What language to learn after Haskell? [closed] - haskell

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
As my first programming language, I decided to learn Haskell. I'm an analytic philosophy major, and Haskell allowed me to quickly and correctly create programs of interest, for instance, transducers for natural language parsing, theorem provers, and interpreters. Although I've only been programming for two and a half months, I found Haskell's semantics and syntax much easier to learn than more traditional imperative languages, and feel comfortable (now) with the majority of its constructs.
Programming in Haskell is like sorcery, however, and I would like to broaden my knowledge of programming. I would like to choose a new programming language to learn, but I do not have enough time to pick up an arbitrary language, drop it, and repeat. So I thought I would pose the question here, along with several stipulations about the type of language I am looking for. Some are subjective, some are intended to ease the transition from Haskell.
Strong type system. One of my favorite parts of programming in Haskell is writing type declarations. This helps structure my thoughts about individual functions and their relationship to the program as a whole. It also makes informally reasoning about the correctness of my program easier. I'm concerned with correctness, not efficiency.
Emphasis on recursion rather than iteration. I use iterative constructs in Haskell, but implement them recursively. However, it is much easier to understand the structure of a recursive function than a complicated iterative procedure, especially when using combinators and higher-order functions like maps, folds and bind.
Rewarding to learn. Haskell is a rewarding language to work in. It's a little like reading Kant. My experience several years ago with C, however, was not. I'm not looking for C. The language should enforce a conceptually interesting paradigm, which in my entirely subjective opinion, the C-likes do not.
Weighing the answers: These are just notes, of course. I'd just like to reply to everyone who gave well-formed responses. You have been very helpful.
1) Several responses indicated that a strong, statically typed language emphasizing recursion means another functional language. While I want to continue working strongly with Haskell, camccann and larsmans correctly pointed out that another such language would "ease the transition too much." These comments have been very helpful, because I am not looking to write Haskell in Caml! Of the proof assistants, Coq and Agda both look interesting. In particular, Coq would provide a solid introduction to constructive logic and formal type theory. I've spent a little time with first-order predicate and modal logic (Mendellsohn, Enderton, some of Hinman), so I would probably have a lot of fun with Coq.
2) Others heavily favored Lisp (Common Lisp, Scheme and Clojure). From what I gather, both Common Lisp and Scheme have excellent introductory material (On Lisp and The Reasoned Schemer, SICP). The material in SICP causes me to lean towards Scheme. In particular, Scheme through SICP would cover a different evaluation strategy, the implementation of laziness, and a chance to focus on topics like continuations, interpreters, symbolic computation, and so on. Finally, as others have pointed out, Lisp's treatment of code/data would be entirely new. Hence, I am leaning heavily towards option (2), a Lisp.
3) Third, Prolog. Prolog has a wealth of interesting material, and its primary domain is exactly the one I'm interested in. It has a simple syntax and is easy to read. I can't comment more at the moment, but after reading an overview of Prolog and skimming some introductory material, it ranks with (2). And it seems like Prolog's backtracking is always being hacked into Haskell!
4) Of the mainstream languages, Python looks the most interesting. Tim Yates makes the languages sound very appealing. Apparently, Python is often taught to first-year CS majors; so it's either conceptually rich or easy to learn. I'd have to do more research.
Thank you all for your recommendations! It looks like a Lisp (Scheme, Clojure), Prolog, or a proof assistant like Coq or Agda are the main langauages being recommended.

I would like to broaden my knowledge of programming. (...) I thought I would pose the question here, along with several stipulations about the type of language I am looking for. Some are subjective, some are intended to ease the transition from Haskell.
Strong type system. (...) It also makes informally reasoning about the correctness of my program easier. I'm concerned with correctness, not efficiency.
Emphasis on recursion rather than iteration. (...)
You may be easing the transition a bit too much here, I'm afraid. The very strict type system and purely functional style are characteristic of Haskell and pretty much anything resembling a mainstream programming language will require compromising at least somewhat on one of these. So, with that in mind, here are a few broad suggestions aimed at retaining most of what you seem to like about Haskell, but with some major shift.
Disregard practicality and go for "more Haskell than Haskell": Haskell's type system is full of holes, due to nontermination and other messy compromises. Clean up the mess and add more powerful features and you get languages like Coq and Agda, where a function's type contains a proof of its correctness (you can even read the function arrow -> as logical implication!). These languages have been used for mathematical proofs and for programs with extremely high correctness requirements. Coq is probably the most prominent language of the style, but Agda has a more Haskell-y feel (as well as being written in Haskell itself).
Disregard types, add more magic: If Haskell is sorcery, Lisp is the raw, primal magic of creation. Lisp-family languages (also including Scheme and Clojure) have nearly unparalleled flexibility combined with extreme minimalism. The languages have essentially no syntax, writing code directly in the form of a tree data structure; metaprogramming in a Lisp is easier than non-meta programming in some languages.
Compromise a bit and move closer to the mainstream: Haskell falls into the broad family of languages influenced heavily by ML, any of which you could probably shift to without too much difficulty. Haskell is one of the strictest when it comes to correctness guarantees from types and use of functional style, where others are often either hybrid styles and/or make pragmatic compromises for various reasons. If you want some exposure to OOP and access to lots of mainstream technology platforms, either Scala on the JVM or F# on .NET have a lot in common with Haskell while providing easy interoperability with the Java and .NET platforms. F# is supported directly by Microsoft, but has some annoying limitations compared to Haskell and portability issues on non-Windows platforms. Scala has direct counterparts to more of Haskell's type system and Java's cross-platform potential, but has a more heavyweight syntax and lacks the powerful first-party support that F# enjoys.
Most of those recommendations are also mentioned in other answers, but hopefully my rationale for them offers some enlightenment.

