Drawing millions of segments on screen - graphics

I would like to draw millions of line segments to the screen.
Most of the time user will see only certain area of "universe", but the user should have the ability to "zoom" out to see all line segments at once.
My understanding is that the primitive is a "triangle", so I will have to express my line segments as triangles. Millions of triangles.
Is XNA the right tool for this job, or will it be too slow?
Additional Detail:
This is not for a game, but for a modeling program of some processes.
I do not care which language to use (XNA was recommended to me)
P.S.: Please let me know if you need additional detail.

My understanding is that the primitive
is a "triangle", so I will have to
express my line segments as triangles.
Millions of triangles.
Incorrect, XNA can perfectly draw lines for you in the following manner:
GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.LineList, vertexOffset, 0, numVertices, startIndex, primitiveCount);
(Or PrimitiveType.LineStrip if the end vertex of line1 is the start vertex of line2).
Is XNA the right tool for this job, or
will it be too slow?
XNA is "a tool", and if you're drawing a lot of lines this is definately going to be faster than GDI+ and easy to implement than C++ in combo with Unmannaged D3D. Drawing a line is a very cheap operation. I would advice you to just install XNA and do a quick prototype to see how many lines you can draw at the same time. (My guess is at least 1 million). Then see if you really need to use the advanced techniques described by the other posters.
Also the "Polyline simplification" technique suggested by Felice Pollano doesn't work for individual lines, only for models made up of triangles (you can exchange a lot of small triangles for a few bigger once to increase performance but decrease visuals, if you're zoomed out pritty far nobody will notice) It also won't work for "thickened up lines" because they will always consist of 2 triangles. (Unless if you allow bended lines).

When you zoom into details simple bounding box check if the triangle is visible to avoid drawing invisible objects. When user zoom all, you should apply some algorithm of polyline simplification http://www.softsurfer.com/Archive/algorithm_0205/algorithm_0205.htm to avoid have too many things to draw.

This guy had your same problem, and this might help (here are the sources).

Yes, as Felice alludes to, simplifying the problem-set is the name of the game. There are obvious limits to hardware and algorithms, so the only way to draw "more stuff" is actually to draw "less stuff".
You can use techniques such as dividing your scene into an OctTree so that you can do View Frustrum Culling. There are tons of techniques for scaling out what you're drawing. One of my favorites is the use of impostors to create a composite scene which is easier to draw. Here's a paper which explains the technique:
http://academic.research.microsoft.com/Paper/1241430.aspx
Impostors are image-based primitives
commonly used to replace complex
*geometry* in order to reduce the
rendering time needed for displaying
complex scenes. However, a big problem
is the huge amount of memory required
for impostors. This paper presents an
algorithm that automatically places
impostors into a scene so that a
desired frame rate image quality is
always met, while at the same time not
requiring enormous amounts of impostor
memory. The low memory requirements
are provided by a new placement method
and through the simultaneous use of
other acceleration techniques like
visibility culling and geometric
levels of detail.

