modify edge label in Haskell package fgl - haskell

I've wrote the following code to increment the label of a given edge of a graph with FGL package, if the edge does not exist, it is created before being incremented :
import Data.Graph.Inductive
incrementEdge :: Edge -> Gr a Int -> Gr a Int
incrementEdge edge g = gmap (increment edge) g
increment :: Edge -> Context a Int -> Context a Int
increment (a,b) all#(p,n,x,v) = if a /= n then all else (p,n,x,v'')
where
v' = let (r,_) = elemNode b v in if r then v else ((0,b):v)
v'' = map (\(x,y) -> if y == b then (x+1,y) else (x,y)) v'
a :: Gr String Int
a = ([],1,"a",[]) & empty
b = ([],2,"b",[]) & a
while testing I got the following result :
*Main> incrementEdge (1,1) b
1:"a"->[(1,1)]
2:"b"->[]
*Main> incrementEdge (1,2) b
1:"a"->[(1,2)]
2:"b"->[]
*Main> incrementEdge (2,2) b
1:"a"->[]
2:"b"->[(1,2)]
But ...
*Main> incrementEdge (2,1) b
*** Exception: Edge Exception, Node: 1
what is the problem here ?
EDITION
elemNode ys [] = (False,0)
elemNode ys ((m,xs):xss) = if ys == xs then (True,m) else elemNode ys xss
I want to write a function which will add an edge to a graph from two nodes labels, the function checks that the two nodes exist, if not it create them :
- if nodes already exists the label of the edge between them is increment,
- if there is no edge between those node it is create before being incremented
Thanks for your reply

I don't think you're supposed to add edges with gmap: it folds over all the contexts in the graph in an arbitrary order and builds up the new graph by &ing the new contexts together. If a new context has a link to or from a node that hasn't been &ed yet, you get the Edge Exception.
Here's a simple example:
*Main> ([], 1, "a", [(0, 2)]) & empty :: Gr String Int
*** Exception: Edge Exception, Node: 2
I've only used FGL for a couple of little projects and am certainly no expert, but it probably makes more sense just to add new edges (with label 1) using insEdge and then do all the counting when needed:
import Data.Graph.Inductive
import qualified Data.IntMap as I
incrementEdge :: Edge -> Gr a Int -> Gr a Int
incrementEdge (a, b) = insEdge (a, b, 1)
count :: Gr a Int -> Gr a Int
count = gmap $ \(p, n, x, v) -> (countAdj p, n, x, countAdj v)
where
swap (a, b) = (b, a)
countAdj = map swap . I.toList . I.fromListWith (+) . map swap
This seems to work as desired:
*Main> count $ incrementEdge (2, 1) b
1:"a"->[]
2:"b"->[(1,1)]
*Main> count $ incrementEdge (2, 1) $ incrementEdge (2, 1) b
1:"a"->[]
2:"b"->[(2,1)]

1) A quick grep for Edge Exception in the fgl package:
cabal unpack fgl
cd fgl*
grep "Edge Exception" * -R
yields the file Data/Graph/Inductive/Tree.hs. Looking there we have the call updAdj that will throw this exception any time elemFM g v is false.
2) Could you provide runnable code? What you posted is missing elemNode (when using fgl 5.4.2.3)
3) Could you provide what version of fgl you're using? If it's old an upgrade might fix the issue.

