Is there a formula that i can use to calculate texture coordinates for a complex object not something like cube or sphere?
The texture coordinates are usually set manually by whoever creates the model, using the modelling package.
There are ways of automating the whole process, to a great extent. The results may not be much use if somebody is going to draw the texture based on the UV coordinates, and if you ask the impossible (e.g., mapping a sphere exactly, with no distortion and no seams) then you may not get perfect results -- but for processes such as light mapping this is a common approach.
Levy's LSCM is one approach, as used in Blender, for example. See http://alice.loria.fr/index.php/publications.html?Paper=lscm#2002
Direct3D9 has a UV unwrap tool in its D3DX library; I'm not sure what algorithm it uses, and the documentation isn't amazing, but it does work. See
http://msdn.microsoft.com/en-us/library/bb206321(VS.85).aspx
(Most 3D modelling packages have some kind of automated UV unwrap, too, but in general they never seem to have had too much time spent on them. Presumably the expectation is that somebody will want to go through and fix it up by hand afterwards anyway.)
Related
I've been studying 3D graphics on my own for a while now and I want to get a greater understanding of just how everything works. What I would like to do is to create a simple game without using DirectX or OpenGL. I understand most of the math I believe, but the problem I am running up against is I do not know how to get control of the pixels being displayed in a window.
How do I specify what color I want each pixel in my window to be?
I understand I will probably run into issues with buffers and image shearing and probably terrible efficiency problems, but I want to create my own program so that I could see from the very lowest level, of the high level language, how the rendering process works. I really have no idea where to start though. I've figured out how to output BMPs, but I would like to have a running program spitting out 20+ frames per second. How do I accomplish this?
You could pick a environment that allows you to fill an array with values for pixels and display it as a bitmap. This way you come closest to poking RGB values in video memory. WPF, Silverlight, HTML5/Javascript can do this. If you do not make it full screen these technologies should suffice for now.
In WPF and Silverlight, use the WriteableBitmap.
In HTML5, use the canvas
Then it is up to you to implement the logic to draw lines, circles, bezier curves, 3D projections.
This is a lot of fun and you will learn a lot.
I'm reading between the lines that you're more interested in having full control over the rendering process from a low level, rather than having a specific interest in how to achieve that on one specific platform.
If that's the case then you will probably get a good bang for your buck looking at a library like SDL which provides you with a frame buffer that you can render to directly but abstracts away a lot of the platform specifics issues. It has been around for quite a while and there are some good tutorials to give you an idea of whether it's the kind of thing you're looking for - see this tutorial and the subsequent one in the same series, which should be enough to get you up and running.
You say you want to create some kind of a rendering engine, meaning desinging you own Pipeline and matrice classes. Which you are to use to transform 3D coordinates to 2D points.
When you have got the 2D points you've been looking for. You can use say for instance on windows, you can select a brush and draw you triangle values while coloring them at the same time.
I do not know why you would need Bitmaps, but if you want to practice say Texturing you can also do that yourself although off course on a weak computer this might take your frames per second significantly.
If you aim is to understand how rendering works on the lowest level. This is with no doubt a good practice.
Jt Schwinschwiga
I'm raytracing and would like to speed it up via some acceleration structure (kd-tree, BVH, whatever). I don't want to code it up myself. What I've tried so far:
Yanking the kd-tree out of pbrt. There are so many intra-dependencies that I couldn't succeed at this without pulling all of pbrt into my code.
CGAL's AABB tree. Frustratingly, this seems to return only the point of intersection. Without knowing which triangle the point came from, I can't efficiently interpolate color over the triangle. I'd love to just extend the notion of "Point" with color, but this doesn't seem possible without writing a lot of template code from scratch.
Writing my own. Okay so I wrote my own grid acceleration class, and it works, but it's nasty and inefficient.
So, if anyone can suggest a simple library that I can use for this purpose I'd really appreciate it! All I need is given a triangle soup and ray, find the closest intersection and return the index of that triangle.
Jaco Bikker wrote this series of tutorials: http://www.devmaster.net/articles/raytracing_series/part7.php
They're very helpful and he includes code at the end for a ray tracer using a kd-tree.
You might be able to use that.