Related

Low level graphics programming and ZBrush

After a while of 3d modelling and enjoying ZBrush's impeccable performance and numerous features I thought it would be great OpenGL practice for me to create something similar, just a small sculpting tool. Sure enough I got it done, I couldn't match ZBrush's performance of course seeing as how a brigade of well payed professionals outmatch a hobbyist. For the moment I just assumed ZBrush was heavily hardware accelerated, imagine my surprise when I found out it's not and furthermore it uses neither opengl or direct3d.
This made me want to learn graphics on a lower level but I have no clue where to start. How are graphics libraries made and how does one access the framebuffer without the use of opengl. How much of a hassle would it be to display just a single pixel without any preexisting tools and what magic gives ZBrush such performance.
I'd appreciate any info on any question and a recommendation for a book that covers any of these topics. I'm already reading Michael Abrash's Graphics Programming Black Book but it's not really addressing these matters or I just haven't reached that point yet.
Thank you in advance.
(Please don't post answers like "just use opengl" or "learn math", this seems to be the reaction everywhere I post this question but these replies are off topic)
ZBrush is godly in terms of performance but I think it's because it was made by image processing experts with assembly expertise (it's also likely due to the sheer amount of assembly code that they've been almost 20 years late in porting to 64-bit). It actually started out without any kind of 3D sculpting and was just a 2.5D "pixol" painter where you could spray pixels around on a canvas with some depth and lighting to the "pixols". It didn't get sculpting until around ZB 1.5 or so. Even then it impressed people with how fast you could spray these 2.5D "pixols" around on the canvas back when a similarly-sized brush just painting flat pixels with Photoshop or Corel Painter would have brought framerates to a stutter. So they were cutting-edge in performance even before they tackled anything 3D and were doing nothing more than spraying pixels on a canvas; that tends to require some elite micro-optimization wizardry.
One of the things to note about ZB when you're sculpting 20 million polygon models with it is that it doesn't even use GPU rasterization. All the rasterization is done in CPU. As a result it doesn't benefit from a beefy video card with lots of VRAM supporting the latest GLSL/HLSL versions; all it needs is something that can plot colored pixels to a screen. This is probably one of the reasons it uses so little memory compared to, say, MudBox, since it doesn't have to triple the memory usage with, say, VBOs (which tend to double system memory usage while also requiring the data to be stored on the GPU).
As for how you get started with this stuff, IMO a good way to get your feet wet is to write your own raytracer. I don't think ZBrush uses, say, scanline rasterization which tends to rise very proportionally in cost the more polygons you have, since they reduce the number of pixels being rendered at times like when you rotate the model. That suggests that whatever technique they're using for rasterization is more dependent in terms of performance by the number of pixels being rendered rather than the number of primitives (vertices/triangles/lines/voxels) being rendered. Raytracing fits those characteristics. Also IMHO a raytracer is actually easier to write than a scanline rasterizer since you don't have to bother with tricky cases so much and elimination of overdrawing comes free of charge.
Once you got a software where the cost of an operation is more in proportion to the number of pixels being rendered than the amount of geometry, then you can throw a boatload of polygons at it as they did all the way back when they demonstrated 20 million polygon sculpting at Siggraph with silky frame rates almost 17 years ago.
However, it's very difficult to get a raytracer to update interactively in response to mesh data that is being not only sculpted interactively, but sometimes having its topology being changed interactively. So chances are that they are using some data structure other than your standard BVH or KD-Tree as popular in raytracing, and instead a data structure which is well-suited for dynamic meshes that are not only deforming but also having their topology being changed. Maybe they can voxelize and revoxelize (or "pixolize" and "repixolize") meshes on the fly really quickly and cast rays directly into the voxelized representation. That would start to make sense given how their technology originally revolved around these 2.5D "pixels" with depth.
Anyway, I'd suggest raytracing for a start even if it's only just getting your feet wet and getting you nowhere close to ZB's performance just yet (it's still a very good start on how to translate 3D geometry and lighting into an attractive 2D image). You can find minimal examples of raytracers on the web written with just a hundred lines of code. Most of the work typically in building a raytracer is performance and also handling a rich diversity of shaders/materials. You don't necessarily need to bother with the latter and ZBrush doesn't so much either (they use these dirt cheap matcaps for modeling). Then you'll likely have to innovate some kind of data structure that's well-suited for mesh changes to start getting on par with ZB and micro-tune the hell out of it. That software is really on a whole different playing field.
I have likewise been so inspired by ZB but haven't followed in their footsteps directly, instead using the GPU rasterizer and OpenGL. One of the reasons I find it difficult to explore doing all this stuff on the CPU as ZB has is because you lose the benefits of so much industrial research and revolutionary techniques that game engines and NVidia and AMD have come up with into lighting models in realtime and so forth that all benefit from GPU-side processing. There's 99% of the 3D industry and then there's ZBrush in its own little corner doing things that no one else is doing and you need a lot of spare time and maybe a lot of balls to abandon the rest of the industry and try to follow in ZB's footsteps. Still I always wish I could find some spare time to explore a pure CPU rasterizing engine like ZB since they still remain unmatched when your goal is to directly interact with ridiculously high-resolution meshes.
