How to modyfy resource in a DLL from this DLL? - visual-c++

I'm writing an add-on for IE using VC++ and ATL.
It's a simple DLL and I have a text file that I use as a resource. This answer helped me in doing this.
I have a question about updating resource. MSDN describes how to do it but there is a function (BeginUpdateResource) that need filename of exe or dll with resource.
Is it possible to update resource in my DLL from my DLL? I can easily read it that way, but to update I have to provide DLL's name. Is it necessary?
Also if I won't give full path to my DLL it looks for file on desktop and not where DLL is stored. I don't know why this behave like this.

I have never tried to do this so I might be wrong, but I would be surprised if a DLL could update its own resources. If the DLL file is loaded then I would expect the file containing the DLL to be locked for reading and for write attempts to that file to fail.
Still, if you want to try, just have the DLL pass its own path to the function.
You can get your DLL's path using GetModuleFileName by passing your DLL's HINSTANCE / HMODULE (they are the same thing these days) as the first argument. The HINSTNACE / HMODULE is passed to you in DllMain.

Related

how can I link a dll to fortran (visual studio)?

I have some DLLs that I want to use in a FORTRAN Project in VISUAL STUDIO but I can't find how.
Here is a simple code I'm using to find out how.
Using visual studio I created a DLL from this
subroutine printing
!DEC$ ATTRIBUTES DLLEXPORT::printing
print*,"dll naimi created"
end subroutine printing
I added the link of the DLL to project>properties>Linker>General>Additional Library directories
Main program:
program Console11
implicit none
call printing
end program Console11
ERROR : Error 1 error LNK2019: unresolved external symbol _PRINTING referenced in function _MAIN__.
other solutions related to this suggest using the .lib created while generating the DLL, but in my real case I only have the DLLs without their .lib.
So how to use a DLL ... ?
You appear to be trying to use a DLL as an input file to the linker.
(You also appear to be trying to specify a file for a linker option that takes a directory. To specify an additional input file for the linker, either add the file to the project just like you would attach a source file, or use the "Linker > Input > Additional dependencies" project property. The property you mention in your post then tells the linker where (which directories) to search for those additional dependencies.)
Unlike the unix convention, you do not link against DLLs when building executables and other DLLs on Windows. The DLL typically does not contain the necessary information for the linker - instead that information is contained in an import library (which is just a variation of a typical .lib static library) or equivalent.
If you were able to successfully build a DLL, then you will probably find the import library for that DLL in the same directory as the DLL. Supply that import library as an additional dependency for projects that require the DLL.
When you link an EXE or other DLL using an import library on Windows, the target DLL is automatically loaded by the operating system when your executable code is loaded. This is called load time dynamic linking.
If you do not have the import library for a DLL, then your choices are:
Ask the person who built the DLL for the import library.
Reference the DLL using run time dynamic linking, rather than load time. This means that you use the Windows API functions LoadLibrary, GetProcAddress and friends in your program to explicitly tell the operating system to load a particular DLL and to obtain the address of a function pointer. If you are using Intel Fortran, then complete examples of this are installed with the compiler - see in the file "C:\Program Files (x86)\IntelSWTools\samples_2016\en\compiler_f\psxe\DLL.zip" or similar.
Generate an import library from the minimum information in the DLL, plus other information about the DLL that you may have. One approach to this is to write a module definition file (.def) for the DLL, and then use the LIB utility to turn that def file into an import library. See How to make a .lib file when have a .dll file and a header file for an example.

Visual Studio 2008 c++ linker refuses to link?

