Strange behaviour in OpenMP nested loop - nested

In the following program I get different results (serial vs OpenMP), what is the reason? At the moment I can only think that perhaps the loop is too "large" for the threads and perhaps I should write it in some other way but I am not sure, any hints?
Compilation: g++-4.2 -fopenmp main.c functions.c -o main_elec_gcc.exe
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#define NRACK 64
#define NSTARS 1024
double mysumallatomic_serial(float rocks[NRACK][3],float moon[NSTARS][3],float qr[NRACK],float ql[NSTARS]) {
int j,i;
float temp_div=0.,temp_sqrt=0.;
float difx,dify,difz;
float mod2x, mod2y, mod2z;
double S2 = 0.;
for(j=0; j<NRACK; j++){
for(i=0; i<NSTARS;i++){
difx=rocks[j][0]-moon[i][0];
dify=rocks[j][1]-moon[i][1];
difz=rocks[j][2]-moon[i][2];
mod2x=difx*difx;
mod2y=dify*dify;
mod2z=difz*difz;
temp_sqrt=sqrt(mod2x+mod2y+mod2z);
temp_div=1/temp_sqrt;
S2 += ql[i]*temp_div*qr[j];
}
}
return S2;
}
double mysumallatomic(float rocks[NRACK][3],float moon[NSTARS][3],float qr[NRACK],float ql[NSTARS]) {
float temp_div=0.,temp_sqrt=0.;
float difx,dify,difz;
float mod2x, mod2y, mod2z;
double S2 = 0.;
#pragma omp parallel for shared(S2)
for(int j=0; j<NRACK; j++){
for(int i=0; i<NSTARS;i++){
difx=rocks[j][0]-moon[i][0];
dify=rocks[j][1]-moon[i][1];
difz=rocks[j][2]-moon[i][2];
mod2x=difx*difx;
mod2y=dify*dify;
mod2z=difz*difz;
temp_sqrt=sqrt(mod2x+mod2y+mod2z);
temp_div=1/temp_sqrt;
float myterm=ql[i]*temp_div*qr[j];
#pragma omp atomic
S2 += myterm;
}
}
return S2;
int main(int argc, char *argv[]) {
float rocks[NRACK][3], moon[NSTARS][3];
float qr[NRACK], ql[NSTARS];
int i,j;
for(j=0;j<NRACK;j++){
rocks[j][0]=j;
rocks[j][1]=j+1;
rocks[j][2]=j+2;
qr[j] = j*1e-4+1e-3;
//qr[j] = 1;
}
for(i=0;i<NSTARS;i++){
moon[i][0]=12000+i;
moon[i][1]=12000+i+1;
moon[i][2]=12000+i+2;
ql[i] = i*1e-3 +1e-2 ;
//ql[i] = 1 ;
}
printf(" serial: %f\n", mysumallatomic_serial(rocks,moon,qr,ql));
printf(" openmp: %f\n", mysumallatomic(rocks,moon,qr,ql));
return(0);
}
}

I think you should use reduction instead of shared variable and remove #pragma omp atomic, like:
#pragma omp parallel for reduction(+:S2)
And it should work faster, because there are no need for atomic operations which are quite painful in terms of performance and threads synchronization.
UPDATE
You can also have some difference in results because of the operations order:
\sum_1^100(x[i]) != \sum_1^50(x[i]) + \sum_51^100(x[i])

You have data races on most of the temporary variables you are using in the parallel region - difx, dify, difz, mod2x, mod2y, mod2z, temp_sqrt, and temp_div should all be private. You should make these variables private by using a private clause on the parallel for directive.

