What is the recommended way to add child entities to aggregate roots? - domain-driven-design

Which is a better approach, create child entities first, then pass to the aggregate root to add them, or have the aggregate root create them? For example:
Order.AddOrderLine(new OrderLine(product, quantity, ...));
Or
Order.AddOrderLine(product, quanity, ...);
Which is a better approach? I'm sure this is purely subjective, but I want to see which has more pros vs cons.

Ok, so basically my opinion is that you should create an object before, because:
creating of the object is itself a separate concern, which can be a fairly complex by the way. And if, for instance, constructor of the OrderLine will be changed later you will need to change an Order type too. This is bad, cos you will need to change the Order only because of some changes in the OrderLine. So interface of the Order Root shouldn't depend on the OrderLine.
the second approach may be hard to test if you method will contain some additional logic exept of only calling this.OrderLines.Add(orderLine);
Edit
After discussing this with a friend of mine, I came up with the following opinion:
Order Root should control lifetime of his child, because this will be more clear for other person who uses this API and will minimize the possibility of an inappropriate usage. And also will better reveal intent.
Using this approach also allows us not to worry about validating incoming OrderLine, because if we are responsible of the OrderLine creation then we can create it properly.

Related

Access aggregate root child directly

I am modeling a course app, trying to play with DDD and Clean Architecture. So I have Course, which has one or more modules, and each of them has one or more lessons
I created a ModuleLessons aggregate root which is a list of lessons that belongs to a module.
I have the use case where user can access the whole list of lessons within a module, so he access an url like myapp/lessons/{module-id} and this it will endup calling something like moduleLessonsRepository.getById({module-id}) and will render to user a list of lessons which compose that module
As I understand, repository should only deal with the whole aggregate root, not child entities directly. In other words, if Lesson is not an AR, I must not have a LessonRepository.getById()
But I have another use case where user can access something like myapp/lesson/{lesson-id}
But how could I implement if I cant have a repository which returns a lesson by it's id?
I could load the ModuleLessons aggregate and then find lesson within it, but I don't have it's id to query.
I could put module id and lesson id (or maybe just a 'lesson position within it's module) on the url and use that to find the ModuleLessons AR, but I'm puting extra data on the url just to fulfill architectural constraints, is that right?
Finaly, the lesson position within it's module does mater, but this piece of data dont belong to the lesson nor to the module, that's why I created the list itself as the AR, maybe it wasn't the right decision?
Your model sounds very structural, e.g. a course consists of modules, modules consist of one or more lessons being taught as part of it, etc. It's not really solving a problem (or at least you've not described one). Could be booking a course, could be attending the lessons of a course, etc ... The other observation is that you seem to be describing what are essentially queries. You will find that most models have a conflict of interest when it comes to reading and writing, one of the main reasons CQRS came about in the first place (not suggesting you adopt that, merely pointing out the obvious). Writing happens to align with use cases and rules that must be upheld at all times (or else). Reading, on the other hand, seems to happen far more liberally, without much consideration for the past use cases that brought the queryable data about. One easy step could be to undo yourself of the shackles that say you can't return lessons by id - simply add whatever code you need to make that happen and don't feel compelled to put that in a box like a repository. Consistency is to be considered, but if the writing imposes the proper transactional boundaries, the reading won't inadvertently observe something it shouldn't. Secondary indexes can help too - they're the sort of thing that can help you find the module id based on the lesson id if you choose to continue to go down the current path.
If it is just about reading data (e.g. showing data to a user), you can always bypass the whole aggregate repository and use whatever whatever appropriate read queries you need. Only, if your use case needs to manipulate data go through the aggregate repository to retrieve a full aggregate in order to make sure transactional consistency inside this aggregate as well as business rules are applied when changing said aggregate.
Also, it should be considered that if you do you have valid use cases where you would directly change (not read) an entity inside an aggregate without the need of considering business logic that needs to be owned by the parent aggregate root, you might have missed to discover this entity being modeled as an aggregate on it's own. See also, https://stackoverflow.com/a/67250062/7730554