Mapping over the graph doesn't seem like quite the right kind of traversal. The following works with the extracted context of the edge's source node.
edgeLookup :: Node -> [(a,Node)] -> Maybe ((a,Node), [(a,Node)])
edgeLookup n = aux . break ((== n) . snd)
where aux (h, []) = Nothing
aux (h, t:ts) = Just (t, h ++ ts)
incrementEdge :: Edge -> Gr a Int -> Maybe (Gr a Int)
incrementEdge (from,to) g = aux $ match from g
where aux (Nothing, _) = Nothing
aux (Just (i,n,l,o), g') = Just $ (i,n,l,checkEdge o) & g'
checkEdge outEdges =
maybe ((1,to):outEdges) incEdge $ edgeLookup to outEdges
incEdge ((cnt,n), rst) = (cnt+1,n):rst
I would probably also use a helper to go from (Maybe a, b) -> Maybe (a,b) then fmap aux over the helper composed with match. That would help to distill things down a bit better.
EDIT
To support node addition based on labels, one needs to track the bijection between labels and Node identifiers (Ints). This can be done by using a Map that is updated in parallel to the graph.
import Data.Graph.Inductive
import Data.Map (Map)
import qualified Data.Map as M
import Data.Maybe (fromJust)
-- A graph with uniquely labeled nodes.
type LGraph a b = (Map a Int, Gr a b)
-- Ensure that a node with the given label is present in the given
-- 'LGraph'. Return the Node identifier for the node, and a graph that
-- includes the node.
addNode :: Ord a => a -> LGraph a b -> (Int, LGraph a b)
addNode label (m,g) = aux $ M.lookup label m
where aux (Just nid) = (nid, (m,g))
aux Nothing = (nid', (m', g'))
[nid'] = newNodes 1 g
m' = M.insert label nid' m
g' = insNode (nid', label) g
-- Adding a context to a graph requires updating the label map.
(&^) :: Ord a => Context a b -> LGraph a b -> LGraph a b
c#(_, n, label, _) &^ (m,g) = (m', g')
where m' = M.insert label n m
g' = c & g
-- Look for a particular 'Node' in an edge list.
edgeLookup :: Node -> [(a,Node)] -> Maybe ((a,Node), [(a,Node)])
edgeLookup n = aux . break ((== n) . snd)
where aux (h, []) = Nothing
aux (h, t:ts) = Just (t, h ++ ts)
-- Increment the edge between two nodes; create a new edge if needed.
incrementEdge :: Edge -> Gr a Int -> Maybe (Gr a Int)
incrementEdge (from,to) g = fmap aux $ liftMaybe (match from g)
where aux ((i,n,l,o), g') = (i,n,l,checkEdge o) & g'
checkEdge outEdges =
maybe ((1,to):outEdges) incEdge $ edgeLookup to outEdges
incEdge ((cnt,n), rst) = (cnt+1,n):rst
liftMaybe :: (Maybe a, b) -> Maybe (a, b)
liftMaybe (Nothing, _) = Nothing
liftMaybe (Just x, y) = Just (x, y)
-- Increment an edge in an 'LGraph'. If the nodes are not part of the
-- graph, add them.
incrementLEdge :: Ord a => (a, a) -> LGraph a Int -> LGraph a Int
incrementLEdge (from,to) g = (m', fromJust $ incrementEdge' (from',to') g')
where (from', gTmp) = addNode from g
(to', (m',g')) = addNode to gTmp
-- Example
a' :: LGraph String Int
a' = ([],1,"a",[]) &^ (M.empty, empty)
b' = ([],2,"b",[]) &^ a'
test6 = incrementLEdge ("c","b") $ incrementLEdge ("b","a") b'
{-
*Main> test6
(fromList [("a",1),("b",2),("c",3)],
1:"a"->[]
2:"b"->[(1,1)]
3:"c"->[(1,2)])
-}

Related

mapEither inserting both Left and Right

Using the function mapEither for multiset's I can turn a MultiSet into a pair of two multisets. When f is returning Left the element is inserted into the first Multiset of the pair, and if f is returning Right the element is inserted into the second MultiSet of the pair.
How can I insert the same element into both MultiSets at the same time, as if f were returning Right and Left at the same time?
f:: LocalType -> Either LocalType LocalType
f (Sometype lt) = Left lt -- And Right lt
f lt = Left lt
parRule :: (MultiSet LocalType) -> (MultiSet LocalType)
parRule sequent = do