The G3D engine has a ray tracing implementation. Not sure how efficient it is though. It shouldn't bee too much trouble to use the Tree implementation without the rest of the library.
Hey guys, I would like to develop a light/laser show editor and simulator, and for this of course I am going to learn some graphics programming. I am thinking about using C# and XNA.
I was just wondering what aspects of graphics programming I should research or focus on given the project I am working on. I am new to graphics programming so I don't know much about it, but for example I imagine something that I might look into would (possibly?) be volumetric lighting.
For example, what would be a practical way to go about rendering a 'laser' of varied width/color? I read somewhere to just draw a cylinder and apply a shader to it, I would like to confirm that this is the way.
Given that this seems like a big project, I was thinking about starting off by creating light sources and giving them properties so that I can easily manipulate them. I have (mis)read that only a certain amount of lights can be rendered at any given time, I believe eight. Does this only apply to ambient lights? Given this possible limitation, and the fact that most of the lights I will use will be directional, such as head-lights or lasers, what would be a different way to render these? Is that what volumetric lighting would be?
I'd just like to get some things clear before I dive into it. Since I'm new to this I probably didn't make the best use of words, so if something doesn't make sense please let me know. Thanks and sorry for my ignorance.
The answer to this depends on the level of sophistication that you need in your display simulation. Computer graphics is ultimately a simulation of the transport of light; that simulation can be as sophisticated as calculating the fraction of laser light deflected by particles in the atmosphere to the viewer's eyepoint, or as simple as drawing a line. Try out the cylinder effect and see if it works for your project. If you need something more sophisticated, look into shader programming (using Nvidia Cg, for example), and volumetric shading as you mentioned; also post-processing glow effects may be useful. For OpenGL, I believe there is a limit of 8? light sources in a scene, but you could conceivably work around this limit by doing your own shading logic.
Well if it's just for light show simulations I'd imagine your going to need a lot of custom lighting effects - so regardless if you decide to use XNA or straight DirectX your best bet would be to start by learning shader languages and how to program various lighting effects using them. Once you can reproduce the type of laser lighting you want, then you can experiment with the polygons you want to use to represent the lasers. (I've used the cylinder method in some of my work for personal purposes, but I'm not sure how well straight cylinders will fit your purpose).
Although its faster, I think its best not to use vanilla hardware lighting because of its limitations. Pixel shaders can help with you task. Also you may want to chose OpenGL because of portability and its clarity in rendering methods. I worked on Direct3D for several years before switching to OpenGL. OpenGL functions and states are easier to learn and rendering methods (like multi-pass rendering) is a lot clear. If you like to code on C# (which I dont recommend for these tasks), you can use CsGL library to access OpenGL functions.
There's a lot of literature on collision detection, and I've read at least a big enough portion of it to be fairly familiar with most techniques. However, there's something that has eluded me for a while, and I figured, since StackOverflow provides access to a large group of brilliant minds at once, I'd ask here first before digging around in the bookshelf.
In this day and age, more and more work is being delegated to GPU rather than CPU, and in a lot of cases this is a good thing. For example, there are geometry shaders to create new geometry, or (slightly less new, but still quite fascinating) vertex shaders to which you can through a bunch of vertexes at, and something elegant will come out of it. What I was considering though, as these primitives exists only on the graphics hardware, how would you perform reliable collision detection with these primitives? Let's assume I have some kind of extremely simplified mesh which is displaced in a vertex shader (I don't have a concrete problem, I'm more playing with the idea, and I haven't gotten very deep into geometry shaders yet).
What I've considered so far is separate 'rendering' passes from suitable angles with shading more or less turned off, and perhaps lower resolution mesh, rendering the inside (with faces flipped inward) of my second primitive along with the mesh I want to test against, and executing an occlusion query for the mesh. If the mesh is completely occluded there'd be no intersection. This would of course require that my second primitive is convex.
Somehow I get the feeling that this kind of test will be extremely expensive as the number of primitives increase (even if a large portion can be culled directly). Does anyone else have another idea or technique? I'm more familiar with opengl and cg than directx, but if you have some examples or so in directx, I guess I'll be able to figure out the opengl counterparts.
All ideas are appreciated, so please brainstorm. :)
It sounds like Dan Horn's article “Stream Reduction Operations for GPGPU Applications” in GPU Gems 2 is exactly what you want. Like all chapters, it's freely available online.