How to go about creating an Aggregate

Well this time the question I have in mind is what should be the necessary level of abstraction required to construct an Aggregate.
e.g.
Order is composed on OrderWorkflowHistory, Comments
Do I go with
Order <>- OrderWorkflowHistory <>- WorkflowActivity
Order <>- CommentHistory <>- Comment
OR
Order <>- WorkflowActivity
Order <>- Comment
Where OrderWorkflowHistory is just an object which will encapsulate all the workflow activities that took place. It maintains a list. Order simply delegates the job of maintaining th list of activities to this object.
CommentHistory is similarly a wrapper around (list) comments appended by users.
When it comes to database, ultimately the Order gets written to ORDER table and the list of workflow activities gets written to WORKFLOW_ACTIVITY table. The OrderWorkflowHistory has no importance when it comes to persistence.
From DDD perspective which would be most optimal. Please share your experiences !!
As you describe it, the containers (OrderWorkflowHistory, CommentHistory) don't seem to encapsulate much behaviour. On that basis I'd vote to omit them and manage the lists directly in Order.
One caveat. You may find increasing amounts of behaviour required of the list (e.g. sophisticated searches). If that occurs it may make sense to introduce one/both containers to encapulate that logic and stop Order becoming bloated.
I'd likely start with the simple solution (no containers) and only introduce them if justified as above. As long as external clients make all calls through Order's interface you can refactor Order internally without impacting the clients.
hth.
This is a good question, how to model and enrich your domain. But sooo hard to answer since it vary so much for different domain.
My experince has been that when I started with DDD I ended up with a lots of repositories and a few Value Objects. I reread some books and looked into several DDD code examples with an open mind (there are so many different ways you can implement DDD. Not all of them suits your current project scenario).
I started to try to have in mind that "more value objects, more value objects, more value objects". Why?
Well Value objects brings less tight dependencies, and more behaviour.
In your example above with one to many (1-n) relationship I have solved 1-n rel. in different ways depending on my use cases uses the domain.
(1)Sometimes I create a wrapper class (like your OrderWorkflowHistory) that is a value object. The whole list of child objects is set when object is created. This scenario is good when you have a set of child objects that must be set during one request. For example a Qeustion Weights on a Questionaire form. Then all questions should get their question weight through a method Questionaire.ApplyTuning(QuestionaireTuning) where QuestionaireTuning is like your OrderWorkflowHistory, a wrapper around a List. This add a lot to the domain:
a) The Questionaire will never get in a invalid state. Once we apply tuning we do it against all questions in questionaire.
b) The QuestionaireTuning can provide good access/search methods to retrieve a weight for a specific question or to calculate average weight score... etc.
(2)Another approach has been to have the 1-n wrapper class not being a Value object. This approach suits more if you want to add a child object now and then. The parent cannot be in a invalid state because of x numbers of child objects. This typical wrapper class has Add(Child...) method and several search/contains/exists/check methods.
(3)The third approach is just having the IList exposed as a readonly collection. You can add some search functionality with Extension methods (new in .Net 3.0) but I think it's a design smell. Better to incapsulate the provided list access methods through a list-wrapper class.
Look at http://dddsamplenet.codeplex.com/ for some example of approach one.
I believe the entire discussion with modeling Value objects, entities and who is responsible for what behaviour is the most centric in DDD. Please share your thoughts around this topic...

Aggregate roots depend on the use case so does that mean that we might end up with really a lots of repositories?

