Related
Suppose we have a process with multiple threads in a uniprocessor.
Now I know that if we have several processes, only one of them will be processed at a time in a uniprocessor and hence the processes are not concurrent.
If my understanding is correct, similarly each thread will be processed at a time and not concurrent in a uniprocessor. Is this statement true? If so then does multithreading mean having more than one thread in a process and does not mean running multiple threads at a time? And does that mean there's no benefit of creating user threads in a uniprocessor environment?
TL;DR: threads are switching more often than processes and in real time we have an effect of concurrency because it is happens really fast.
when you wrote:
each thread will be processed at a time and not concurrent in a uni processor
Notice the word "concurrent", there is no real concurrency in uni processor, there is only effect of that thanks to the multiple number of context switches between processes.
Let's clarify something here, the single core of the CPU can handle one thread at a given time, each process has a main thread and (if needed) more threads running together. If a process A is now running and it has 3 threads: A1(main thread), A2, A3 all three will be running as long as process A is being processed by the CPU core. When a context switch occur process A is no longer running and now process B will run with his threads.
About this statement:
there's no benefit of creating user threads in a uni processor environment
That is not true. there is a benefit in creating threads, they are easier to create ("spawn" as in the books) and shearing the process heap memory. Creating a sub process ("child" as in the books) is a overhead comparing to a thread because a process need to have his own memory. For example each google chrome tab is a process not a thread, but this tab has multiple threads running concurrency with little responsibility.
If you are still somehow running a computer with just one, single-core, CPU, then you would be correct to observe that only one thread can be physically executing at one time. But that does not negate the value of breaking up the application into multiple threads and/or processes.
The essential benefit is concurrency. When one thread is waiting (e.g. for an input/output operation to complete), there is something else for the CPU to be doing in the meantime: it can be running a different thread that isn't waiting. With a carefully designed application, you can get much better utilization of every part of the hardware, more parallelism, and thus, more throughput.
My favorite go-to example is a fast food restaurant. About a dozen workers, each one doing different things, cooperate to bring your order to you. Even if one of them (say, "the fry guy") is standing around, someone else always has something to do. Several orders are in-process at once. This overlap, this "concurrency," is what you are shooting for – regardless of how many CPUs you have.
Multithreading is also commonly used with GUI applications that also need to do some kind of "heavy lifting." One thread handles the GUI interaction (and has no other real responsibilities) while other threads, with a slightly inferior priority (or "niceness") do the lifting. When a GUI event comes in, the GUI thread pre-empts the others and responds to it immediately, then of course goes right back to sleep again. But in this way the GUI always remains very responsive – even though the other threads are doing "heavy lifting" things, GUI messages are still handled very promptly. (I scooped-up about a 25% performance improvement by re-tooling an older application to use this approach, because the application was no longer "polling" for GUI events.)
The first question I ask about any thread is, "what does it wait for?" To me, a thread is defined by what event it waits for and what it does when that event happens.
Threads were in wide-spread use for at least a decade before multi-processor computers became commercially available. They are useful when you want to write a program that has to respond to un-synchronized events that come from multiple different sources. There's a few different ways to model a program like that. One way is to have a different thread to wait on each different event source. The next most popular is an event driven architecture in which there's a main loop that waits for all events and calls different event handler functions for each of the different kinds of event.
The multi-threaded style of program often is easier to read* because there's usually different activities going on inside the program, and the state of each activity can be implicit in the context (i.e., registers and call stack) of the thread that's driving it, while in the event-driven model, each activity's state must be explicitly encoded in some object.
The implicit-in-the-context way of keeping the state is much closer to the procedural style of coding a single activity that we learn as beginners.
*Easier to read does not mean that the code is easy to write without making bad and non-obvious mistakes!!
The main impetus for developing threads was Ada compliance. Prior to that, different operating systems had their own ways of handing multiple things at once. In eunuchs, the way to do more than one thing was to spin off a new process. In VMS, software interrupts (aka Asynchronous System Traps or Asynchronous Procedure Calls in Windoze). In those days (1970's) multiprocessor systems were rare.
