums, separated by commas. For each
bignum, it emits an 8-byte integer. If the bignum won't fit in 8
bytes, it prints a warning message; and just takes the lowest order 8
bytes of the bignum.
As for where to get info, hopefully the links I have provided help.
XOR any register with itself sets it to zero. So %B1 = 0.