let list = MultiSet.mapEither f sequent
For reference, I use Data.Multiset package, https://hackage.haskell.org/package/multiset-0.3.4.3/docs/Data-MultiSet.html.
You can use a type like These to capture the ability to return both. You can then use toAscOccurList and fromOccurList (or fromAscOccurList if your function is monotonic) to compute the new MultiSet.
You could use These as Daniel Wagner suggests, but I would use a slightly different function to start with, which seems like a slightly better match to the library API. Furthermore, I would recommend a different implementation strategy for performance.
data SP a b = SP !a !b
toPair :: SP a b -> (a, b)
toPair (SP a b) = (a, b)
mapPairOcc :: (Ord b, Ord c) => (a -> Occur -> ((b, Occur), (c, Occur))) -> MultiSet a -> (MultiSet b, MultiSet c)
mapPairOcc f = toPair . mapPairOcc' f
mapPairOcc' :: (Ord b, Ord c) => (a -> Occur -> ((b, Occur), (c, Occur))) -> MultiSet a -> SP (MultiSet b) (MultiSet c)
mapPairOcc' f = foldl' go (SP empty empty) . toAscOccurList
where
go (SP bs cs) a
| ((b, bn), (c, cn)) <- f a
= SP (insertMany b bn bs) (insertMany c cn cs)
When you know that f is strictly monotone in the sense that
a < a' ==> fst (f a) < fst (f a') /\ snd (f a) < snd (f a')
it's possible to do better, building the results in O(n) time. The best way to do this seems to be to use Data.Map internals. I'll reuse the SP type from above.
import Data.Map.Lazy (Map)
import Data.MultiSet (MultiSet, Occur)
import qualified Data.MultiSet as MS
import qualified Data.Map.Internal as M
import Control.Monad (guard)
-- | Map over the keys and values in a map, producing
-- two maps with new keys and values. The passed function
-- must be strictly monotone in the keys in the sense
-- described above.
mapMaybeWithKey2Mono :: (k -> a -> (Maybe (l,b), Maybe (m,c))) -> Map k a -> (Map l b, Map m c)
mapMaybeWithKey2Mono f = toPair . mapMaybeWithKey2Mono' f
mapMaybeWithKey2Mono' :: (k -> a -> (Maybe (l,b), Maybe (m,c))) -> Map k a -> SP (Map l b) (Map m c)
mapMaybeWithKey2Mono' _ M.Tip = SP M.Tip M.Tip
mapMaybeWithKey2Mono' f (M.Bin _ kx x l r)
| (fl, fr) <- f kx x
= SP (groink fl mfl1 mfr1) (groink fr mfl2 mfr2)
where
groink :: Maybe (q, x) -> Map q x -> Map q x -> Map q x
groink m n o = case m of
Just (k', y) -> M.link k' y n o
Nothing -> M.link2 n o
SP mfl1 mfl2 = mapMaybeWithKey2Mono' f l
SP mfr1 mfr2 = mapMaybeWithKey2Mono' f r
Using this new general Map function, we can define the function we want on multisets:
mapPairAscOcc :: (a -> Occur -> ((b, Occur), (c, Occur))) -> MultiSet a -> (MultiSet b, MultiSet c)
mapPairAscOcc f m
| (p, q) <- mapMaybeWithKey2Mono go . MS.toMap $ m
= (MS.fromOccurMap p, MS.fromOccurMap q)
where
-- a -> Occur -> (Maybe (b, Occur), Maybe (c, Occur))
go a aocc
| ((b, bocc), (c, cocc)) <- f a aocc
= ( (b, bocc) <$ guard (bocc > 0)
, (c, cocc) <$ guard (cocc > 0) )
I took the function mapEither from the Data.MultiSet and modified it such that it supports These type.
-- | /O(n)/. Map and separate the 'This' and 'That' or 'These' results
-- modified function of mapEither to map both cases in case f return These
-- code of mapEither found in source code,
mapThese :: (Ord b, Ord c) => (a -> These b c) -> MultiSet a -> (MultiSet b, MultiSet c)
mapThese f = (\(ls,rs) -> (MultiSet.fromOccurList ls, MultiSet.fromOccurList rs)) . mapThese' . MultiSet.toOccurList
where mapThese' [] = ([],[])
mapThese' ((x,n):xs) = case f x of
This l -> let (ls,rs) = mapThese' xs in ((l,n):ls, rs)
That r -> let (ls,rs) = mapThese' xs in (ls, (r,n):rs)
These u i -> let (ls,rs) = mapThese' xs in ((u,n):ls, (i,n):rs)
In the case f returns These, both MultiSet's have an added element.