Ive heard a lots that aggregate roots depend on the use case. But what does that mean in coding context ?
You have a service class which offcourse hold methods (use cases) that gonna accomplish something in a repository. Great, so you use a repository which is equal to an aggregate root to perform your querying.
Now you need to perform some other kind of operation which use totally different use case than the first service class but use the same entities.
Here the representation :
Entities: Customer, Orders, LineOrder
Service 1: Add new customers, Delete some customers, retrieve customer orders
Here the aggregate root seem to be Customer because you need this repository to perform thoses use cases.
Service 2: Retrieve customer from an actual order
Here the aggregate root seem to be Order because you need this repository to perform this use case.
If i am wrong please correct me. Now that mean you have 2 aggregates roots.
Now my question is, since aggregate roots depend on the use case does that mean that we might end up with really a lots of repositories if you end up having lots of use cases ?
The above example was probably not the best example... so lets say we have a Journal which hold JournalEntries which each entries hold Tasks, Problems and Notes. (This is in the context of telling to a system what have been done to a project)
Does that mean that im gonna end up with 2 repository ? (Journal, JournalEntry)
In the use cases where i need to add new tasks, problems and notes from an journal entry ?
(Can be seen as a service)
Or might end up with 4 repository. (Journal, Task, Problems, Notes)
In the use cases where i need to access directment task, problems and notes ?
(Can be seen as another service)
But that would mean if i need both of theses services (that actually hold the use cases) that i actually need 5 repository to be able to perform use cases in both of them ?
Thanks.
Hi I saw your post and thought I may give you my opion. First I must say I've been doing DDD in project for three years now, so I'm not an expert. But I'm currently working in a project as an architect an coaching developers in DDD, and I must say it isn't a walk in the park... I don't know how many times I've refactored the model and Entity relationships.
But my experience is that you endup with some repositories (more than few but not many). My Aggregates usually contains a few classes and the Aggregate object graph isn't that deep (if you know what I mean).
But I try to be concrete:
1) Aggregate roots are defined by your needs. I mean if you feel that you need that Tasks object through Journal to often, then maybe thats a sign for it to be upgraded as a aggregate root.
2) But everything cannot be aggregate roots, so try to capsulate object that are tight related. Notes seems like a candidate for being own by a root object. You'd probably always relate Notes to the root or it loses its context. Notes cannot live by itself.
3) Remember that Aggregates are used for splitting up large complex domains into smaller "islands" that take care of thier inhabbitants. Its important to not make your domain more complex than it is.
4) You don't know how your model look likes before you've reached far into the project implementation phase. If you realize that some repositories aren't used that much, they may be candidates for merging into other root object (if they have that kind of relationship). You can break out objects that are used so much through root object without its context. I mean for example if Journal are aggregate root and contains Notes and Tasks. After a while you model grows and maybe Tasks
have assoications to Action and ActionHistory and User and Rule and Permission. Now I just throw out a bunch om common objects in a rule/action/user permission functionality. Maybe this result in usecases that approach Tasks from another angle, "View all Tasks performed by this User" etc. Tasks get more involved in some kind of State/Workflow engine and therefor candidates for being an aggregate root itself.
Okey. Not the best example but it maybe gives you the idea. A root object can contain children where some of its children can also be root object because we need it in another context (than journal).
But I have myself banged my head against the wall everytime you startup with a fresh model. Just go with the flow and let the model evolve itself through its clients/subsribers. You refine the model through its usage. The Services (application services and not domain services) are of course extended with methods that respond to UI and usecases (often one-to-one).
I hope I helped you in someway...or not :D
Yes, you would most likely end up with 5 repositories (Journal, JournalEntry, Task, Problems, Notes). Your services would then use these repositories to perform CRUD for each type of entity.
Your reaction of "wow so many repositories" is not uncommon for developers new to DDD.
However, your repositories are usually light weight assuming your model and DB schema are fairly evenly matched which is often the case. If you use an ORM such as nHibernate or a tool such as codesmith generator then it gets even easier to create your repositories.
At first you need to define what is aggregate. I don't know about use case aggregates.
I know about aggregates following...
Aggregates are union of several entities. One of the entities is the aggregate root, the rest entities (or value types) have sense only in selected aggregate root context. For example you can define Order and OrderLine as an aggregate if you don't need to do any independent actions with OrderLine entities. It means that OrderLine makes sense in Order context only.
Why to define aggregates at all? It is required to reduce references between objects. That will simplify you domain model.
And of course you don't need to have OrderLineRepository if OrderLine is a part of Order aggregate.
Here is a link with more information. You can read Eric Evans DDD book. He explains aggregates very well.

DDD - Aggregate Root - Example Order and OrderLine

I am trying to get my hands dirty learning DDD (by developing a sample eCommerce site with entities like Order, OrderLines, Product, Categories etc).
From what I could perceive about Aggregate Root concept I thought Order class should be an aggregate root for OrderLine.
Things went fine so far, however I am confused when it define a create order flow from UI.
When I want to add an order line to my order object, how should I get/create an instance of an OrderLine object:
Should I hardcode the new OrderLine() statement in my UI/Service class
Should I define a method with parameters like productID, quantity etc in Order class?
Also, what if I want to remove the hardcoded instantiations from the UI or the Order class using a DI. What would be the best approach for this?
From what I could perceive about
Aggregate Root concept I thought Order
class should be an aggreagrte root for
OrderLine.
Yes, OrderLine's should most likely be under an Order root, since OrderLine's likely make no sense outside of a parent Order.
Should I hardcode the new OrderLine()
statement in my UI/Service class
Probably not, though this is how it happens often and it is made to work. The problem, as I see it, is that object construction often happens in different contexts, and the validation constraints differ depending on that context.
Should I define a method with
parameters like productID,quantity etc
in Order class?
As in:
public OrderLine AddOrderLine(Product product, int Quantity ... )
This is one way to do it. Notice I used a Product class instead of a ProductId. Sometimes one is preferable to the other. I find I use both a lot for various reasons - sometimes I have the ID and there's no good reason to pull the aggregate root, sometimes I need the other root to validate the operation.
Another way I do this is to implement a custom collection for the children.
So I have:
order.OrderLines.Add(product, quantity);
This feels a little more natural or OO, and in particular if an entity root has many child collections it avoids clutter.
order.AddOrderLine(), order.AddXXX(), order.AddYYY(), order.AddZZZ()
versus
order.OrderLines.Add(), order.ZZZs.Add(), order.YYYs.Add()
Also, what if I want to remove the
hardcoded instantiations from the UI
or the Order class using a DI. What
would be the best approach for this?
This would be a textbook case for the Factory pattern. I inject such a Factory into my custom collections to support instantiation in those Add() methods.
You could use an OrderLine Factory to get instances of Orderlines. You would "new up" an OrderLine object in the factory with parameters passed into the factory method and then return the new instance to your Order object. Always try to isolate instantiations and dont do it in the UI. There is a question here that uses this technique.
Here is a great book you will find useful on DDD.