Related

Using rand_r in OpenMP 'for' is slower with 2 threads

The following code performs better with 1 thread than with 2 (using 4 threads gives speed up, though):
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
int main(int argc, char **argv) {
int n = atoi(argv[1]);
int num_threads = atoi(argv[2]);
omp_set_num_threads(num_threads);
unsigned int *seeds = malloc(num_threads * sizeof(unsigned int));
for (int i = 0; i < num_threads; ++i) {
seeds[i] = 42 + i;
}
unsigned long long sum = 0;
double begin_time = omp_get_wtime();
#pragma omp parallel
{
unsigned int *seedp = &seeds[omp_get_thread_num()];
#pragma omp for reduction(+ : sum)
for (int i = 0; i < n; ++i) {
sum += rand_r(seedp);
}
}
double end_time = omp_get_wtime();
printf("%fs\n", end_time - begin_time);
free(seeds);
return EXIT_SUCCESS;
}
On my laptop (2 cores, HT enabled) I get the following results:
$ gcc -fopenmp test.c && ./a.out 100000000 1
0.821497s
$ gcc -fopenmp test.c && ./a.out 100000000 2
1.096394s
$ gcc -fopenmp test.c && ./a.out 100000000 3
0.933494s
$ gcc -fopenmp test.c && ./a.out 100000000 4
0.748038s
The problem persists without reduction, drand48_r brings no difference, dynamic scheduling makes things even worse. However, if I replace the body of the loop with something not connected with random, i. e. sum += *seedp + i;, everything works as expected.
This is textbook example of false sharing. By using an array of seeds upon which each thread take one element, you force the logically private variables to be physically located next to each-other in memory. Therefore, the are all in the same cache line. This means that although no thread tries to modify a some other thread's seed, the cache line itself is modified by each threads at each iteration. And the actual trouble is that the system cannot detect variable's modifications for cache coherency, only cache line modifications. Therefore, at each iteration for each thread, the cache line has been modified by another thread and is no longer valid from a system's point of view. It has to be reloaded from memory (well, most likely from shared L3 cache here), leading to slowing down your code.
Try this one instead (not tested):
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
int main(int argc, char **argv) {
int n = atoi(argv[1]);
int num_threads = atoi(argv[2]);
omp_set_num_threads(num_threads);
unsigned long long sum = 0;
double begin_time = omp_get_wtime();
#pragma omp parallel
{
unsigned int seed = 42 + omp_get_thread_num();
#pragma omp for reduction(+ : sum)
for (int i = 0; i < n; ++i) {
sum += rand_r(&seed);
}
}
double end_time = omp_get_wtime();
printf("%fs\n", end_time - begin_time);
return EXIT_SUCCESS;
}

pthreads code not scaling up

I wrote the following very simple pthread code to test how it scales up. I am running the code on a machine with 8 logical processors and at no time do I create more than 8 threads (to avoid context switching).
With increasing number of threads, each thread has to do lesser amount of work. Also, it is evident from the code that there are no shared Data structures between the threads which might be a bottleneck. But still, my performance degrades as I increase the number of threads.
Can somebody tell me what am I doing wrong here.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int NUM_THREADS = 3;
unsigned long int COUNTER = 10000000000000;
unsigned long int LOOP_INDEX;
void* addNum(void *data)
{
unsigned long int sum = 0;
for(unsigned long int i = 0; i < LOOP_INDEX; i++) {
sum += 100;
}
return NULL;
}
int main(int argc, char** argv)
{
NUM_THREADS = atoi(argv[1]);
pthread_t *threads = (pthread_t*)malloc(sizeof(pthread_t) * NUM_THREADS);
int rc;
clock_t start, diff;
LOOP_INDEX = COUNTER/NUM_THREADS;
start = clock();
for (int t = 0; t < NUM_THREADS; t++) {
rc = pthread_create((threads + t), NULL, addNum, NULL);
if (rc) {
printf("ERROR; return code from pthread_create() is %d", rc);
exit(-1);
}
}
void *status;
for (int t = 0; t < NUM_THREADS; t++) {
rc = pthread_join(threads[t], &status);
}
diff = clock() - start;
int sec = diff / CLOCKS_PER_SEC;
printf("%d",sec);
}
Note: All the answers I found online said that the overhead of creating the threads is more than the work they are doing. To test it, I commented out everything in the "addNum()" function. But then, after doing that no matter how many threads I create, the time taken by the code is 0 seconds. So there is no overhead as such, I think.
clock() counts CPU time used, across all threads. So all that's telling you is that you're using a little bit more total CPU time, which is exactly what you would expect.
It's the total wall clock elapsed time which should be going down if your parallelisation is effective. Measure that with clock_gettime() specifying the CLOCK_MONOTONIC clock instead of clock().