Pattern matching in `Alternative`

I have a function that pattern matches on its arguments to produce a computation in StateT () Maybe (). This computation can fail when run, in which case I want the current pattern match branch to fail, so to speak.
I highly doubt it's possible to have something like
compute :: Int -> StateT () Maybe Int
compute = return
f :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f (Just n1) (Just n2) = do
m <- compute (n1 + n2)
guard (m == 42)
f (Just n) _ = do
m <- compute n
guard (m == 42)
f _ (Just n) = do
m <- compute n
guard (m == 42)
behave in the way I want it to: When the first computation fails due to the guard or somewhere in compute, I want f to try the next pattern.
Obviously the above can't work, because StateT (as any other monad might) involves an additional parameter when expanded, so I probably can't formulate this as simple pattern guards.
The following does what I want, but it's ugly:
f' :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f' a b = asum (map (\f -> f a b) [f1, f2, f3])
where
f1 a b = do
Just n1 <- pure a
Just n2 <- pure b
m <- compute (n1 + n2)
guard (m == 42)
f2 a _ = do
Just n <- pure a
m <- compute n
guard (m == 42)
f3 _ b = do
Just n <- pure b
m <- compute n
guard (m == 42)
A call like execStateT (f (Just 42) (Just 1)) () would fail for f but return Just () for f', because it matches f2.
How do I get the behavior of f' while having elegant pattern matching with as little auxiliary definitions as possible like in f? Are there other, more elegant ways to formulate this?
Complete runnable example:
#! /usr/bin/env stack
-- stack --resolver=lts-11.1 script
import Control.Monad.Trans.State
import Control.Applicative
import Control.Monad
import Data.Foldable
compute :: Int -> StateT () Maybe Int
compute = return
f :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f (Just n1) (Just n2) = do
m <- compute (n1 + n2)
guard (m == 42)
f (Just n) _ = do
m <- compute n
guard (m == 42)
f _ (Just n) = do
m <- compute n
guard (m == 42)
f' :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f' a b = asum (map (\f -> f a b) [f1, f2, f3])
where
f1 a b = do
Just n1 <- pure a
Just n2 <- pure b
m <- compute (n1 + n2)
guard (m == 42)
f2 a _ = do
Just n <- pure a
m <- compute n
guard (m == 42)
f3 _ b = do
Just n <- pure b
m <- compute n
guard (m == 42)
main = do
print $ execStateT (f (Just 42) (Just 1)) () -- Nothing
print $ execStateT (f' (Just 42) (Just 1)) () -- Just (), because `f2` succeeded
Edit: I elicited quite some clever answers with this question so far, thanks! Unfortunately, they mostly suffer from overfitting to the particular code example I've given. In reality, I need something like this for unifying two expressions (let-bindings, to be precise), where I want to try unifying the RHS of two simultaneous lets if possible and fall through to the cases where I handle let bindings one side at a time by floating them. So, actually there's no clever structure on Maybe arguments to exploit and I'm not computeing on Int actually.
The answers so far might benefit others beyond the enlightenment they brought me though, so thanks!
Edit 2: Here's some compiling example code with probably bogus semantics:
module Unify (unify) where
import Control.Applicative
import Control.Monad.Trans.State.Strict
data Expr
= Var String -- meta, free an bound vars
| Let String Expr Expr
-- ... more cases
-- no Eq instance, fwiw
-- | If the two terms unify, return the most general unifier, e.g.
-- a substitution (`Map`) of meta variables for terms as association
-- list.
unify :: [String] -> Expr -> Expr -> Maybe [(String, Expr)]
unify metaVars l r = execStateT (go [] [] l r) [] -- threads the current substitution as state
where
go locals floats (Var x) (Var y)
| x == y = return ()
go locals floats (Var x) (Var y)
| lookup x locals == Just y = return ()
go locals floats (Var x) e
| x `elem` metaVars = tryAddSubstitution locals floats x e
go locals floats e (Var y)
| y `elem` metaVars = tryAddSubstitution locals floats y e
-- case in point:
go locals floats (Let x lrhs lbody) (Let y rrhs rbody) = do
go locals floats lrhs rrhs -- try this one, fail current pattern branch if rhss don't unify
-- if we get past the last statement, commit to this branch, no matter
-- the next statement fails or not
go ((x,y):locals) floats lbody rbody
-- try to float the let binding. terms mentioning a floated var might still
-- unify with a meta var
go locals floats (Let x rhs body) e = do
