implement mutex ensure bounded waiting - multithreading

this is an interview question i met which i don't know how to answer it.
first of all what is a bounded waiting mutex, can you give me some examples of a mutex that ensure bounded waiting and doesn't ensure bounded waiting?
secondly, i don't know how to implement it because it seems mutex is a build-in feature of the operating system.
how would you answer this interview question? what kind of atomic operation i can use to implement mutex and how?

You could certainly implement mutexes which time out on top of your OS's never-time-out mutexes. Use the OS-provided mutex to regulate access to your own counter, guaranteeing to always release it quickly.
repeat
... obtain OS mutex lock on counter
... check counter, see > 0.
... ... if greater than 0, decrement, release OS mutex, return timeout-mutex has been acquired
... release OS mutex lock on counter
... check if timed out
... ... if timed out, return timeout-mutex has timed out
... sleep for some amount of time
end repeat
Of course, POSIX mutexes have a trylock function which makes the wait loop trivial.
Busy-waiting is of course a waste of CPU power. More efficient implementations are possible, POSIX has condition variables for example.

There appear to be two usages of "bounded waiting". One usage seems to be a simple time-based meaning:
There is a bound on the wait time for any specific process to enter its critical section.
Another usage seems to be a thread-count meaning:
A process requesting entry to a critical section should only have to wait for a bounded number of other processes to enter and leave the critical section.
Unfortunately, I have no idea how to actually answer the question. It does seem dependent upon OS primitives. Maybe they were looking for something like Peterson's solution.

Related

Terminology question: mutex lock, spin lock, sleepable lock

All over StackOverflow and the net I see folks to distinguish mutexes and spinlocks as like mutex is a mutual exclusion lock providing acquire() and release() functions and if the lock is taken, then acquire() will allow a process to be preempted.
Nevertheless, A. Silberschatz in his Operating System Concepts says in the section 6.5:
... The simplest of these tools is the mutex lock. (In fact, the term mutex is short for mutual exclusion.) We use the mutex lock to protect critical sections and thus prevent race conditions. That is, a process must acquire the lock before entering a critical section; it releases the lock when it exits the critical section. The acquire() function acquires the lock, and the release() function releases the lock.
and then he describes a spinlock, though adding a bit later
The type of mutex lock we have been describing is also called a spinlock because the process “spins” while waiting for the lock to become available.
so as spinlock is just a type of mutex lock as opposed to sleepable locks allowing a process to be preempted. That is, spinlocks and sleepable locks are all mutexes: locks by means of acquire() and release() functions.
I see totally logical to define mutex locks in the way Silberschatz did (though a bit implicitly).
What approach would you agree with?
The type of mutex lock we have been describing is also called a spinlock because the process “spins” while waiting for the lock to become available.
Maybe you're misreading the book (that is, "The type of mutex lock we have been describing" might not refer to the exact passage you think it does), or the book is outdated. Modern terminology is quite clear in what a mutex is, but spinlocks get a bit muddy.
A mutex is a concurrency primitive that allows one agent at a time access to its resource, while the others have to wait in the meantime until it the exclusive access is released. How they wait is not specified and irrelevant, their process might go to sleep, get written to disk, spin in a loop, or perhaps you are using cooperative concurrency (also known as "asynchronous programming") and passing control to the event loop as your 'waiting operation'.
A spinlock does not have a clear definition. It might be used to refer to:
A synonym for mutex (this is in my opinion wrong, but it happens).
A specific mutex implementation that always waits in a busy loop.
Any sort of busy-waiting loop waiting for a resource. A semaphore, for example, might also get implemented using a 'spinlock'.
I would consider any use of the word to refer to a (part of a) specific implementation of a concurrency primitive that waits in a busy loop to be correct, if a more general term is not appropriate. That is, use mutex (or whatever primitive you desire) unless you specifically want to talk about a busy-waiting concurrency primitive.
The words that one author uses in one book or manual will not always have the same exact meaning in every book and every manual. The meanings of the words evolve over time, and it can happen fast when the words are names for new ideas.
Not every book was written at the same time. Not every author is the same age or had the same teachers. It's just something you'll have to get used to.
"Mutex" was a name for a new idea not so very long ago.
In one book, it might mean nothing more than a thing that keeps two or more threads from entering the same critical section at the same time. In another book, it might refer to a specific type of object in a certain operating system or library that is used for that same purpose.
A spinlock is a lock/mutex whose implementation relies mainly on a spinning loop.
More advanced locks/mutexes may have spinning parts in their implementation, however those often last for no more than a few microseconds or so.