I am banging my head against a wall here.
All i want is to link a static .lib file in a cpp windows forms application! So, i have an include folder in my project folder that holds header files for that .lib (lib is Yaml-cpp if someone wonders). And i have a lib folder that has the .lib files for that library.
I tested it on a blank project
1.I make a new windows forms project in VS2008, in C++.
2.I go to project properties - c/c++ general and additional include directories that have yaml-cpp header files
3.I go to linker and add path to my lib directory
4.I go to linker - input and add my .lib file
5.I check linker command line and it contains my .lib file so it must be all set.
6.Then i write the sample code in an onbutton function body (which appears in form1.h fie).
Sample code is from here http://code.google.com/p/yaml-cpp/wiki/HowToParseADocument and its just as simple as:
#include <fstream>
#include "yaml.h"
and then:
std::ifstream fin("test.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
while(parser.GetNextDocument(doc)) {
//do nothing yet
}
7.And then i compile and have 10 "unresolved externals".
I have looked into another project that uses same library, and it has exactly same directory structure, same name of .lib added in linker - input - additional dependencies, same .lib and .h files. And it works for that project- but it doesnt work for me.
What in the world is wrong?
EDIT: I tried making new windows 32 console application and it worked correctly. I then tried to make another fresh windows forms application and it failed.
It is confirmed now. Same steps for linking a library work in console application and fail in windows forms application. WHY?
What you've done seems correct from your explanation, let's do some blind troubleshooting.
Try giving full path instead of relative path for library path and additional include directories. (but as u said that the file is getting read, that should be the problem.)
If you are using a copy of original libyaml-cppmdd.lib and its include file, check whether the header file that gets included is of the same version as the lib.
Check whether there are any functions in any part of the code that is having a declaration but no definition.
Check whether you're accessing any private functions from the library.
Please read this Microsoft article on Troubleshooting UnResolved External Symbol error.
Hope it helps!

.h, .dll and .lib confusion

I'm new to vc++. I've just built a software and it generated a .dll and a .lib. I need to use functions from this in my code. Do I need to link to both .lib and .dll to build my code? What project properties do I have to alter to do this linking?
Actually, you need only the .dll file. It contains all the necessary code and data to run it's functions. It also contains a table that links the symbolic names of the functions (e.g. the function PrintMe), their ordinals (the number of that function in the DLL) and their addresses in the DLL.
If you want to use only the DLL, you have to "manually" get the symbols resolved:
Let's say you want to use the function PrintMe of the DLL. What you had to do is to resolve it's name (PrintMe) or it's ordinal (PrintMe is the 1st function of the DLL) to it's address. For this, you could use LoadLibrary, GetModuleHandle and GetProcAdress from the Win32 API (aka Windows SDK). Additionally, this method allows you to load the DLL at runtime (see below).
The easier way is to use the MSVC(++) features __declspec(dllexport) and __declspec(dllimport), e.g.
// your DLL
__declspec(dllexport) void PrintMe()
{
printf("Hello World!");
}
// you project to use the DLL
__declspec(dllimport) void PrintMe();
The first one (dllexport) tells the compiler to export the function. The second one (dllimport) is the interesting one: It creates all the necessary code to be able to use the function from the DLL.
For this, you need the .lib file in your project (which wants to use the DLL). The .lib file contains information for the linker to resolve the symbol name (PrintMe) to its address in the DLL. Since the .lib is statically bound, the linker can make use of it - the DLL on the contrary is bound at runtime / loading time, so the linker cannot use it. (Yes, the information in the .lib file is redundant.). Note: You cannot change the whole DLL when using this method w/o rebuilding your project with the new .lib file. Some structure changes affect the addresses of the functions in the DLL, see this SO answer.
One last difference between using the Win32 API (LoadLibrary...) and the MSVC method via __declspec is the loading of the DLL. When you use LoadLibrary, the DLL is loaded at runtime, of course (so you can catch exceptions when it cannot be found and so on). The other method loads the DLL at loading time, so you program will terminate (will not run) when Windows cannot find the DLL.
When you create a project in VS, you can activate the "export symbols" checkbox at the end of a wizard (Win32 project). That gives you some examples of exported symbols. Additionally, it introduces a macro plus a preprocessor defition plus some directives that are very useful:
// DLL header
#ifdef _YOUR_DLL_EXPORTS
#define YOUR_DLL_API __declspec(dllexport)
#else
#define YOUR_DLL_API __declspec(dllimport)
#endif
YOUR_DLL_API PrintMe();
You now can use this header file to build you DLL as your DLL project has that _YOUR_DLL_EXPORTS definition (see project properties page, C++, preprocessor). The project that uses the DLL can use this header, too, but then must not have such a name defined. When you include the header file in the project in which you want to use the DLL, the macro is resolved to __declspec(dllimport). This instructs the linker to look for this function (which is found in the .lib file) and create all the necessary code to load the DLL at runtime and resolve the symbol name.