One of the goals of Ada was to have a system independent way of doing things. It adopted the "task" which is effectively a thread. In order to support Ada, compiler developers had to include task (thread) libraries.
With the rise of multiprocessors, operating systems started to make threads (rather than processes) the basic schedulable unit in a system.
Threads then give a way for programs to handle multiple things simultaneously, even if there is only one processor. Sadly, support for threads in programming languages has been woefully lacking. Ada is the only major language I can think of that has real support for threads (tasks). Thread support in Java, for example, is a complete, sick joke. The result is threads are not as effective in practice as they could be.
Normally it is said that multi threaded programs are non-deterministic, meaning that if it crashes it will be next to impossible to recreate the error that caused the condition. One doesn't ever really know what thread is going to run next, and when it will be preempted again.
Of course this has to do with the OS thread scheduling algorithm and the fact that one doesn't know what thread is going to be run next, and how long it will effectively run.
Program execution order also plays a role as well, etc...
But what if you had the algorithm used for thread scheduling and what if you could know when what thread is running, could a multi threaded program then become "deterministic", as in, you'll be able to reproduce a crash?
Knowing the algorithm will not actually allow you to predict what will happen when. All kinds of delays that happen in the execution of a program or thread are dependent on environmental conditions such as: available memory, swapping, incoming interrupts, other busy tasks, etc.
If you were to map your multi-threaded program to a sequential execution, and your threads in themselves behave deterministically, then your whole program could be deterministic and 'concurrency' issues could be made reproducible. Of course, at that point they would not be concurrency issues any more.
If you would like to learn more, http://en.wikipedia.org/wiki/Process_calculus is very interesting reading.
My opinion is: technically no (but mathematically yes). You can write deterministic threading algorithm, but it will be extremely hard to predict state of the application after some sensible amount of time that you can treat it is non-deterministic.
There are some tools (in development) that will try to create race-conditions in a somewhat predictable manner but this is about forward-looking testing, not about reconstructing a 'bug in the wild'.
CHESS is an example.
It would be possible to run a program on a virtual multi-threaded machine where the allocation of virtual cycles to each thread was done via some entirely deterministic process, possibly using a pseudo-random generator (which could be seeded with a constant before each program run). Another, possibly more interesting, possibility would be to have a virtual machine which would alternate between running threads in 'splatter' mode (where almost any variable they touch would have its value become 'unknown' to other threads) and 'cleanup' mode (where results of operations with known operands would be visible and known to other threads). I would expect the situation would probably be somewhat analogous to hardware simulation: if the output of every gate is regarded as "unknown" between its minimum and maximum propagation times, but the simulation works anyway, that's a good indication the design is robust, but there are many useful designs which could not be constructed to work in such simulations (the states would be essentially guaranteed to evolve into a valid combination, though one could not guarantee which one). Still, it might be an interesting avenue of exploration, since large parts of many programs could be written to work correctly even in a 'splatter mode' VM.
I don't think it is practicable. To enforce a specific thread interleaving we require to place locks on shared variables, forcing the threads to access them in a specific order. This would cause severe performance degradation.
Replaying concurrency bugs is usually handled by record&replay systems. Since the recording of such large amounts of information also degrades performance, the most recent systems do partial logging and later complete the thread interleavings using SMT solving. I believe that the most recent advance in this type of systems is Symbiosis (published in this year's PLDI conference). Tou can find open source implementations in this URL:
http://www.gsd.inesc-id.pt/~nmachado/software/Symbiosis_Tutorial.html
This is actually a valid requirement in many systems today which want to execute tasks parallelly but also want some determinism from time to time.
For example, a mobile company would want to process subscription events of multiple users parallelly but would want to execute events of a single user one at a time.
One solution is to of course write everything to get executed on a single thread. Another solution is deterministic threading. I have written a simple library in Java that can be used to achieve the behavior I have described in the above example. Take a look at this- https://github.com/mukulbansal93/deterministic-threading.