Make thread wait for condition but allow thread to remain usable while waiting or listening for a signal

Given a situation where thread A had to dispatch work to thread B, is there any synchronisation mechanism that allows thread A to not return, but remain usable for other tasks, until thread B is done, of which then thread A can return?
This is not language specific, but simple c language would be a great choice in responding to this.
This could be absolutely counterintuitive; it actually sounds as such, but I have to ask before presuming...
Please Note This is a made up hypothetical situation that I'm interested in. I am not looking for a solution to an existing problem, so alternative concurrency solutions are completely pointless. I have no code for it, and if I were in it I can think of a few alternative code engineering solutions to avoid this setup. I just wish to know if a thread can be usable, in some way, while waiting for a signal from another thread, and what synchronisation mechanism to use for that.
UPDATE
As I mentioned above, I know how to synchronise threads etc. Im only interested in the situation that I have presented here. Mutexes, semaphores and locks all kinds of mechanisms will all synchronise access to resources, synchronise order of events, synchronise all kinds of concurrently issues, yes. But Im not interested in how to do it properly. I just have this made up situation that I wish to know if it can be addressed with a mechanism as described prior.
UPDATE 2
It seems I have opened up a portal for people that think they are experts in concurrency to teleport and lecture at chance how they think the rest of world does not know how threading works. I simply asked if there is a mechanism for this situation, not a work around solution, not 'the proper way to synchronise', not a better way to do it. I already know what I would do and never be in this made up situation. It's simply hypothetical.
After much research, thought, and overview, I have come to the conclusion that its like asking:
If a calculator has the ability for me simply enter a series of 5 digits and automatically get their sum on the screen.
No, it does not have such a mode ready. But I can still get the sum with a few extra clicks using the plus and eventually the equal button.
If i really wanted a thread that can continue while listening for a condition of some sort, I could easily implement a personal class or object around the OS/kernel/SDK thread or whatever and make use of that.
• So at a low level, my answer is no, there is no such mechanism •
If a thread is waiting, then it's waiting. If it can continue executing then it is not really 'waiting', in the concurrency meaning of waiting. Otherwise there would be some other term for this state (Alert Waiting, anyone?). This is not to say it is not possible, just not with one simple low level predefined mechanism similar to a mutex or semaphore etc. One could wrap the required functionality in some class or object etc.
Having said that, there are Interrupts and Interrupt handlers, which come close to addressing this situation. However, an interrupt has to be defined, with its handler. The interrupts may actually be running on another thread (not to say a thread per interrupt). So a number of objects are involved here.
You have a misunderstanding about how mutexes are typically used.
If you want to do some work, you acquire the mutex to figure out what work you need to do. You do this because "what work you need to do" is shared between the thread that decide what work needed to be done and the thread that's going to do the work. But then you release the mutex that protects "what work you need to do" while you do the work.
Then, when you finish the work, you acquire the mutex that protects your report that the work is done. This is needed because the status of the work is shared with other threads. You set that status to "done" and then you release the mutex.
Notice that no thread holds the mutex for very long, just for the microscopic fraction of a second it needs to check on or modify shared state. So to see if work is done, you can acquire the mutex that protects the reporting of the status of that work, check the status, and then release the mutex. The thread doing the work will not hold that mutex for longer than the tiny fraction of a second it needs to change that status.
If you're holding mutexes so long that you worry at all about waiting for them to be released, you're either doing something wrong or using mutexes in a very atypical way.
So use a mutex to protect the status of the work. If you need to wait for work to be done, also use a condition variable. Only hold that mutex while changing, or checking, the status of the work.
But, If a thread attempts to acquire an already acquired mutex, that thread will be forced to wait until the thread that originally acquired the mutex releases it. So, while that thread is waiting, can it actually be usable. This is where my question is.
If you consider any case where one thread might slow another thread down to be "waiting", then you can never avoid waiting. All that has to happen is one thread accesses memory and that might slow another thread down. So what do you do, never access memory?
When we talk about one thread "waiting" for another, what we mean is waiting for the thread to do actual work. We don't worry about the microscopic overhead of inter-thread synchronization both because there's nothing we can do about it and because it's negligible.
If you literally want to find some way that one thread can never, ever slow another thread down, you'll have to re-design pretty much everything we use threads for.
Update:
For example, consider some code that has a mutex and a boolean. The boolean indicates whether or not the work is done. The "assign work" flow looks like this:
Create a work object with a mutex and a boolean. Set the boolean to false.
Dispatch a thread to work on that object.
The "do work" flow looks like this:
Do work. (The mutex is not held here.)
Acquire mutex.
Set boolean to true.
Release mutex.
The "is work done" flow looks like this:
Acquire mutex.
Copy boolean.
Release mutex.
Look at copied value.
This allows one thread to do work and another thread to check if the work is done any time it wants to while doing other things. The only case where one thread waits for the other is the one-in-a-million case where a thread that needs to check if the work is done happens to check right at the instant that the work has just finished. Even in that case, it will typically block for less than a microsecond as the thread that holds the mutex only needs to set one boolean and release the mutex. And if even that bothers you, most mutexes have a non-blocking "try to lock" function (which you would use in the "check if work is done" flow so that the checking thread never blocks).
And this is the normal way mutexes are used. Actual contention is the exception, not the rule.