I'm going to be That Guy and suggest that you're asking for the wrong thing.
First you say that you want to broaden your horizons. Then you describe the kind of language that you want, and its horizons sound incredibly like the horizons you already have. You're not going to gain very much by learning the same thing over and over.
I would suggest you learn a Lisp — i.e. Common Lisp, Scheme/Racket or Clojure. They're all dynamically typed by default, but feature some sort of type hinting or optional static typing. Racket and Clojure are probably your best bets.
Clojure is more recent and has more Haskellisms like immutability by default and lots of lazy evaluation, but it's based on the Java Virtual Machine, which means it has some odd warts (e.g. the JVM doesn't support tail call elimination, so recursion is kind of a hack).
Racket is much older, but has picked up a lot of power along the way, such as static type support and a focus on functional programming. I think you'd probably get the most out of Racket.
The macro systems in Lisps are very interesting and vastly more powerful than anything you'll see anywhere else. That alone is worth at least looking at.

From the standpoint of what suits your major, the obvious choice seems like a logic language such as Prolog or its derivatives. Logic programming can be done very neatly in a functional language (see, e.g. The Reasoned Schemer) , but you might enjoy working with the logic paradigm directly.
An interactive theorem proving system such as twelf or coq might also strike your fancy.

I'd advise you learn Coq, which is a powerful proof assistant with syntax that will feel comfortable to the Haskell programmer. The cool thing about Coq is it can be extracted to other functional languages, including Haskell. There is even a package (Meldable-Heap) on Hackage that was written in Coq, had properties proven about its operation, then extracted to Haskell.
Another popular language that offers more power than Haskell is Agda - I don't know Agda beyond knowing it is dependently typed, on Hackage, and well respected by people I respect, but those are good enough reasons to me.
I wouldn't expect either of these to be easy. But if you know Haskell and want to move forward to a language that gives more power than the Haskell type system then they should be considered.

As you didn't mention any restrictions besides your subjective interests and emphasize 'rewarding to learn' (well, ok, I'll ignore the static typing restriction), I would suggest to learn a few languages of different paradigms, and preferably ones which are 'exemplary' for each of them.
A Lisp dialect for the code-as-data/homoiconicity thing and because they are good, if not the best, examples of dynamic (more or less strict) functional programming languages
Prolog as the predominant logic programming language
Smalltalk as the one true OOP language (also interesting because of its usually extremely image-centric approach)
maybe Erlang or Clojure if you are interested in languages forged for concurrent/parallel/distributed programming
Forth for stack oriented programming
(Haskell for strict functional statically typed lazy programming)
Especially Lisps (CL not as much as Scheme) and Prolog (and Haskell) embrace recursion.
Although I am not a guru in any of these languages, I did spend some time with each of them, except Erlang and Forth, and they all gave me eye-opening and interesting learning experiences, as each one approaches problem solving from a different angle.
So, though it may seem as if I ignored the part about your having no time to try a few languages, I rather think that time spent with any of these will not be wasted, and you should have a look at all of them.

How about a stack-oriented programming language? Cat hits your high points. It is:
Statically typed with type inference.
Makes you re-think common imperative languages concepts like looping. Conditional execution and looping are handled with combinators.
Rewarding - forces you to understand yet another model of computation. Gives you another way to think about and decompose problems.
Dr. Dobbs published a short article about Cat in 2008 though the language has changed slightly.

If you want a strong(er)ly typed Prolog, Mercury is an interesting choice. I've dabbled in it in the past and I liked the different perspective it gave me. It also has moded-ness (which parameters need to be free/fixed) and determinism (how many results are there?) in the type system.
Clean is very similar to Haskell, but has uniqueness typing, which are used as an alternative to Monads (more specifically, the IO monad). Uniqueness typing also does interesting stuff to working with arrays.