Now, having said that, the actual allocation of CPU to a thread or process is in the hands of the OS. So, it is possible that the threads get the CPU cycles in a different order every time you run the same program. So, you cannot achieve the determinism in the order the threads are allocated CPU cycles. However, by delegating tasks effectively amongst threads such that sequential tasks are assigned to a single thread, you can achieve determinism in overall task execution.
Also, to answer your question about the simulation of a crash. All modern CPU scheduling algorithms are free from starvation. So, each and every thread is bound to get guaranteed CPU cycles. Now, it is possible that your crash was a result of the execution of a certain sequence of threads on a single CPU. There is no way to rerun that same execution order or rather the same CPU cycle allocation order. However, the combination of modern CPU scheduling algorithms being starvation-free and Murphy's law will help you simulate the error if you run your code enough times.
PS, the definition of enough times is quite vague and depends on a lot of factors like execution cycles need by the entire program, number of threads, etc. Mathematically speaking, a crude way to calculate the probability of simulating the same error caused by the same execution sequence is on a single processor is-
1/Number of ways to execute all atomic operations of all defined threads
For instance, a program with 2 threads with 2 atomic instructions each can be allocated CPU cycles in 4 different ways on a single processor. So probability would be 1/4.
Lots of crashes in multithreaded programs have nothing to do with the multithreading itself (or the associated resource contention).
Normally it is said that multi threaded programs are non-deterministic, meaning that if it crashes it will be next to impossible to recreate the error that caused the condition.
I disagree with this entirely, sure multi-threaded programs are non-deterministic, but then so are single-threaded ones, considering user input, message pumps, mouse/keyboard handling, and many other factors. A multi-threaded program usually makes it more difficult to reproduce the error, but definitely not impossible. For whatever reasons, program execution is not completely random, there is some sort of repeatability (but not predictability), I can usually reproduce multi-threaded bugs rather quickly in my apps, but then I have lots of verbose logging in my apps, for the end users' actions.
As an aside, if you are getting crashes, can't you also get crash logs, with call stack info? That will greatly aid in the debugging process.
I read many answers given here for questions related to thread safety, re-entrancy, but when i think about them, some more questions came to mind, hence this question/s.
1.) I have one executable program say some *.exe. If i run this program on command prompt, and while it is executing, i run the same program on another command prompt, then in what conditions the results could be corrupted, i.e. should the code of this program be re-entrant or it should be thread safe alone?
2.) While defining re-entrancy, we say that the routine can be re-entered while it is already running, in what situations the function can be re-entered (apart from being recursive routine, i am not talking recursive execution here). There has to be some thread to execute the same code again, or how can that function be entered again?
3.) In a practical case, will two threads execute same code, i.e. perform same functionality. I thought the idea of multi-threading is to execute different functionality, concurrently(on different cores/processors).
Sorry if these queries seem different, but they all occured to me, same time when i read about the threadsafe Vs reentrant post on SO, hence i put them together.
Any pointers, reading material will be appreciated.
thanks,
-AD.
I'll try to explain these, in order:
Each program runs in its own process, and gets its own isolated memory space. You don't have to worry about thread safety in this situation. (However, if the processes are both accessing some other shared resource, such as a file, you may have different issues. For example, process 1 may "lock" the data file, preventing process 2 from being able to open it).
The idea here is that two threads may try to run the same routine at the same time. This is not always valid - it takes special care to define a class or a process in a way that multiple threads can use the same instance of the same class, or the same static function, without errors occurring. This typically requires synchronization in the class.
Two threads often execute the same code. There are two different conceptual ways to parition your work when threading. You can either think in terms of tasks - ie: one thread does task A while another does task B. Alternatively, you can think in terms of decomposing the the problem based on data. In this case, you work with a large collection, and each element is processed using the same routine, but the processing happens in parallel. For more info, you can read this blog post I wrote on Decomposition for Parallelism.