Java Thread Live Lock

I have an interesting problem related to Java thread live lock. Here it goes.
There are four global locks - L1,L2,L3,L4
There are four threads - T1, T2, T3, T4
T1 requires locks L1,L2,L3
T2 requires locks L2
T3 required locks L3,L4
T4 requires locks L1,L2
So, the pattern of the problem is - Any of the threads can run and acquire the locks in any order. If any of the thread detects that a lock which it needs is not available, it release all other locks it had previously acquired waits for a fixed time before retrying again. The cycle repeats giving rise to a live lock condition.
So, to solve this problem, I have two solutions in mind
1) Let each thread wait for a random period of time before retrying.
OR,
2) Let each thread acquire all the locks in a particular order ( even if a thread does not require all the
locks)
I am not convinced that these are the only two options available to me. Please advise.
Have all the threads enter a single mutex-protected state-machine whenever they require and release their set of locks. The threads should expose methods that return the set of locks they require to continue and also to signal/wait for a private semaphore signal. The SM should contain a bool for each lock and a 'Waiting' queue/array/vector/list/whatever container to store waiting threads.
If a thread enters the SM mutex to get locks and can immediately get its lock set, it can reset its bool set, exit the mutex and continue on.
If a thread enters the SM mutex and cannot immediately get its lock set, it should add itself to 'Waiting', exit the mutex and wait on its private semaphore.
If a thread enters the SM mutex to release its locks, it sets the lock bools to 'return' its locks and iterates 'Waiting' in an attempt to find a thread that can now run with the set of locks available. If it finds one, it resets the bools appropriately, removes the thread it found from 'Waiting' and signals the 'found' thread semaphore. It then exits the mutex.
You can twiddle with the algorithm that you use to match up the available set lock bools with waiting threads as you wish. Maybe you should release the thread that requires the largest set of matches, or perhaps you would like to 'rotate' the 'Waiting' container elements to reduce starvation. Up to you.
A solution like this requires no polling, (with its performance-sapping CPU use and latency), and no continual aquire/release of multiple locks.
It's much easier to develop such a scheme with an OO design. The methods/member functions to signal/wait the semaphore and return the set of locks needed can usually be stuffed somewhere in the thread class inheritance chain.
Unless there is a good reason (performance wise) not to do so,
I would unify all locks to one lock object.
This is similar to solution 2 you suggested, only more simple in my opinion.
And by the way, not only is this solution more simple and less bug proned,
The performance might be better than solution 1 you suggested.
Personally, I have never heard of Option 1, but I am by no means an expert on multithreading. After thinking about it, it sounds like it will work fine.
However, the standard way to deal with threads and resource locking is somewhat related to Option 2. To prevent deadlocks, resources need to always be acquired in the same order. For example, if you always lock the resources in the same order, you won't have any issues.
Go with 2a) Let each thread acquire all of the locks that it needs (NOT all of the locks) in a particular order; if a thread encounters a lock that isn't available then it releases all of its locks
As long as threads acquire their locks in the same order you can't have deadlock; however, you can still have starvation (a thread might run into a situation where it keeps releasing all of its locks without making forward progress). To ensure that progress is made you can assign priorities to threads (0 = lowest priority, MAX_INT = highest priority) - increase a thread's priority when it has to release its locks, and reduce it to 0 when it acquires all of its locks. Put your waiting threads in a queue, and don't start a lower-priority thread if it needs the same resources as a higher-priority thread - this way you guarantee that the higher-priority threads will eventually acquire all of their locks. Don't implement this thread queue unless you're actually having problems with thread starvation, though, because it's probably less efficient than just letting all of your threads run at once.
You can also simplify things by implementing omer schleifer's condense-all-locks-to-one solution; however, unless threads other than the four you've mentioned are contending for these resources (in which case you'll still need to lock the resources from the external threads), you can more efficiently implement this by removing all locks and putting your threads in a circular queue (so your threads just keep running in the same order).