Non collective write using in file view

When trying to write blocks to a file, with my blocks being unevenly distributed across my processes, one can use MPI_File_write_at with the good offset. As this function is not a collective operation, this works well.
Exemple :
#include <cstdio>
#include <cstdlib>
#include <string>
#include <mpi.h>
int main(int argc, char* argv[])
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
int global = 7; // prime helps have unbalanced procs
int local = (global/size) + (global%size>rank?1:0);
int strsize = 5;
MPI_File fh;
MPI_File_open(MPI_COMM_WORLD, "output.txt", MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
for (int i=0; i<local; ++i)
{
size_t idx = i * size + rank;
std::string buffer = std::string(strsize, 'a' + idx);
size_t offset = buffer.size() * idx;
MPI_File_write_at(fh, offset, buffer.c_str(), buffer.size(), MPI_CHAR, MPI_STATUS_IGNORE);
}
MPI_File_close(&fh);
MPI_Finalize();
return 0;
}
However for more complexe write, particularly when writting multi dimensional data like raw images, one may want to create a view at the file with MPI_Type_create_subarray. However, when using this methods with simple MPI_File_write (which is suppose to be non collective) I run in deadlocks. Exemple :
#include <cstdio>
#include <cstdlib>
#include <string>
#include <mpi.h>
int main(int argc, char* argv[])
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
int global = 7; // prime helps have unbalanced procs
int local = (global/size) + (global%size>rank?1:0);
int strsize = 5;
MPI_File fh;
MPI_File_open(MPI_COMM_WORLD, "output.txt", MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
for (int i=0; i<local; ++i)
{
size_t idx = i * size + rank;
std::string buffer = std::string(strsize, 'a' + idx);
int dim = 2;
int gsizes[2] = { buffer.size(), global };
int lsizes[2] = { buffer.size(), 1 };
int offset[2] = { 0, idx };
MPI_Datatype filetype;
MPI_Type_create_subarray(dim, gsizes, lsizes, offset, MPI_ORDER_C, MPI_CHAR, &filetype);
MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, MPI_CHAR, filetype, "native", MPI_INFO_NULL);
MPI_File_write(fh, buffer.c_str(), buffer.size(), MPI_CHAR, MPI_STATUS_IGNORE);
}
MPI_File_close(&fh);
MPI_Finalize();
return 0;
}
How to avoid such a code to lock ? Keep in mind that by real code will really use the multidimensional capabilities of MPI_Type_create_subarray and cannot just use MPI_File_write_at
Also, it is difficult for me to know the maximum number of block in a process, so I'd like to avoid doing a reduce_all and then loop on the max number of block with empty writes when localnb <= id < maxnb
You don't use MPI_REDUCE when you have a variable number of blocks per node. You use MPI_SCAN or MPI_EXSCAN: MPI IO Writing a file when offset is not known
MPI_File_set_view is collective, so if 'local' is different on each processor, you'll find yourself calling a collective routine from less than all processors in the communicator. If you really really need to do so, open the file with MPI_COMM_SELF.
the MPI_SCAN approach means each process can set the file view as needed, and then blammo you can call the collective MPI_File_write_at_all (even if some processes have zero work -- they still need to participate) and take advantage of whatever clever optimizations your MPI-IO implementation provides.

C++ 11 std::thread strange behavior

I am experimenting a bit with std::thread and C++11, and I am encountering strange behaviour.
Please have a look at the following code:
#include <cstdlib>
#include <thread>
#include <vector>
#include <iostream>
void thread_sum_up(const size_t n, size_t& count) {
size_t i;
for (i = 0; i < n; ++i);
count = i;
}
class A {
public:
A(const size_t x) : x_(x) {}
size_t sum_up(const size_t num_threads) const {
size_t i;
std::vector<std::thread> threads;
std::vector<size_t> data_vector;
for (i = 0; i < num_threads; ++i) {
data_vector.push_back(0);
threads.push_back(std::thread(thread_sum_up, x_, std::ref(data_vector[i])));
}
std::cout << "Threads started ...\n";
for (i = 0; i < num_threads; ++i)
threads[i].join();
size_t sum = 0;
for (i = 0; i < num_threads; ++i)
sum += data_vector[i];
return sum;
}
private:
const size_t x_;
};
int main(int argc, char* argv[]) {
const size_t x = atoi(argv[1]);
const size_t num_threads = atoi(argv[2]);
A a(x);
std::cout << a.sum_up(num_threads) << std::endl;
return 0;
}
The main idea here is that I want to specify a number of threads which do independent computations (in this case, simple increments).
After all threads are finished, the results should be merged in order to obtain an overall result.
Just to clarify: This is only for testing purposes, in order to get me understand how
C++11 threads work.
However, when compiling this code using the command
g++ -o threads threads.cpp -pthread -O0 -std=c++0x
on a Ubuntu box, I get very strange behaviour, when I execute the resulting binary.
For example:
$ ./threads 1000 4
Threads started ...
Segmentation fault (core dumped)
(should yield the output: 4000)
$ ./threads 100000 4
Threads started ...
200000
(should yield the output: 400000)
Does anybody has an idea what is going on here?
Thank you in advance!
Your code has many problems (see even thread_sum_up for about 2-3 bugs) but the main bug I found by glancing your code is here:
data_vector.push_back(0);
threads.push_back(std::thread(thread_sum_up, x_, std::ref(data_vector[i])));
See, when you push_back into a vector (I'm talking about data_vector), it can move all previous data around in memory. But then you take the address of (reference to) a cell for your thread, and then push back again (making the previous reference invalid)
This will cause you to crash.
For an easy fix - add data_vector.reserve(num_threads); just after creating it.
Edit at your request - some bugs in thread_sum_up
void thread_sum_up(const size_t n, size_t& count) {
size_t i;
for (i = 0; i < n; ++i); // see that last ';' there? means this loop is empty. it shouldn't be there
count = i; // You're just setting count to be i. why do that in a loop? Did you mean +=?
}
The cause of your crash might be that std::ref(data_vector[i]) being invalidated by the next push_back in data_vector. Since you know the number of threads, do a data_vector.reserve(num_threads) before you start spawning off the threads to keep the references from being invalidated.
As you resize the vector with the calls to push_back, it is likely to have to reallocate the storage space, causing the references to the contained values to be invalidated. This causes the thread to write to non-allocated memory, which is undefined behavior.
Your options are to pre-allocate the size you need (vector::reserve is one option), or choose a different container.