go locals (Left (x,rhs):floats) body e
go locals floats e (Let y rhs body) = do
go locals (Right (y,rhs):floats) body e
go _ _ _ _ = empty
tryAddSubstitution = undefined -- magic
When I need something like this, I just use asum with the blocks inlined. Here I also condensed the multiple patterns Just n1 <- pure a; Just n2 <- pure b into one, (Just n1, Just n2) <- pure (a, b).
f :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f a b = asum
[ do
(Just n1, Just n2) <- pure (a, b)
m <- compute (n1 + n2)
guard (m == 42)
, do
Just n <- pure a
m <- compute n
guard (m == 42)
, do
Just n <- pure b
m <- compute n
guard (m == 42)
]
You can also use chains of <|>, if you prefer:
f :: Maybe Int -> Maybe Int -> StateT () Maybe ()
f a b
= do
(Just n1, Just n2) <- pure (a, b)
m <- compute (n1 + n2)
guard (m == 42)
<|> do
Just n <- pure a
m <- compute n
guard (m == 42)
<|> do
Just n <- pure b
m <- compute n
guard (m == 42)
This is about as minimal as you can get for this kind of “fallthrough”.
If you were using Maybe alone, you would be able to do this with pattern guards:
import Control.Monad
import Control.Applicative
ensure :: Alternative f => (a -> Bool) -> a -> f a
ensure p a = a <$ guard (p a)
compute :: Int -> Maybe Int
compute = return
f :: Maybe Int -> Maybe Int -> Maybe Int
f (Just m) (Just n)
| Just x <- ensure (== 42) =<< compute (m + n)
= return x
f (Just m) _
| Just x <- ensure (== 42) =<< compute m
= return x
f _ (Just n)
| Just x <- ensure (== 42) =<< compute n
= return x
f _ _ = empty
(ensure is a general purpose combinator. Cf. Lift to Maybe using a predicate)
As you have StateT on the top, though, you would have to supply a state in order to pattern match on Maybe, which would foul up everything. That being so, you are probably better off with something in the vein of your "ugly" solution. Here is a whimsical attempt at improving its looks:
import Control.Monad
import Control.Applicative
import Control.Monad.State
import Control.Monad.Trans
import Data.Foldable
ensure :: Alternative f => (a -> Bool) -> a -> f a
ensure p a = a <$ guard (p a)
compute :: Int -> StateT () Maybe Int
compute = return
f :: Maybe Int -> Maybe Int -> StateT () Maybe Int
f a b = asum (map (\c -> f' (c a b)) [liftA2 (+), const, flip const])
where
f' = ensure (== 42) <=< compute <=< lift
While this is an answer specific to the snippet I've given, the refactorings only apply limited to the code I was facing.
Perhaps it's not that far-fetched of an idea to extract the skeleton of the asum expression above to a more general combinator:
-- A better name would be welcome.
selector :: Alternative f => (a -> a -> a) -> (a -> f b) -> a -> a -> f b
selector g k x y = asum (fmap (\sel -> k (sel x y)) [g, const, flip const])
f :: Maybe Int -> Maybe Int -> StateT () Maybe Int
f = selector (liftA2 (+)) (ensure (== 42) <=< compute <=< lift)
Though it is perhaps a bit awkward of a combinator, selector does show the approach is more general than it might appear at first: the only significant restriction is that k has to produce results in some Alternative context.
P.S.: While writing selector with (<|>) instead of asum is arguably more tasteful...
selector g k x y = k (g x y) <|> k x <|> k y
... the asum version straightforwardly generalises to an arbitrary number of pseudo-patterns:
selector :: Alternative f => [a -> a -> a] -> (a -> f b) -> a -> a -> f b
selector gs k x y = asum (fmap (\g -> k (g x y)) gs)
It looks like you could get rid of the whole pattern match by relying on the fact that Int forms a Monoid with addition and 0 as the identity element, and that Maybe a forms a Monoid if a does. Then your function becomes:
f :: Maybe Int -> Maybe Int -> StateT () Maybe Int
f a b = pure $ a <> b >>= compute >>= pure . mfilter (== 42)
You could generalise by passing the predicate as an argument:
f :: Monoid a => (a -> Bool) -> Maybe a -> Maybe a -> StateT () Maybe a
f p a b = pure $ a <> b >>= compute >>= pure . mfilter p
The only thing is that compute is now taking a Maybe Int as input, but that is just a matter of calling traverse inside that function with whatever computation you need to do.
Edit: Taking into account your last edit, I find that if you spread your pattern matches into separate computations that may fail, then you can just write
f a b = f1 a b <|> f2 a b <|> f3 a b
where f1 (Just a) (Just b) = compute (a + b) >>= check
f1 _ _ = empty
f2 (Just a) _ = compute a >>= check
f2 _ _ = empty
f3 _ (Just b) = compute b >>= check
f3 _ _ = empty
check x = guard (x == 42)