Am I allowed to have "incomplete" aggregates in DDD?

DDD states that you should only ever access entities through their aggregate root. So say for instance that you have an aggregate root X which potentially has a lot of child Y entities. Now, for some scenario, you only really care about a subset of these Y entities at a time (maybe you're displaying them in a paged list or whatever).
Is it OK to implement a repository then, so that in such scenarios it returns an incomplete aggregate? Ie. an X object who'se Ys collection only contains the Y instances we're interested in and not all of them? This could for instance cause methods on X which perform some calculation involving the Ys to not behave as expected.
Is this perhaps an indication that the Y entity in question should be considered promoted to an aggregate root?
My current idea (in C#) is to leverage the delayed execution of LINQ, so that my X object has an IQueryable to represent its relationship with Y. This way, I can have transparent lazy loading with filtering... But getting this to work with an ORM (Linq to Sql in my case) might be a bit tricky.
Any other clever ideas?
I consider an aggregate root with a lot of child entities to be a code smell, or a DDD smell if you will. :-) Generally I look at two options.
Split your aggregate into many smaller aggregates. This means that my original design was not optimal and I need to identify some new entities.
Split your domain into multiple bounded contexts. This means that there are specific sets of scenarios that use a common subset of the entities in the aggregate, while there are other sets of scenarios that use a different subset.
Jimmy Nilsson hints in his book that instead of reading a complete aggregate you can read a snapshot of parts of it. But you are not supposed to be able to save changes in the snapshot classes to the database.
Jimmy Nilsson's book Chapter 6: Preparing for infrastructure - Querying. Page 226.
Snapshot pattern
You're really asking two overlapping questions.
The title and first half of your question are philosophical/theoretical. I think the reason for accessing entities only through their "aggregate root" is to abstract away the kinds of implementation details you're describing. Access through the aggregate root is a way to reduce complexity by having a trusted point of access. You're eliminating friction/ambiguity/uncertainty by adhering to a convention. It doesn't matter how it's implemented within the root, you just know that when you ask for an entity it will be there. I don't think this perspective rules out a "filtered repository" as you describe. But to provide a pit of success for devs to fall into, it should be impossible instantiate the repository without being explicit about its "filteredness;" likewise, if shared access to a repository instance is possible, the "filteredness" should be explicit when coding in the caller.
The second half of your question is about implementation on a specific platform. Not sure why you mention delayed execution, I think that's really orthogonal to the filtering question. The filtering itself could be a bit tricky to implement with LINQ. Maybe rather than inlining the Where lambdas, you set up a collection of them and select one depending on the filter you need.
You are allowed since the code will compile anyway, but if you're going for a pure DDD design you should not have incomplete instances of objects.
You should look into LazyLoading if you're afraid to load a huge object of which you will only use a small portion of its child entities.
LazyLoading delays the loading of whatever you decide to lazy-load until the moment they are accessed. They make use of callbacks to call the loading method once the code calls for them.
Is it OK to implement a repository then, so that in such scenarios it
returns an incomplete aggregate?
Not at all. Aggregate is a transnational boundary to change the state of your system. Never use aggregates for querying data. Split the system into Write and Read sides. (read about CQR & CQRS). When we think "CRUD" based, we implement our system, based on some resource. Lets say you have "Appointment" aggregate. Thinking "Crudish" means we should implement usecases Create, Update, Delete, GetAll appointments. That means Appointment[] should be returned for GetAll. When you think usecase based, (HexagonalArchitecture) your usecases would be ScheduleAppointment, RescheduleAppointment, CancelAppointment. But for query side it can be: /myCalendar. We return back all appointments for a specific user in a ClientCalendar object. Create separate DTO's for Query sides. Never use aggregates for this purpose.

Resources