I'm a bit late but I see that no one has mentioned a couple of paradigms and related languages that can interest you for their high-level of abstraction and generality:
rewriting systems, like Maude or ELAN;
Constraint Handling Rules (CHR).

Despite its failure to meet one of your big criteria (static* typing), I'm going to make a case for Python. Here are a few reasons I think you should take a look at it:
For an imperative language, it is surprisingly functional. This was one of the things that struck me when I learned it. Take list comprehensions, for example. It has lambdas, first-class functions, and many functionally-inspired compositions on iterators (maps, folds, zips...). It gives you the option of picking whatever paradigm suits the problem best.
IMHO, it is, like Haskell, beautiful to code in. The syntax is simple and elegant.
It has a culture that focuses on doing things in a straightforward way, rather than focusing too minutely on efficiency.
I understand if you are looking for something else though. Logic programming, for instance, might be right up your alley, as others have suggested.
* I assume you mean static typing here, since you want to declare the types. Techincally, Python is a strongly typed language, since you can't arbitrarily interpret, say, a string as an number. Interestingly, there are Python derivatives that allow static typing, like Boo.

I would recommend you Erlang. It is not strong typed language and you should try it. It is very different approach to programming and you may find that there are problems where strong typing is not The Best Tool(TM). Anyway Erlang provides you tools for static type verification (typer, dialyzer) and you can use strong typing on parts where you gain benefits from it. It can be interesting experience for you but be prepared, it will be very different feeling. If you are looking for "conceptually interesting paradigm" you can found them in Erlang, message passing, memory separation instead sharing, distribution, OTP, error handling and error propagation instead of error "prevention" and so. Erlang can be far away from your current experience but still brain tickling if you have experience with C and Haskell.

Given your description, I would suggest Ocaml or F#.
The ML family are generally very good in terms of a strong type system. The emphasis on recursion, coupled with pattern matching, is also clear.
Where I am a bit hesitant is on the rewarding to learn part. Learning them was rewarding for me, no doubt. But given your restrictions and your description of what you want, it seems you are not actually looking for something much more different than Haskell.
If you didn't put your restrictions I would have suggested Python or Erlang, both of which would take you out of your comfort zone.

In my experience, strong typing + emphasis on recursion means another functional programming language. Then again, I wonder if that's very rewarding, given that none of them will be as "pure" as Haskell.
As other posters have suggested, Prolog and Lisp/Scheme are nice, even though both are dynamically typed. Many great books with a strong theoretical "taste" to them have been published about Scheme in particular. Take a look at SICP, which also conveys a lot of general computer science wisdom (meta-circular interpreters and the like).

Factor will be a good choice.

You could start looking into Lisp.
Prolog is a cool language too.

If you decide to stray from your preference for a type system,you might be interested in the J programming language. It is outstanding for how it emphasizes function composition. If you like point-free style in Haskell, the tacit form of J will be rewarding. I've found it extraordinarily thought-provoking, especially with regard to semantics.
True, it doesn't fit your preconceptions as to what you'd like, but give it a look. Just knowing that it's out there is worth discovering. The sole source of complete implementations is J Software, jsoftware.com.

Go with one of the main streams. Given the resources available, future marketability of your skill, rich developer ecosystem I think you should start with either Java or C#.

Great question-- I've been asking it myself recently after spending several months thoroughly enjoying Haskell, although my background is very different (organic chemistry).
Like you, C and its ilk are out of the question.
I've been oscillating between Python and Ruby as the two practical workhorse scripting languages today (mules?) that both have some functional components to them to keep me happy. Without starting any Rubyist/Pythonist debates here, but my personal pragmatic answer to this question is:
Learn the one (Python or Ruby) that you first get an excuse to apply.

Related

Is Haskell suitable as a first language?