linux thread synchronization

I am new to linux and linux threads. I have spent some time googling to try to understand the differences between all the functions available for thread synchronization. I still have some questions.
I have found all of these different types of synchronizations, each with a number of functions for locking, unlocking, testing the lock, etc.
gcc atomic operations
futexes
mutexes
spinlocks
seqlocks
rculocks
conditions
semaphores
My current (but probably flawed) understanding is this:
semaphores are process wide, involve the filesystem (virtually I assume), and are probably the slowest.
Futexes might be the base locking mechanism used by mutexes, spinlocks, seqlocks, and rculocks. Futexes might be faster than the locking mechanisms that are based on them.
Spinlocks dont block and thus avoid context swtiches. However they avoid the context switch at the expense of consuming all the cycles on a CPU until the lock is released (spinning). They should only should be used on multi processor systems for obvious reasons. Never sleep in a spinlock.
The seq lock just tells you when you finished your work if a writer changed the data the work was based on. You have to go back and repeat the work in this case.
Atomic operations are the fastest synch call, and probably are used in all the above locking mechanisms. You do not want to use atomic operations on all the fields in your shared data. You want to use a lock (mutex, futex, spin, seq, rcu) or a single atomic opertation on a lock flag when you are accessing multiple data fields.
My questions go like this:
Am I right so far with my assumptions?
Does anyone know the cpu cycle cost of the various options? I am adding parallelism to the app so we can get better wall time response at the expense of running fewer app instances per box. Performances is the utmost consideration. I don't want to consume cpu with context switching, spinning, or lots of extra cpu cycles to read and write shared memory. I am absolutely concerned with number of cpu cycles consumed.
Which (if any) of the locks prevent interruption of a thread by the scheduler or interrupt...or am I just an idiot and all synchonization mechanisms do this. What kinds of interruption are prevented? Can I block all threads or threads just on the locking thread's CPU? This question stems from my fear of interrupting a thread holding a lock for a very commonly used function. I expect that the scheduler might schedule any number of other workers who will likely run into this function and then block because it was locked. A lot of context switching would be wasted until the thread with the lock gets rescheduled and finishes. I can re-write this function to minimize lock time, but still it is so commonly called I would like to use a lock that prevents interruption...across all processors.
I am writing user code...so I get software interrupts, not hardware ones...right? I should stay away from any functions (spin/seq locks) that have the word "irq" in them.
Which locks are for writing kernel or driver code and which are meant for user mode?
Does anyone think using an atomic operation to have multiple threads move through a linked list is nuts? I am thinking to atomicly change the current item pointer to the next item in the list. If the attempt works, then the thread can safely use the data the current item pointed to before it was moved. Other threads would now be moved along the list.
futexes? Any reason to use them instead of mutexes?
Is there a better way than using a condition to sleep a thread when there is no work?
When using gcc atomic ops, specifically the test_and_set, can I get a performance increase by doing a non atomic test first and then using test_and_set to confirm? I know this will be case specific, so here is the case. There is a large collection of work items, say thousands. Each work item has a flag that is initialized to 0. When a thread has exclusive access to the work item, the flag will be one. There will be lots of worker threads. Any time a thread is looking for work, they can non atomicly test for 1. If they read a 1, we know for certain that the work is unavailable. If they read a zero, they need to perform the atomic test_and_set to confirm. So if the atomic test_and_set is 500 cpu cycles because it is disabling pipelining, causes cpu's to communicate and L2 caches to flush/fill .... and a simple test is 1 cycle .... then as long as I had a better ratio of 500 to 1 when it came to stumbling upon already completed work items....this would be a win.
I hope to use mutexes or spinlocks to sparilngly protect sections of code that I want only one thread on the SYSTEM (not jsut the CPU) to access at a time. I hope to sparingly use gcc atomic ops to select work and minimize use of mutexes and spinlocks. For instance: a flag in a work item can be checked to see if a thread has worked it (0=no, 1=yes or in progress). A simple test_and_set tells the thread if it has work or needs to move on. I hope to use conditions to wake up threads when there is work.
Thanks!
Application code should probably use posix thread functions. I assume you have man pages so type
man pthread_mutex_init
man pthread_rwlock_init
man pthread_spin_init
Read up on them and the functions that operate on them to figure out what you need.
If you're doing kernel mode programming then it's a different story. You'll need to have a feel for what you are doing, how long it takes, and what context it gets called in to have any idea what you need to use.
Thanks to all who answered. We resorted to using gcc atomic operations to synchronize all of our threads. The atomic ops were about 2x slower than setting a value without synchronization, but magnitudes faster than locking a mutex, changeing the value, and then unlocking the mutex (this becomes super slow when you start having threads bang into the locks...) We only use pthread_create, attr, cancel, and kill. We use pthread_kill to signal threads to wake up that we put to sleep. This method is 40x faster than cond_wait. So basicly....use pthreads_mutexes if you have time to waste.
in addtion you should check the nexts books
Pthreads Programming: A POSIX
Standard for Better Multiprocessing
and
Programming with POSIX(R) Threads
regarding question # 8
Is there a better way than using a condition to sleep a thread when there is no work?
yes i think that the best aproach instead of using sleep
is using function like sem_post() and sem_wait of "semaphore.h"
regards
A note on futexes - they are more descriptively called fast userspace mutexes. With a futex, the kernel is involved only when arbitration is required, which is what provides the speed up and savings.
Implementing a futex can be extremely tricky (PDF), debugging them can lead to madness. Unless you really, really, really need the speed, its usually best to use the pthread mutex implementation.
Synchronization is never exactly easy, but trying to implement your own in userspace makes it inordinately difficult.