The closest I've gotten to ZB performance was sculpting 2 million polygon meshes at over 30 FPS back in the late 90s on an Athlon T-Bird 1.2ghz with 256MB of RAM, and that was after 6 weeks of intense programming and revisiting the drawing board over and over in a very simplistic demo, and that was a very rare time where my company gave me so much R&D time to explore what ZB was doing. Still, ZB was handling 5 times that geometry at the same frame rates even at that time and on the same hardware and using half the memory. I couldn't even get close, though I did end up with a newfound respect and admiration for the programmers at Pixologic. I also had to insist to my company to do the research. Some of the people there thought ZBrush would never become anything noteworthy and would just remain a cutesy artistic application. I thought the opposite since I saw something revolutionary long before it acquired such an epic following.
A lot of people at the time thought ZB's ability to handle so many polygons was impractical and that you could just paint bump/normal/displacement maps and add whatever details you needed into textures. But that's ignoring the workflow side of things. When you can just work straight with epic amounts of geometry, you get to uniformly apply the same tools and workflow to select vertices, polygons, edges, brush over things, etc. It becomes the most straightforward way to create such a detailed and complex model, after which you can bake out the details into bump/normal/displacement maps for use in other engines that would vomit on 20 million polygons. Nowadays I don't think anyone still questions the practicality of ZB.
[...] but it's not really addressing these matters or I just haven't
reached that point yet.
As a caveat, no one has published anything on how to achieve performance rivaling ZB. Otherwise there would be a number of applications rivaling its performance and features when it comes to sculpting, dynamesh, zspheres, etc and it wouldn't be so amazingly special. You definitely need your share of R&D to come up with anything close to it, but I think raytracing is a good start. After that you'll likely need to come up with some really interesting ideas for algorithms and data structures in addition to a lot of micro-tuning.
What I can say with a fair degree of confidence is that:
They have some central data structure to accelerate rasterization that can update extremely quickly in response to changes the user makes to a mesh (including topological ones).
The cost of rasterization is more in proportion to the number of pixels rendered rather than the size of the 3D input.
There's some micro-optimization wizardry in there, including straight up assembly coding (I'm quite certain ZB uses assembly coding since they were originally requiring programmers to have both assembly and C++ knowledge back when they were hiring in the 2000s; I really wanted to work at Pixologic but lacked the prerequisite assembly skills).
Whatever they use is pretty light on memory requirements given that the models are so dynamic. Last time I checked, they use less than 100MB per million polygons even when loading in production models with texture maps. Competing 3D software with the exception of XSI can take over a gigabyte for the same data. XSI uses even less memory than ZB with its gigapoly core but is ill-suited to manipulating such data, slowing down to a crawl (they probably optimized it in a way that's only well-suited for static data like offloading data to disk or even using some expensive forms of compression).
If you're really interested in exploring this, I'd be interested to see what you can come up with. Maybe we can exchange notes. I've devoted much of my career just being interested in figuring out what ZB is doing, or at least coming up with something of my own that can rival what it's doing. For just about everything else I've tackled over the years from raytracing to particle simulations to fluid dynamics and video processing and so forth, I've been able to at least come up with demos that rival or surpass the performance of the competition, but not ZBrush. ZBrush remains that elusive thorn in my side where I just can't figure out how they manage to be so damned efficient at what they do.
If you really want to crawl before you even begin to walk (I think raytracing is a decent enough start, but if you want to start out even more fundamental) then maybe a natural evolution is to first just focus on image processing: filtering images, painting them with brushes, etc, along with some support for basic vector graphics like a miniature Photoshop/Illustrator. Then work your way up to rasterizing some basic 3D primitives, like maybe just a wireframe of a model being rendered using Wu line rasterization and some basic projection functions. Then work your way towards rasterizing filled triangles without any lighting or texturing, at which point I think you'll get closer to ZBrush focusing on raytracing rather than scanline with a depth buffer. However, doing a little bit of the latter might be a useful exercise anyway. Then work on rendering lit triangles, maybe starting with direct lighting and just a single light source, just computing a luminance based on the angle of the normal relative to the light source. Then work towards textured triangles using baycentric coordinates to figure out what texels to render. Then work towards indirect lighting and multiple light sources. That should be plenty of homework for you to develop a fairly comprehensive idea of the fundamentals of rasterization.
Now once you get to raytracing, I'm actually going to recommend one of the least efficient data structures for the job typically: octrees, not BVH or KD-Tree, mainly because I believe octrees are probably closer to allowing what ZB allows. Your bottlenecks in this context don't have to do with rendering the most beautiful images with complex diffuse materials and indirect lighting and subpixel samples for antialiasing. It has to do with handling a boatload of geometry with simple lighting and simple shaders and one sample per pixel which is changing on the fly, including topologically. Octrees seem a little better suited in that case than KD-tree or BVHs as a starting point.
One of the problems with ignoring the fundamentals these days is that a lot of young developers have lost that connection from, say, triangle to pixel on the screen. So if you don't want to take such rasterization and projection for granted, then your initial goal is to project 3D data into a 2D coordinate space and rasterize it.
If you want a book that starts at a low level, with framebuffers and such, try Computer Graphics: Principles and Practice, by Foley, van Dam, et al. It is an older, traditional text, but newer books tend to have a higher-level view. For a more modern text, I can also recommend 3D Computer Graphics by Alan Watt. There are plenty of other good introductory texts available -- these are just two that I am personally familiar with.
Neither of the above books are tied to OpenGL -- if I recall correctly, they include the specific math and algorithms necessary to understand and implement 3D graphics from the bottom up.