How to know in Haskell in what row and column of a table ([[a]]) you are

I want to make a sudoku solver in Haskell (as an exercise). My idea is:
I have t :: [[Int]] representing a 9x9 grid so that it contains 0 in an empty field and 1-9 in a solved field.
A function solve :: [[Int]] -> [[Int]] returns the solved sudoku.
Here is a rough sketch of it (i'd like to point out i'm a beginner, i know it is not the most optimal code):
solve :: [[Int]] -> [[Int]]
solve t
| null (filter (elem 0) t) = t
| t /= beSmart t = solve (beSmart t)
| otherwise = guess t
The function beSmart :: [[Int]] -> [[Int]] tries to solve it by applying some solving algorithms, but if methodical approach fails (beSmart returns the unchanged sudoku table in that case) it should try to guess some numbers (and i'll think of that function later). In order to fill in an empty field, i have to find it first. And here's the problem:
beSmart :: [[Int]] -> [[Int]]
beSmart t = map f t
where f row
| elem 0 row = map unsolvedRow row
| otherwise = row
where unsolvedRow a
| a == 0 = tryToDo t r c --?!?!?!?! skip
| otherwise = a
The function tryToDo :: [[Int]]] -> Int -> Int - > Int needs the row and column of the field i'm trying to change, but i have no idea how to get that information. How do i get from map what element of the list i am in at the moment? Or is there a better way to move around in the table? I come from iterative and procedural programing and i understand that perhaps my approach to the problem is wrong when it comes to functional programing.
I know this is not really an answer to your question, but I would argue, that usually you would want a different representation (one that keeps a more detailed view of what you know about the sudoku puzzle, in your attempted solution you can only distinguish a solved cell from a cell that is free to assume any value). Sudoku is a classical instance of CSP. Where modern approaches offer many fairly general smart propagation rules, such as unit propagation (blocking a digit in neighboring cells once used somewhere), but also many other, see AC-3 for further details. Other related topics include SAT/SMT and you might find the algorithm DPLL also interesting. In the heart of most solvers there usually is some kind of a search engine to deal with non-determinism (not every instance must have a single solution that is directly derivable from the initial configuration of the instance by application of inference rules). There are also techniques such as CDCL to direct the search.
To address the question in the title, to know where you are, its probably best if you abstract the traversal of your table so that each step has access to the coordinates, you can for example zip a list of rows with [0..] (zip [0..] rows) to number the rows, when you then map a function over the zipped lists, you will have access to pairs (index, row), the same applies to columns. Just a sketch of the idea:
mapTable :: (Int -> Int -> a -> b) -> [[a]] -> [[b]]
mapTable f rows = map (\(r, rs) -> mapRow (f r) rs) $ zip [0..] rows
mapRow :: (Int -> a -> b) -> [a] -> [b]
mapRow f cols = map (uncurry f) $ zip [0..] cols
or use fold to turn your table into something else (for example to search for a unit cell):
foldrTable :: (Int -> Int -> a -> b -> b) -> b -> [[a]] -> b
foldrTable f z rows = foldr (\(r, rs) b -> foldrRow (f r) b rs) z $ zip [0..] rows
foldrRow :: (Int -> a -> b -> b) -> b -> [a] -> b
foldrRow f z cols = foldr (uncurry f) z $ zip [0..] cols
to find which cell is unital:
foldrTable
(\x y v acc -> if length v == 1 then Just (x, y) else acc)
Nothing
[[[1..9],[1..9],[1..9]],[[1..9],[1..9],[1..9]],[[1..9],[1],[1..9]]]
by using Monoid you can refactor it:
import Data.Monoid
foldrTable' :: Monoid b => (Int -> Int -> a -> b) -> [[a]] -> b
foldrTable' f rows = foldrTable (\r c a b -> b <> f r c a) mempty rows
unit :: Int -> Int -> [a] -> Maybe (Int, Int)
unit x y c | length c == 1 = Just (x, y)
| otherwise = Nothing
firstUnit :: [[[a]]] -> Maybe (Int, Int)
firstUnit = getFirst . foldrTable' (\r c v -> First $ unit r c v)
so now you would do
firstUnit [[[1..9],[1..9],[1..9]],[[1,2],[3,4],[5]]]
to obtain
Just (1, 2)
correctly determining that the first unit cell is at position 1,2 in the table.
[[Int]] is a good type for a sodoku. But map does not give any info regarding the place it is in. This is one of the ideas behind map.
You could zip together the index with the value. But a better idea would be to pass the whole [[Int]] and the indexes to to the function. So its type would become:
f :: [[Int]] -> Int -> Int -> [[Int]]
inside the function you can now access the current element by
t !! x !! y
Already did this a while ago as a learning example. It is definitely not the nicest solution, but it worked for me.
import Data.List
import Data.Maybe
import Data.Char
sodoku="\
\-9-----1-\
\8-4-2-3-7\
\-6-9-7-2-\
\--5-3-1--\
\-7-5-1-3-\
\--3-9-8--\
\-2-8-5-6-\
\1-7-6-4-9\
\-3-----8-"
sodoku2="\
\----13---\
\7-5------\
\1----547-\
\--418----\
\951-67843\
\-2---4--1\
\-6235-9-7\
\--7-98--4\
\89----1-5"
data Position = Position (Int, Int) deriving (Show)
data Sodoku = Sodoku [Int]
insertAtN :: Int -> a -> [a] -> [a]
insertAtN n y xs = intercalate [y] . groups n $ xs
where
groups n xs = takeWhile (not.null) . unfoldr (Just . splitAt n) $ xs
instance Show Sodoku where
show (Sodoku s) = (insertAtN 9 '\n' $ map intToDigit s) ++ "\n"
convertDigit :: Char -> Int
convertDigit x = case x of
'-' -> 0
x -> if digit>=1 && digit<=9 then
digit
else
0
where digit=digitToInt x
convertSodoku :: String -> Sodoku
convertSodoku x = Sodoku $ map convertDigit x
adjacentFields :: Position -> [Position]
adjacentFields (Position (x,y)) =
[Position (i,y) | i<-[0..8]] ++
[Position (x,j) | j<-[0..8]] ++
[Position (u+i,v+j) | i<-[0..2], j<-[0..2]]
where
u=3*(x `div` 3)
v=3*(y `div` 3)
positionToField :: Position -> Int
positionToField (Position (x,y)) = x+y*9
fieldToPosition :: Int -> Position
fieldToPosition x = Position (x `mod` 9, x `div` 9)
getDigit :: Sodoku -> Position -> Int
getDigit (Sodoku x) pos = x !! (positionToField pos )
getAdjacentDigits :: Sodoku -> Position -> [Int]
getAdjacentDigits s p = nub digitList
where
digitList=filter (\x->x/=0) $ map (getDigit s) (adjacentFields p)
getFreePositions :: Sodoku -> [Position]
getFreePositions (Sodoku x) = map fieldToPosition $ elemIndices 0 x
isSolved :: Sodoku -> Bool
isSolved s = (length $ getFreePositions s)==0
isDeadEnd :: Sodoku -> Bool
isDeadEnd s = any (\x->x==0) $ map length $ map (getValidDigits s)$ getFreePositions s
setDigit :: Sodoku -> Position -> Int -> Sodoku
setDigit (Sodoku x) pos digit = Sodoku $ h ++ [digit] ++ t
where
field=positionToField pos
h=fst $ splitAt field x
t=tail$ snd $ splitAt field x
getValidDigits :: Sodoku -> Position -> [Int]
getValidDigits s p = [1..9] \\ (getAdjacentDigits s p)
-- Select numbers with few possible choices first to increase execution time
sortImpl :: (Position, [Int]) -> (Position, [Int]) -> Ordering
sortImpl (_, i1) (_, i2)
| length(i1)<length(i2) = LT
| length(i1)>length(i2) = GT
| length(i1)==length(i2) = EQ
selectMoves :: Sodoku -> Maybe (Position, [Int])
selectMoves s
| length(posDigitList)>0 = Just (head posDigitList)
| otherwise = Nothing
where
posDigitList=sortBy sortImpl $ zip freePos validDigits
validDigits=map (getValidDigits s) freePos
freePos=getFreePositions s
createMoves :: Sodoku -> [Sodoku]
createMoves s=
case selectMoves s of
Nothing -> []
(Just (pos, digits)) -> [setDigit s pos d|d<-digits]
solveStep :: Sodoku -> [Sodoku]
solveStep s
| (isSolved s) = [s]
| (isDeadEnd s )==True = []
| otherwise = createMoves s
solve :: Sodoku -> [Sodoku]
solve s
| (isSolved s) = [s]
| (isDeadEnd s)==True = []
| otherwise=concat $ map solve (solveStep s)
s=convertSodoku sodoku2
readSodoku :: String -> Sodoku
readSodoku x = Sodoku []