Two processes cannot share memory. So thread-safety is moot here.
Re-entrancy means that a method can be safely executed by two threads at the same time. This doesn't require recursion - threads are separate units of execution, and there is nothing keeping them both from attempting to run the same method simultaneously.
The benefits to threading can happen in two ways. One is when you perform different types of operations concurrently (like running cpu-intensive code and I/O-intensive code at the ame time). The other is when you can divide up a long-running operation among multiple processors. In this latter case, two threads may be executing the same function at the same time on different input data sets.
First of all, I strongly suggest you to look at some basic stuffs of computer system, especially how a process/thread is executing on CPU and scheduled by operating system. For example, virtual address, context switching, process/thread concepts(e.g., each thread has its own stack and register vectors while heap is shared by threads. A thread is an execution and scheduling unit, so it maintains control flow of code..) and so on. All of the questions are related to understanding how your program is actually working on CPU
1) and 2) are already answered.
3) Multithreading is just concurrent execution of any arbitrary thread. The same code can be executed by multiple threads. These threads can share some data, and even can make data races which are very hard to find. Of course, many times threads are executing separate code(we say it as thread-level parallelism).
In this context, I have used concurrent as two meaning: (a) in a single processor, multiple threads are sharing a single physical processor, but operating system gives a sort of illusion that threads are running concurrently. (b) In a multicore, yes, physically two or more threads can be executed concurrently.
Having concrete understanding of concurrent/parallel execution takes quite long time. But, you already have a solid understanding!
I was reading the SQLite FAQ, and came upon this passage:
Threads are evil. Avoid them.
I don't quite understand the statement "Thread are evil". If that is true, then what is the alternative?
My superficial understanding of threads is:
Threads make concurrence happen. Otherwise, the CPU horsepower will be wasted, waiting for (e.g.) slow I/O.
But the bad thing is that you must synchronize your logic to avoid contention and you have to protect shared resources.
Note: As I am not familiar with threads on Windows, I hope the discussion will be limited to Linux/Unix threads.
When people say that "threads are evil", the usually do so in the context of saying "processes are good". Threads implicitly share all application state and handles (and thread locals are opt-in). This means that there are plenty of opportunities to forget to synchronize (or not even understand that you need to synchronize!) while accessing that shared data.
Processes have separate memory space, and any communication between them is explicit. Furthermore, primitives used for interprocess communication are often such that you don't need to synchronize at all (e.g. pipes). And you can still share state directly if you need to, using shared memory, but that is also explicit in every given instance. So there are fewer opportunities to make mistakes, and the intent of the code is more explicit.
Simple answer the way I understand it...
Most threading models use "shared state concurrency," which means that two execution processes can share the same memory at the same time. If one thread doesn't know what the other is doing, it can modify the data in a way that the other thread doesn't expect. This causes bugs.
Threads are "evil" because you need to wrap your mind around n threads all working on the same memory at the same time, and all of the fun things that go with it (deadlocks, racing conditions, etc).
You might read up about the Clojure (immutable data structures) and Erlang (message passsing) concurrency models for alternative ideas on how to achieve similar ends.
What makes threads "evil" is that once you introduce more than one stream of execution into your program, you can no longer count on your program to behave in a deterministic manner.
That is to say: Given the same set of inputs, a single-threaded program will (in most cases) always do the same thing.
A multi-threaded program, given the same set of inputs, may well do something different every time it is run, unless it is very carefully controlled. That is because the order in which the different threads run different bits of code is determined by the OS's thread scheduler combined with a system timer, and this introduces a good deal of "randomness" into what the program does when it runs.
The upshot is: debugging a multi-threaded program can be much harder than debugging a single-threaded program, because if you don't know what you are doing it can be very easy to end up with a race condition or deadlock bug that only appears (seemingly) at random once or twice a month. The program will look fine to your QA department (since they don't have a month to run it) but once it's out in the field, you'll be hearing from customers that the program crashed, and nobody can reproduce the crash.... bleah.