How do I create a real-time rendering window from scratch?

I've been studying 3D graphics on my own for a while now and I want to get a greater understanding of just how everything works. What I would like to do is to create a simple game without using DirectX or OpenGL. I understand most of the math I believe, but the problem I am running up against is I do not know how to get control of the pixels being displayed in a window.
How do I specify what color I want each pixel in my window to be?
I understand I will probably run into issues with buffers and image shearing and probably terrible efficiency problems, but I want to create my own program so that I could see from the very lowest level, of the high level language, how the rendering process works. I really have no idea where to start though. I've figured out how to output BMPs, but I would like to have a running program spitting out 20+ frames per second. How do I accomplish this?
You could pick a environment that allows you to fill an array with values for pixels and display it as a bitmap. This way you come closest to poking RGB values in video memory. WPF, Silverlight, HTML5/Javascript can do this. If you do not make it full screen these technologies should suffice for now.
In WPF and Silverlight, use the WriteableBitmap.
In HTML5, use the canvas
Then it is up to you to implement the logic to draw lines, circles, bezier curves, 3D projections.
This is a lot of fun and you will learn a lot.
I'm reading between the lines that you're more interested in having full control over the rendering process from a low level, rather than having a specific interest in how to achieve that on one specific platform.
If that's the case then you will probably get a good bang for your buck looking at a library like SDL which provides you with a frame buffer that you can render to directly but abstracts away a lot of the platform specifics issues. It has been around for quite a while and there are some good tutorials to give you an idea of whether it's the kind of thing you're looking for - see this tutorial and the subsequent one in the same series, which should be enough to get you up and running.
You say you want to create some kind of a rendering engine, meaning desinging you own Pipeline and matrice classes. Which you are to use to transform 3D coordinates to 2D points.
When you have got the 2D points you've been looking for. You can use say for instance on windows, you can select a brush and draw you triangle values while coloring them at the same time.
I do not know why you would need Bitmaps, but if you want to practice say Texturing you can also do that yourself although off course on a weak computer this might take your frames per second significantly.
If you aim is to understand how rendering works on the lowest level. This is with no doubt a good practice.
Jt Schwinschwiga

How to generate sprite art assets for different resolution screens?

I'm working on a game using OpenGL displaying sprites, i.e. 2d quad-mapped graphics with no projection, that will be displayed on several different resolution screens. (i.e. iPhone retina/non-retina, iPad.. my next project the problem will expand to desktop resolutions which are far more numerous)
I'm OK with handling different aspect ratios, that can be handled by opengl and my placement of the sprites. I'm also OK with slightly different resolutions - use same art and either border the screen, or display a little bit more info.. but when things start to grow/shrink by like 50%+ it's a major issue.
What is standard procedure for generating the art assets in this situation? Generate for the largest resolution and just let OpenGL worry about resizing during it's rasterizing, or do people generate art sets for each main resolution?
Rasterized sprite art tends to get ugly when it's stretched (interpolated), so I'm concerned.. but generating different sizes really means for practical purposes I have to go with vector drawings and export several resolutions. Limits the artist and is somewhat complicated as far as loading and managing the assets
(Yes, I can "just try it" to an extent, but I already have an idea of the results. I'm looking for solutions people use and angles I maybe wouldn't have thought of. This question does have an answer(s) it's not subjective or lazy)
You are correct that scaling bitmaps tends to make sprites bad. There are a couple of ways of dealing with that:
Draw them (pixelart) at all required resolutions. That is a lot of work but gives you full control.
Draw them (vectors) and render them at all required resolutions. Less work but scaling up or down beyond 50% or 200% might give bad results.
Draw them (3D appliction) and render them at all required resolutions. Quite some work but a very consistent set of sprites.
For each of these options you are free to post-process the bitmaps to clean them up or add details but if you do this for options 2 and 3, you are breaking the chain and will have to apply the changes again when rendering the same set again.
An other option is to limit the variation of resolutions.
As far as I know it is very common in the (game) industry to make all (or the most used/visible) sprites as pixel perfect as possible. This is what they pay the artists for...