Why does calculation with OpenMP take 100x more time than with a single thread?

I am trying to test Pi calculation problem with OpenMP. I have this code:
#pragma omp parallel private(i, x, y, myid) shared(n) reduction(+:numIn) num_threads(NUM_THREADS)
{
printf("Thread ID is: %d\n", omp_get_thread_num());
myid = omp_get_thread_num();
printf("Thread myid is: %d\n", myid);
for(i = myid*(n/NUM_THREADS); i < (myid+1)*(n/NUM_THREADS); i++) {
//for(i = 0; i < n; i++) {
x = (double)rand()/RAND_MAX;
y = (double)rand()/RAND_MAX;
if (x*x + y*y <= 1) numIn++;
}
printf("Thread ID is: %d\n", omp_get_thread_num());
}
return 4. * numIn / n;
}
When I compile with gcc -fopenmp pi.c -o hello_pi and run it time ./hello_pi for n = 1000000000 I get
real 8m51.595s
user 4m14.004s
sys 60m59.533s
When I run it on with a single thread I get
real 0m20.943s
user 0m20.881s
sys 0m0.000s
Am I missing something? It should be faster with 8 threads. I have 8-core CPU.
Please take a look at the
http://people.sc.fsu.edu/~jburkardt/c_src/openmp/compute_pi.c
This might be a good implementation for pi computing.
It is quite important to know that how your data spread to different threads and how the openmp collect them back. Usually, a bad design (which has data dependencies across threads) running on multiple thread will result in a slower execution than a single thread .
rand() in stdlib.h is not thread-safe. Using it in multi-thread environment causes a race condition on its hidden state variables, thus lead to poor performance.
http://man7.org/linux/man-pages/man3/rand.3.html
In fact the following code work well as an OpenMP demo.
$ gc -fopenmp -o pi pi.c -O3; time ./pi
pi: 3.141672
real 0m4.957s
user 0m39.417s
sys 0m0.005s
code:
#include <stdio.h>
#include <omp.h>
int main()
{
const int n=50000;
const int NUM_THREADS=8;
int numIn=0;
#pragma omp parallel for reduction(+:numIn) num_threads(NUM_THREADS)
for(int i = 0; i < n; i++) {
double x = (double)i/n;
for(int j=0;j<n; j++) {
double y = (double)j/n;
if (x*x + y*y <= 1) numIn++;
}
}
printf("pi: %f\n",4.*numIn/n/n);
return 0;
}
In general I would not compare times without optimization on. Compile with something like
gcc -O3 -Wall -pedantic -fopenmp main.c
The rand() function is not thread safe in Linux (but it's fine with MSVC and I guess mingw32 which uses the same C run-time libraries, MSVCRT, as MSVC). You can use rand_r with a different seed for each thread. See openmp-program-is-slower-than-sequential-one.
In general try to avoid defining the chunk sizes when you parallelize a loop. Just use #pragma omp for schedule(shared). You also don't need to specify that the loop variable in a parallelized loop is private (the variable i in your code).
Try the following code
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
int i, numIn, n;
unsigned int seed;
double x, y, pi;
n = 1000000;
numIn = 0;
#pragma omp parallel private(seed, x, y) reduction(+:numIn)
{
seed = 25234 + 17 * omp_get_thread_num();
#pragma omp for
for (i = 0; i <= n; i++) {
x = (double)rand_r(&seed) / RAND_MAX;
y = (double)rand_r(&seed) / RAND_MAX;
if (x*x + y*y <= 1) numIn++;
}
}
pi = 4.*numIn / n;
printf("asdf pi %f\n", pi);
return 0;
}
You can find a working example of this code here http://coliru.stacked-crooked.com/a/9adf1e856fc2b60d

Resources