To sum up, threads aren't really "evil", but they are strong juju and should not be used unless (a) you really need them and (b) you know what you are getting yourself into. If you do use them, use them as sparingly as possible, and try to make their behavior as stupid-simple as you possibly can. Especially with multithreading, if anything can go wrong, it (sooner or later) will.
I would interpret it another way. It's not that threads are evil, it's that side-effects are evil in a multithreaded context (which is a lot less catchy to say).
A side effect in this context is something that affects state shared by more than one thread, be it global or just shared. I recently wrote a review of Spring Batch and one of the code snippets used is:
private static Map<Long, JobExecution> executionsById = TransactionAwareProxyFactory.createTransactionalMap();
private static long currentId = 0;
public void saveJobExecution(JobExecution jobExecution) {
Assert.isTrue(jobExecution.getId() == null);
Long newId = currentId++;
jobExecution.setId(newId);
jobExecution.incrementVersion();
executionsById.put(newId, copy(jobExecution));
}
Now there are at least three serious threading issues in less than 10 lines of code here. An example of a side effect in this context would be updating the currentId static variable.
Functional programming (Haskell, Scheme, Ocaml, Lisp, others) tend to espouse "pure" functions. A pure function is one with no side effects. Many imperative languages (eg Java, C#) also encourage the use of immutable objects (an immutable object is one whose state cannot change once created).
The reason for (or at least the effect of) both of these things is largely the same: they make multithreaded code much easier. A pure function by definition is threadsafe. An immutable object by definition is threadsafe.
The advantage processes have is that there is less shared state (generally). In traditional UNIX C programming, doing a fork() to create a new process would result in shared process state and this was used as a means of IPC (inter-process communication) but generally that state is replaced (with exec()) with something else.
But threads are much cheaper to create and destroy and they take less system resources (in fact, the operating itself may have no concept of threads yet you can still create multithreaded programs). These are called green threads.
The paper you linked to seems to explain itself very well. Did you read it?
Keep in mind that a thread can refer to the programming-language construct (as in most procedural or OOP languages, you create a thread manually, and tell it to executed a function), or they can refer to the hardware construct (Each CPU core executes one thread at a time).
The hardware-level thread is obviously unavoidable, it's just how the CPU works. But the CPU doesn't care how the concurrency is expressed in your source code. It doesn't have to be by a "beginthread" function call, for example. The OS and the CPU just have to be told which instruction threads should be executed.
His point is that if we used better languages than C or Java with a programming model designed for concurrency, we could get concurrency basically for free. If we'd used a message-passing language, or a functional one with no side-effects, the compiler would be able to parallelize our code for us. And it would work.
Threads aren't any more "evil" than hammers or screwdrivers or any other tools; they just require skill to utilize. The solution isn't to avoid them; it's to educate yourself and up your skill set.
Creating a lot of threads without constraint is indeed evil.. using a pooling mechanisme (threadpool) will mitigate this problem.
Another way threads are 'evil' is that most framework code is not designed to deal with multiple threads, so you have to manage your own locking mechanisme for those datastructures.
Threads are good, but you have to think about how and when you use them and remember to measure if there really is a performance benefit.
A thread is a bit like a light weight process. Think of it as an independent path of execution within an application. The thread runs in the same memory space as the application and therefore has access to all the same resources, global objects and global variables.
The good thing about them: you can parallelise a program to improve performance. Some examples, 1) In an image editing program a thread may run the filter processing independently of the GUI. 2) Some algorithms lend themselves to multiple threads.
Whats bad about them? if a program is poorly designed they can lead to deadlock issues where both threads are waiting on each other to access the same resource. And secondly, program design can me more complex because of this. Also, some class libraries don't support threading. e.g. the c library function "strtok" is not "thread safe". In other words, if two threads were to use it at the same time they would clobber each others results. Fortunately, there are often thread safe alternatives... e.g. boost library.