I am looking for an algorithm or library (better) to break down a polygon into triangles. I will be using these triangles in a Direct3D application. What are the best available options?
Here is what I have found so far:
Ben Discoe's notes
FIST: Fast Industrial-Strength Triangulation of Polygons
I know that CGAL provides triangulation but am not sure if it supports holes.
I would really appreciate some opinions from people with prior experience in this area.
Edit: This is a 2D polygon.
To give you some more choices of libraries out there:
Polyboolean. I never tried this one, but it looks promising: http://www.complex-a5.ru/polyboolean/index.html
General Polygon Clipper. This one works very well in practice and does triangulation as well as clipping and holes holes: http://www.cs.man.ac.uk/~toby/alan/software/
My personal recommendation: Use the tesselation from the GLU (OpenGL Utility Library). The code is rock solid, faster than GPC and generates less triangles. You don't need an initialized OpenGL-Handle or anything like this to use the lib.
If you don't like the idea to include OpenGL system libs in a DirectX application there is a solution as well: Just download the SGI OpenGL reference implementation code and lift the triangulator from it. It just uses the OpenGL-Typedef names and a hand full of enums. That's it. You can extract the code and make a stand alone lib in an hour or two.
In general my advice would be to use something that alreay works and don't start to write your own triangulation.
It is tempting to roll your own if you have read about the ear-clipping or sweep-line algorithm, but fact is that computational geometry algorithms are incredible hard to write in a way that they work stable, never crash and always return a meaningful result. Numerical roundoff errors will accumulate and kill you in the end.
I wrote a triangulation algorithm in C for the company I work with. Getting the core algorithm working took two days. Getting it working with all kinds of degenerated inputs took another two years (I wasn't working fulltime on it, but trust me - I spent more time on it than I should have).
Jonathan Shewchuk's Triangle library is phenomenal; I've used it for automating triangulation in the past. You can ask it to attempt to avoid small/narrow triangles, etc., so you come up with "good" triangulations instead of just any triangulation.
CGAL has the tool you need:
Constrained Triangulations
You can simply provide boundaries of your polygon (incuding the boundaries of the holes) as constraints (the best would be that you insert all vertices, and then specify the constraints as pairs of Vertex_handles).
You can then tag the triangles of the triangulation by any traversal algorithm: start with a triangle incident to the infinite vertex and tag it as being outside, and each time you cross a constraint, switch to the opposite tag (inside if you were previously tagging the triangles as outsider, outside if you were tagging triangles as insider before).
I have found the poly2tri library to be exactly what I needed for triangulation. It produces a much cleaner mesh than other libraries I've tried (including libtess), and it does support holes as well. It's been converted to a bunch of languages. The license is New BSD, so you can use it in any project.
Poly2tri library on Google Code
try libtess2
https://code.google.com/p/libtess2/downloads/list
based on the original SGI GLU tesselator (with liberal licensing). Solves some memory management issues around lots of small mallocs.
You can add the holes relatively easily yourself. Basically triangulate to the convex hull of the input points, as per CGAL, and then delete any triangle whose incentre lies inside any of the hole polygons (or outside any of the external boundaries). When dealing with lots of holes in a large dataset, masking techniques may be used to significantly speed this process up.
edit: A common extension to this technique is to weed weak triangles on the hull, where the longest edge or smallest internal angle exceeds a given value. This will form a better concave hull.
I have implemented a 3D polygon triangulator in C# using the ear clipping method. It is easy to use, supports holes, is numerically robust, and supports aribtrary (not self-intersecting) convex/non-convex polygons.
This is a common problem in finite element analysis. It's called "automatic mesh generation". Google found this site with links to commercial and open source software. They usually presume some kind of CAD representation of the geometry to start.
Another option (with a very flexible license) is to port the algorithm from VTK:
vtkDelaunay2D
This algorithm works fairly well. Using it directly is possible, but requires links to VTK, which may have more overhead than you want (although it has many other nice features, as well).
It supports constraints (holes/boundaries/etc), as well as triangulating a surface that isn't necessarily in the XY plane. It also supports some features I haven't seen elsewhere (see the notes on Alpha values).