What benefits do I get from creating an instance of Comonad

In my application, I'm trying to implement an animation system. In this system, animations are represented as a cyclic list of frames:
data CyclicList a = CL a [a]
We can (inefficiently) advance the animation as follows:
advance :: CyclicList a -> CyclicList a
advance (CL x []) = CL x []
advance (CL x (z:zs)) = CL z (zs ++ [x])
Now, I'm pretty sure that this data type is a comonad:
instance Functor CyclicList where
fmap f (CL x xs) = CL (f x) (map f xs)
cyclicFromList :: [a] -> CyclicList a
cyclicFromList [] = error "Cyclic list must have one element!"
cyclicFromList (x:xs) = CL x xs
cyclicLength :: CyclicList a -> Int
cyclicLength (CL _ xs) = length xs + 1
listCycles :: CyclicList a -> [CyclicList a]
listCycles cl = let
helper 0 _ = []
helper n cl' = cl' : (helper (n-1) $ advance cl')
in helper (cyclicLength cl) cl
instance Comonad CyclicList where
extract (CL x _) = x
duplicate = cyclicFromList . listCycles
The question I have is: what kind of benefits do I get (if any) from using the comonad instance?
The advantage of providing a type class or implementing an interface is that code, written to use that typeclass or interface, can use your code without any modifications.
What programs can be written in terms of Comonad? A Comonad provides a way to both inspect the value at the current location (without observing its neighbors) using extract and a way to observe the neighborhood of every location with duplicate or extend. Without any additional functions, this isn't terribly useful. However, if we also require other functions along with the Comonad instance, we can write programs that depend on both local data and data from elsewhere. For example, if we require functions that allow us to change location, such as your advance, we can write programs that depend only on the local structure of the data, not on the data structure itself.
For a concrete example, consider a cellular automata program written in terms of Comonad and the following Bidirectional class:
class Bidirectional c where
forward :: c a -> Maybe (c a)
backward :: c a -> Maybe (c a)
The program could use this, together with Comonad, to extract data stored in a cell and explore the cells forward and backward of the current cell. It can use duplicate to capture the neighborhood of each cell and fmap to inspect that neighborhood. This combination of fmap f . duplicate is extract f.
Here is such a program. rule' is only interesting to the example; it implements cellular automata rules on neighborhood with just the left and right values. rule extracts data from the neighborhood, given the class, and runs the rule on each neighborhood. slice pulls out even larger neighborhoods so that we can display them easily. simulate runs the simulation, displaying these larger neighborhoods for each generation.
rule' :: Word8 -> Bool -> Bool -> Bool -> Bool
rule' x l m r = testBit x ((if l then 4 else 0) .|. (if m then 2 else 0) .|. (if r then 1 else 0))
rule :: (Comonad w, Bidirectional w) => Word8 -> w Bool -> w Bool
rule x = extend go
where
go w = rule' x (maybe False extract . backward $ w) (extract w) (maybe False extract . forward $ w)
slice :: (Comonad w, Bidirectional w) => Int -> Int -> a -> w a -> [a]
slice l r a w = sliceL l w (extract w : sliceR r w)
where
sliceR r w | r > 0 = case (forward w) of
Nothing -> take r (repeat a)
Just w' -> extract w' : sliceR (r-1) w'
sliceR _ _ = []
sliceL l w r | l > 0 = case (backward w) of
Nothing -> take l (repeat a) ++ r
Just w' -> sliceL (l-1) w' (extract w':r)
sliceL _ _ r = r
simulate :: (Comonad w, Bidirectional w) => (w Bool -> w Bool) -> Int -> Int -> Int -> w Bool -> IO ()
simulate f l r x w = mapM_ putStrLn . map (map (\x -> if x then '1' else '0') . slice l r False) . take x . iterate f $ w
This program might have been intended to work with the following Bidirectional Comonad, a Zipper on a list.
data Zipper a = Zipper {
heads :: [a],
here :: a,
tail :: [a]
} deriving Functor
instance Bidirectional Zipper where
forward (Zipper _ _ [] ) = Nothing
forward (Zipper l h (r:rs)) = Just $ Zipper (h:l) r rs
backward (Zipper [] _ _) = Nothing
backward (Zipper (l:ls) h r) = Just $ Zipper ls l (h:r)
instance Comonad Zipper where
extract = here
duplicate (Zipper l h r) = Zipper (goL (h:r) l) (Zipper l h r) (goR (h:l) r)
where
goL r [] = []
goL r (h:l) = Zipper l h r : goL (h:r) l
goR l [] = []
goR l (h:r) = Zipper l h r : goR (h:l) r
But will also work with a CyclicList Bidirectional Comonad.
data CyclicList a = CL a (Seq a)
deriving (Show, Eq, Functor)
instance Bidirectional CyclicList where
forward (CL x xs) = Just $ case viewl xs of
EmptyL -> CL x xs
x' :< xs' -> CL x' (xs' |> x)
backward (CL x xs) = Just $ case viewr xs of
EmptyR -> CL x xs
xs' :> x' -> CL x' (x <| xs')
instance Comonad CyclicList where
extract (CL x _) = x
duplicate (CL x xs) = CL (CL x xs) (go (singleton x) xs)
where
go old new = case viewl new of
EmptyL -> empty
x' :< xs' -> CL x' (xs' >< old) <| go (old |> x') xs'
We can reuse simulate with either data structure. The CyclicList has a more interesting output, because, instead of bumping into a wall, it wraps back around to interact with itself.
{-# LANGUAGE DeriveFunctor #-}
import Control.Comonad
import Data.Sequence hiding (take)
import Data.Bits
import Data.Word
main = do
putStrLn "10 + 1 + 10 Zipper"
simulate (rule 110) 10 10 30 $ Zipper (take 10 . repeat $ False) True (take 10 . repeat $ False)
putStrLn "10 + 1 + 10 Cyclic"
simulate (rule 110) 10 10 30 $ CL True (fromList (take 20 . repeat $ False))