Possible security hole using SetDllDirectory?

I've got a DLL which makes a call to SetDllDirectory() in its DllMain() function. The argument to SetDllDirectory() is the directory in which the DLL resides, as returned by the GetModuleFileName() function. The effect of this is that if the DLL is placed as c:/foo/bar.dll, then loading bar.dll will add c:/foo to the DLL search path of the calling process.
My question is: does this open up any form of security hole? Would it be safer to perform the SetDllDirectory() call in a function which had to be explicitly called by the process loading the library?
It isn't. Well actually not a new one. Since the application path is the first place windows looks for dlls someone could place a malicious dll in this folder. So there is a security hole without your SetDllDirectory() call.

VC++ resources in a static library

Is it possible to build resources into a static library and reuse them by simply linking with the library?
I'm primarily thinking about the case where you call a function in the library which in turn accesses resources.
The only thing you need to do to use resources (images, dialogs, etc...) in a static library in Visual C++ (2008), is include the static library's associated .res file in your project. This can be done at "Project settings/Linker/Input/Additional dependencies".
With this solution, the resources of the static library are packed into the .exe, so you don't need an extra DLL. Regrettably, Visual Studio does not include the .res file automatically as it does for the .lib file (when using the "project dependencies"-feature), but I think this small extra step is acceptable.
I have looked for a very long time for this solution, and now it surprises me it is that simple. The only problem is that it is totally undocumented.
It can be done, but it's quite painful: You can't do it by simply linking with the static library.
Consider this: resources are embedded in an EXE or DLL. When some code in the static library calls (e.g.) LoadIcon, it'll get the resources from the EXE or DLL that it's linked with.
So, if your static library requires resources to be available, you've got a couple of options:
You can have the library build them on the fly, and then use (e.g.) CreateDialogIndirect. See Raymond Chen's "Building a dialog template at run-time".
You can have them embedded in the library as simple arrays (i.e.) char my_dialog_resource[] = { .... };, and then use (e.g.) CreateDialogIndirect. You'll probably need to find (or write) a utility that converts from .RES files to .CPP files.
You can ship the LIB file with a resource script (.RC file) and corresponding header file. You then #include them as relevant. You'll need to reserve a range of resource IDs for the LIB to use, so that they don't collide with those of the main EXE or DLL. This is what MFC does when used as a static library. Or you can use string resource IDs (this doesn't work for STRINGTABLE resources).
Your static library can ship with a separate resource DLL.
I just went through this with the MS Visual Studio compiler. We were converting some legacy projects from DLLs into static libraries. Several of these DLLs had dialog or string resources embedded in them. I was able to compile the .RC scripts for these DLLs into our main application by including them in the main application's RC script file via the "TEXTINCLUDE" mechanism. I found it easiest to do this by editing the RC file directly, but Visual Studio provides a slightly more "wizardy" mechanism as well. The implementation is most likely different in other compilers.
To manipulate the main RC script directly:
.1. In the "2 TEXTINCLUDE" section, include the header file that defines the resource IDs for your library. The syntax is
2 TEXTINCLUDE
BEGIN
"#include ""my_first_lib_header.h""\r\n"
"#include ""my_second_lib_header.h""\0"
END
.2. In the "3 TEXTINCLUDE" section, include the RC script from your library.
3 TEXTINCLUDE
BEGIN
"#include ""my_first_library.rc""\r\n"
"#include ""my_second_library.rc""\0"
END
Steps 3 and 4 should happen automatically, but I found it was more reliable to just enter them myself, rather than depending on Microsoft's resource script compiler to take care of things.
.3. Add the header file with your libraries resource defines to the read only symbols list. This list is usually near the top of the file.