Avoid deadlocks in a multithreaded process

What are the best practices/idioms should someone follow in order to avoid deadlocks?
Please see What are common reasons for deadlocks?
There are four conditions which must occur for deadlock to occur:
Mutual exclusion condition: a resource that cannot be used by more than one process at a time
Hold and wait condition: processes already holding resources may request new resources
No preemption condition: No resource can be forcibly removed from a process holding it, resources can be released only by the explicit action of the process
Circular wait condition: two or more processes form a circular chain where each process waits for a resource that the next process in the chain holds
Avoid at least one of these, and preferably more, and you shouldn't have too many problems.
There is so called Banker's algorithm, for deadlock avoidance. Also you can consider the use of Watch Dog in order to break out form deadlock. Here also few interesting points.
The canonical technique for deadlock avoidance is to have a lock hierarchy. Make sure that all threads acquire locks or other resources in the same order. This avoids the deadlock scenario where thread 1 hold lock A and needs lock B while thread 2 holds lock B and needs lock A. With a lock hierarchy, both threads would have to acquire the locks in the same order (say, A before B).
The best practice would be by defining a class for your thread and use only non-static fields from this class in your thread so your threads won't be sharing any memory.
Of course, to avoid deadlocks you could also avoid the use of semaphores, critical sections and mutexes. Less is better, if you want to avoid deadlocks. Unfortunately, these are required if some memory or other resource is shared between two threads or else you risk corruption of data.
Among the various methods to enter critical sections -- semaphores and mutexs are the most popular.
A semaphore is a waiting mechanism and mutex is a locking mechanism, well the concept is confusing to the most, but in short, a thread activating a mutex can only deactivate it. with this in mind...
Dont allow any process to lock partial no of resources, if a process need 5 resources, wait until all the are available.
if u use semaphore here, u can unblock/un-wait the resource occupied by other thread. by this i mean pre-emption is another reason.
These 2 according to me are the basic conditions, the remaining 2 of the common 4 precautions can be related to these.
If u dont agree ps add comments. I've gtg already late, I will later add a cleaner and clearer explanation.

Resources