How is 'match' implemented in Haskell's FGL to be O(1)?

In Haskell's Functional Graph Library (FGL), most of the graph algorithms depend on the 'match' function, which, given a Node n and a Graph g, returns c & g', where c is the Context of the n, and g' is the rest of the graph (which contains no references to n).
The only way I can see of doing this is be examining each of the contexts in g and removing any edges which refer to n and adding them to the context c. This would take linear time, I believe.
Martin Erwig, who wrote the library, suggests in this paper that this transformation can be done in constant or at least sub-linear time. Can anyone explain to me how this is accomplished?
match is defined in the Graph typeclass, so the implementation of that function depends on the datatype that implements the typeclass.
The package comes with two implementations, one using Patricia trees, one using regular trees. You can view the source for either yourself.
For example, the Patricia tree implementation:
import Data.Graph.Inductive.Graph
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.List
import Data.Maybe
import Control.Arrow(second)
newtype Gr a b = Gr (GraphRep a b)
type GraphRep a b = IntMap (Context' a b)
type Context' a b = (IntMap [b], a, IntMap [b])
type UGr = Gr () ()
instance Graph Gr where
-- ...
match = matchGr
-- ...
matchGr :: Node -> Gr a b -> Decomp Gr a b
matchGr node (Gr g)
= case IM.lookup node g of
Nothing
-> (Nothing, Gr g)
Just (p, label, s)
-> let !g1 = IM.delete node g
!p' = IM.delete node p
!s' = IM.delete node s
!g2 = clearPred g1 node (IM.keys s')
!g3 = clearSucc g2 node (IM.keys p')
in
(Just (toAdj p', node, label, toAdj s), Gr g3)
lookup and delete on IntMaps have O(min(n,W)) runtime, which is effectively constant on a given machine with a set integer width (W).
So that just leaves clearPred, clearSucc, and toAdj:
clearSucc :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearSucc g _ [] = g
clearSucc g v (p:rest) = clearSucc g' v rest
where
g' = IM.adjust f p g
f (ps, l, ss) = (ps, l, IM.delete v ss)
clearPred :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearPred g _ [] = g
clearPred g v (s:rest) = clearPred g' v rest
where
g' = IM.adjust f s g
f (ps, l, ss) = (IM.delete v ps, l, ss)
adjust is also O(min(n,W)), so we don't need to worry about that. Both clearSucc and clearPred recurse through each element in the adjacency list, though, so that's O(degree) combined.
toAdj :: IntMap [b] -> Adj b
toAdj = concatMap expand . IM.toList
where
expand (n,ls) = map (flip (,) n) ls
toAdj creates a new edge list, which is O(max(|V|,|E|)), but this is constructed lazily, so we don't need to worry about this unless it's used.

Resources