#define APSTUDIO_READONLY_SYMBOLS
#include "my_first_lib_header.h"
#include "my_second_lib_header.h"
#undef APSTUDIO_READONLY_SYMBOLS
.4. Include your library's RC script in the APSTUDIO_INVOKED section. This is usually at the bottom of the file.
#ifndef APSTUDIO_INVOKED
#include "my_first_library.rc"
#include "my_second_library.rc"
#endif
You can also do all of this automatically through the visual studio IDE, but I found it didn't always apply when I expected it to.
Open the "Resource View" window in Visual Studio.
Right-click on your main application's resource file and choose "Resource Includes..." from the context menu.
In the box labeled "Read-only symbol directives," add the include statements for the .h files that define the resource ID's for your libraries.
In the box labeled "Compile-time directives," add the include statements for your library's .rc script.
Click okay. You may also want to manually trigger the RC script compilation, to make sure it happens.
If your library's resource script references any files on disk (text files, icons files, etc.), you'll need to make sure that the main application project knows where to find them. You can either copy these files to somewhere your application can find them or you can add an additional include path in the compiler settings.
To add an additional include path:
Open up the properties dialog for your main application.
Select "Configuration Properties/Resources/General" from the left-hand navigation pane.
In the properties list, Enter any pertinent paths next to "Additional Include Directories."
As per Visual Studio 2010, the development tools from Microsoft apparently cannot properly handle compiled resource data inside static libraries at all.
To distribute a compiled resource file (a .res file), you have two choices:
Distribute the .res files separately, and instruct the client code to link against them;
Use cvtres to merge several .res files into a single object (.obj) file, and provide it separately.
Note that you can't lib in object files created with cvtres. If multiple object files are provided, lib complains as though as multiple .res files were given; if a single object file is provided, lib does not complain, but the linker simply ignores the embedded resource data in the lib file.
It might be the case that there is a way to force the linker to read and link the libbed in resource data (with some command-line option, section manipulation and so on), since the resource data is indeed available in the library (as dumpbin reveals). So far, I haven't found a solution, and, unless one is willing to hack the development tools, anything better than this simple solution is probably not worth the effort.
The only way to ship resource data in a static library (in this case, with a static library) is to distribute the resources separately and explicitly link them in the client code. Using cvtres can reduce the number of distributed resource files to one, if you have many of them.
I don't think so. Static library doesn't have it's own HINSTANCE. It's code is executed in the context of DLL or EXE which links it. That's why all the resources you'll try to load from the static library's code will be of that enclosing DLL/EXE.
I did that kind of resources reuse with a DLL though, as far as it has it's own address space, and you can call LoadResource with DLL's HINSTANCE.
The recommended way is to provide a dll with the resources together with your library.
When the following method is used, any resource (in this example, an icon) can be used as an integral part of a static library and such library can be used by any type of application, including a console one (which doesn't have any resource segment whatsoever).
Icon is converted to a static array of BYTE. bin2c can be used for that.
Data is converted into a HICON handle. Here is how I have done that:
HICON GetIcon()
{
DWORD dwTmp;
int offset;
HANDLE hFile;
HICON hIcon = NULL;
offset = LookupIconIdFromDirectoryEx(s_byIconData, TRUE, 0, 0, LR_DEFAULTCOLOR);
if (offset != 0)
{
hIcon = CreateIconFromResourceEx(s_byIconData + offset, 0, TRUE, 0x00030000, 0, 0, LR_DEFAULTCOLOR | LR_DEFAULTSIZE);
}
return hIcon;
}
GetIcon is used instead of LoadIcon.
Instead of calling:
m_hIcon = ::LoadIcon(hInstanceIcon, MAKEINTRESOURCE(pXMB->nIcon));
Then call
m_hIcon = GetIcon()

Resources