Threads are not evil, they can be very useful indeed.
Under Linux/Unix, threading hasn't been well supported in the past although I believe Linux now has Posix thread support and other unices support threading now via libraries or natively. i.e. pthreads.
The most common alternative to threading under Linux/Unix platforms is fork. Fork is simply a copy of a program including it's open file handles and global variables. fork() returns 0 to the child process and the process id to the parent. It's an older way of doing things under Linux/Unix but still well used. Threads use less memory than fork and are quicker to start up. Also, inter process communications is more work than simple threads.
In a simple sense you can think of a thread as another instruction pointer in the current process. In other words it points the IP of another processor to some code in the same executable. So instead of having one instruction pointer moving through the code there are two or more IP's executing instructions from the same executable and address space simultaneously.
Remember the executable has it's own address space with data / stack etc... So now that two or more instructions are being executed simultaneously you can imagine what happens when more than one of the instructions wants to read/write to the same memory address at the same time.
The catch is that threads are operating within the process address space and are not afforded protection mechanisms from the processor that full blown processes are. (Forking a process on UNIX is standard practice and simply creates another process.)
Out of control threads can consume CPU cycles, chew up RAM, cause execeptions etc.. etc.. and the only way to stop them is to tell the OS process scheduler to forcibly terminate the thread by nullifying it's instruction pointer (i.e. stop executing). If you forcibly tell a CPU to stop executing a sequence of instructions what happens to the resources that have been allocated or are being operated on by those instructions? Are they left in a stable state? Are they properly freed? etc...
So, yes, threads require more thought and responsibility than executing a process because of the shared resources.
For any application that requires stable and secure execution for long periods of time without failure or maintenance, threads are always a tempting mistake. They invariably turn out to be more trouble than they are worth. They produce rapid results and prototypes that seem to be performing correctly but after a couple weeks or months running you discover that they have critical flaws.
As mentioned by another poster, once you use even a single thread in your program you have now opened a non-deterministic path of code execution that can produce an almost infinite number of conflicts in timing, memory sharing and race conditions. Most expressions of confidence in solving these problems are expressed by people who have learned the principles of multithreaded programming but have yet to experience the difficulties in solving them.
Threads are evil. Good programmers avoid them wherever humanly possible. The alternative of forking was offered here and it is often a good strategy for many applications. The notion of breaking your code down into separate execution processes which run with some form of loose coupling often turns out to be an excellent strategy on platforms that support it. Threads running together in a single program is not a solution. It is usually the creation of a fatal architectural flaw in your design that can only be truly remedied by rewriting the entire program.
The recent drift towards event oriented concurrency is an excellent development innovation. These kinds of programs usually prove to have great endurance after they are deployed.
I've never met a young engineer who didn't think threads were great. I've never met an older engineer who didn't shun them like the plague.
Being an older engineer, I heartily agree with the answer by Texas Arcane.
Threads are very evil because they cause bugs that are extremely difficult to solve. I have literally spent months solving sporadic race-conditions. One example caused trams to suddenly stop about once a month in the middle of the road and block traffic until towed away. Luckily I didn't create the bug, but I did get to spend 4 months full-time to solve it...
It's a tad late to add to this thread, but I would like to mention a very interesting alternative to threads: asynchronous programming with co-routines and event loops. This is being supported by more and more languages, and does not have the problem of race conditions like multi-threading has.
It can replace multi-threading in cases where it is used to wait on events from multiple sources, but not where calculations need to be performed in parallel on multiple CPU cores.
Separating different parts of a program into different processes seems (to me) to make a more elegant program than just threading everything. In what scenario would it make sense to make things run on a thread vs. separating the program into different processes? When should I use a thread?
Edit
Anything on how (or if) they act differently with single-core and multi-core would also be helpful.
You'd prefer multiple threads over multiple processes for two reasons:
Inter-thread communication (sharing data etc.) is significantly simpler to program than inter-process communication.