How does the "Unlimited Detail" graphics technology work?

So I stumbled upon this "new" graphics engine/technology called Unlimited Detail.
This seems to be pretty interesting granted it's real and not a fake.
They have some videos explaining the technology but they only scratch the surface.
What do you think about it? Is it programmatically possible?
Or is it just a scam for investors?
Update:
Since the only answer was based on voxels I have to copy this from their site:
Unlimited Details method is very different to any 3D method that has been invented so far. The three current systems used in 3D graphics are Ray tracing polygons and point cloud/voxels, they all have strengths and weaknesses. Polygons runs fast but has poor geometry, Ray-trace and voxels have perfect geometry but run very slowly.
Unlimited Detail is a fourth system, which is more like a search algorithm than a 3D engine
The underlying technology is related to something called sparse voxel octrees (see, e.g., this paper), which aren't anything incredibly amazing. What the video doesn't tell you is that these are not at all suited for things that need to be animated, so they're of limited use for anything that uses procedural animation (e.g., all ragdoll physics, etc.). So they're very inflexible. You can get great detail, but you get it in a completely static world.
A rough summary of where things stand with this technology in mainstream games is here. You will also want to check out Samuli Laine's work; he's a Finnish researcher who is focusing a great deal of his attention on this subject and is unlocking some of the secrets to implementing it well.
Update: Yes, the website says it's not "voxel-based". I suspect this is merely an issue of semantics, however, in that what they're using are essentially voxels, but because it's not exactly a voxel they feel safe in being able to claim that it's not voxel-based. In any case, the magic isn't in how similar to a voxel it is -- it's how they select which voxels to actually show. This is the primary determinant of speed.
Right now, there is no incredibly fast way to show voxels (or something approximating a voxel). So either they have developed a completely new, non-peer-reviewed method for filtering voxels (or something like them), or they're lying.
You might find more detail in the following patents:
"A Computer Graphics Method For Rendering Three Dimensional Scenes"
"A Method For Efficent Streaming Of Octree Data For Access"
- Each voxel (they call it a "node") is represented as a single bit, along with information voxels at a finer level of detail.
The full-text can be viewed online here:
https://www.lens.org/lens/search?q=Euclideon+Pty+Ltd&l=en
or
http://worldwide.espacenet.com/searchResults?submitted=true&query=EUCLIDEON

Antialiasing alternatives

I've seen antialiasing on Windows using GDI+, Java and also that provided by Photoshop and Gimp. Are there any other libraries out there which provide antialiasing facility without depending on support from the host OS?
Antigrain Geometry provides anti-aliased graphics in software.
As simon pointed out, the term anti-aliasing is misused/abused quite regularly so it's always helpful to know exactly what you're trying to do.
Since you mention GDI, I'll assume you're talking about maintaining nice crisp edges when you resize them - so something like a character in a font looks clean and not pixelated when you resize it 2x or 3x it's original size. For these sorts of things I've used a technique in the past called alpha-tested magnification - you can read the whitepaper here:
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
When I implemented it, I used more than one plane so I could get better edges on all types of objects, but it covers that briefly towards the end. Of all the approaches (that I've used) to maintain quality when scaling vector images, this was the easiest and highest quality. This also has the advantage of being easily implemented in hardware. From an existing API standpoint, your best bet is to use either OpenGL or Direct3D - that being said, it really only requires bilinear filtered and texture mapped to accomplish what it does, so you could roll your own (I have in the past). If you are always dealing with rectangles and only need to do scaling it's pretty trivial, and adding rotation doesn't add that much complexity. If you do roll your own, make sure to pay particular attention to subpixel positioning (how you resolve pixel positions that do not fall on a full pixel, as this is critical to the quality and sometimes overlooked.
Hope that helps!
There are (often misnamed, btw, but that's a dead horse) many anti-aliasing approaches that can be used. Depending on what you know about the original signal and what the intended use is, different things are most likely to give you the desired result.
"Support from the host OS" is probably most sensible if the output is through the OS display facilities, since they have the most information about what is being done to the image.
I suppose that's a long way of asking what are you actually trying to do? Many graphics libraries will provide some form of antialiasing, whether or not they'll be appropriate depends a lot on what you're trying to achieve.

Resources