Context switches between threads are faster than between processes. That is, it's quicker for the OS to stop one thread and start running another than do the same with two processes.
Example:
Applications with GUIs typically use one thread for the GUI and others for background computation. The spellchecker in MS Office, for example, is a separate thread from the one running the Office user interface. In such applications, using multiple processes instead would result in slower performance and code that's tough to write and maintain.
Well apart from advantages of using thread over process, like:
Advantages:
Much quicker to create a thread than
a process.
Much quicker to switch
between threads than to switch
between processes.
Threads share data
easily
Consider few disadvantages too:
No security between threads.
One thread can stomp on another thread's
data.
If one thread blocks, all
threads in task block.
As to the important part of your question "When should I use a thread?"
Well you should consider few facts that a threads should not alter the semantics of a program. They simply change the timing of operations. As a result, they are almost always used as an elegant solution to performance related problems. Here are some examples of situations where you might use threads:
Doing lengthy processing: When a windows application is calculating it cannot process any more messages. As a result, the display cannot be updated.
Doing background processing: Some
tasks may not be time critical, but
need to execute continuously.
Doing I/O work: I/O to disk or to
network can have unpredictable
delays. Threads allow you to ensure
that I/O latency does not delay
unrelated parts of your application.
I assume you already know you need a thread or a process, so I'd say the main reason to pick one over the other would be data sharing.
Use of a process means you also need Inter Process Communication (IPC) to get data in and out of the process. This is a good thing if the process is to be isolated though.
You sure don't sound like a newbie. It's an excellent observation that processes are, in many ways, more elegant. Threads are basically an optimization to avoid too many transitions or too much communication between memory spaces.
Superficially using threads may also seem like it makes your program easier to read and write, because you can share variables and memory between the threads freely. In practice, doing that requires very careful attention to avoid race conditions or deadlocks.
There are operating-system kernels (most notably L4) that try very hard to improve the efficiency of inter-process communication. For such systems one could probably make a convincing argument that threads are pointless.
I would like to answer this in a different way. "It depends on your application's working scenario and performance SLA" would be my answer.
For instance threads may be sharing the same address space and communication between threads may be faster and easier but it is also possible that under certain conditions threads deadlock and then what do you think would happen to your process.
Even if you are a programming whiz and have used all the fancy thread synchronization mechanisms to prevent deadlocks it certainly is not rocket science to see that unless a deterministic model is followed which may be the case with hard real time systems running on Real Time OSes where you have a certain degree of control over thread priorities and can expect the OS to respect these priorities it may not be the case with General Purpose OSes like Windows.
From a Design perspective too you might want to isolate your functionality into independent self contained modules where they may not really need to share the same address space or memory or even talk to each other. This is a case where processes will make sense.
Take the case of Google Chrome where multiple processes are spawned as opposed to most browsers which use a multi-threaded model.
Each tab in Chrome can be talking to a different server and rendering a different website. Imagine what would happen if one website stopped responding and if you had a thread stalled due to this, the entire browser would either slow down or come to a stop.
So Google decided to spawn multiple processes and that is why even if one tab freezes you can still continue using other tabs of your Chrome browser.
Read more about it here
and also look here
I agree to most of the answers above. But speaking from design perspective i would rather go for a thread when i want set of logically co-related operations to be carried out parallel. For example if you run a word processor there will be one thread running in foreground as an editor and other thread running in background auto saving the document at regular intervals so no one would design a process to do that auto saving task separately.
In addition to the other answers, maintaining and deploying a single process is a lot simpler than having a few executables.
One would use multiple processes/executables to provide a well-defined interface/decoupling so that one part or the other can be reused or reimplemented more easily than keeping all the functionality in one process.
Came across this post. Interesting discussion. but I felt one point is missing or indirectly pointed.
Creating a new process is costly because of all of the
data structures that must be allocated and initialized. The process is subdivided into different threads of control to achieve multithreading inside the process.
Using a thread or a process to achieve the target is based on your program usage requirements and resource utilization.