I have had previous exposure to imperative languages (C, some Java) however I would say I had no experience in programming. Therefore: treating me as a non-programmer, would Haskell be suitable as a first language?
My interests in Pure Mathematics and CS seem to align to the intention of most Haskell tutorials, and although i can inherently recognise the current and future industry value of imperative programming, I find the potential of functional programming (in as much as it seems such a paradigm shift) fascinating.
I guess my question can be distilled as follows - would a non-programmer have to understand imperative programming to appreciate and fully utilise functional programming?
Some references:
Are there any studies on whether functional/declarative or imperative programming is easier to learn as a first language?
Which programming languages have helped you to understand programming better?
Well, the existence of SICP suggests that functional languages can be used as introductory material. Scheme is perhaps more approachable than Haskell, however.
Haskell seems to have a reputation for being "difficult" to learn, but people tend to forget that classic imperative programming is difficult to learn as well. Many people struggle at first with the concept of assigning a value to a variable, and a surprising number of programmers never actually do become comfortable with pointers and indirect references.
The connections between Haskell and abstract mathematics don't really matter as much as people sometimes assume, but for someone interested in the math anyway, looking at the analogies might provide an interesting bonus.
There has been at least one study on the effects of teaching Haskell to beginner programmers:
The Risks and Benefits of Teaching Purely Functional Programming in First Year. Manuel M. T. Chakravarty and Gabriele Keller. Journal of Functional Programming 14(1), pp 113-123, 2004.
With the following abstract:
We argue that teaching purely
functional programming as such in
freshman courses is detrimental to
both the curriculum as well as to
promoting the paradigm. Instead, we
need to focus on the more general aims
of teaching elementary techniques of
programming and essential concepts of
computing. We support this viewpoint
with experience gained during several
semesters of teaching large first-year
classes (up to 600 students) in
Haskell. These classes consisted of
computer science students as well as
students from other disciplines. We
have systematically gathered student
feedback by conducting surveys after
each semester. This article
contributes an approach to the use of
modern functional languages in first
year courses and, based on this,
advocates the use of functional
languages in this setting.
So, yes, you can use Haskell, but you should focus on elementary, general techniques and essential concepts, rather than functional programming per se.
There are a number of popular books for beginner programmers that also make it an attractive target for teaching these elementary concepts, including:
"Programming in Haskell"
"The Craft of Functional Programming"
Additionally, Haskell is already widely taught as a first language. -- but remember, the key is to focus on the core concepts as illustrated in Haskell, not to teach the large, rich language that is Haskell itself.
I'll go against the popular opinion and say that Haskell is NOT a good first programming language for the typical first-time programmer. I don't think it is as approachable for a raw beginner as imperative languages like Ruby.
The reason for this, is that people do not think about the world in a functional manner. When they see a car driving down the street, they see the same car, with ever-changing mutable state. They don't see a series of slightly different immutable cars.
If you check out other SO questions, you'll see that Haskell is pretty much never mentioned as a good choice for a beginner.
However, if you are a mathematician, or already know enough about programming to understand the value of functional programming, I think Haskell is a fine choice.
So to summarize, I think Haskell is a perfect fit for you, but not a good fit for the typical beginner.
EDIT: Thanks for the insightful comments. Owen's point that people think in a multi-paradigm manner is very true. This strengthens my belief that a multi-paradigm language like Ruby would be easier to pick up, and has the added benefit of exposing the student to both imperative and functional thinking. Haskell is decidedly not multi-paradigm.
Chuck mentioned Haskell's sophisticated type system which is another great point. While I personally prefer statically typed languages, using a dynamic language allows a beginner to ignore that piece of the puzzle until they are curious enough to find out what is going on behind the scenes. Haskell's type system, while elegant, is in your face from day 1.
Eleven reasons to use Haskell as a mathematician
I cannot write it better than that. But to summarize:
Haskell is declarative and mathematics is the ultimate declarative language, which means that code written in Haskell is remarkably similar to what you would write as a mathematical statement.
Haskell is high-level, no need to know details about caches, memory management and all the other hardware stuff. Also that means short programs which is always good.
Haskell is great for symbolic computation, algebra, logic ...
Haskell is pretty :)
To answer your question: you'll have no problem to start with a functional language as a mathematician with no programming experience. Actually it's the better choice, you won't have to repair the brain damage you would get from C/Java/whatever.
You should also check Mathematica. Some people tend to dislike it since it is a commercial closed-source product, but I think it's a pretty good environment for doing mathematics.
If you haven't had any experience at all, it will in fact be easier for you to be productive in functional programming, especially PURE functional programming. I'm an immigrant from imperative to function, I had to deal with having to forget about 80% of what I learned to be productive in Haskell.
In contrast, it's easier to switch from functional to imperative later on.
On one hand, I think Haskell is nice as a first language, but I suppose, for anyone seriously interested in programming, it should be learned in parallel with C or after C (or an assembly). C is necessary to learn what's happening under the hood, what are the costs of doing this and that, and finally appreciate the usefulness of higher level of abstraction and automatic resource management. I think when being exposed to both C (as a low-level imperative language) and Haskell (as a high-level functional language), most students will find Haskell both practical and expressive.
On the other hand, I think that programming is a craft. It is a practical activity, and it is important to learn the joy of creating something new, useful or interesting. So you need to get things done. And the easiest way for this is using a language which has tools for your problems, i.e. libraries for your data formats, algorithms for your kind of problems. And at this point, Python (or Ruby) may be a better choice, because Hackage still lags behind PyPI in many areas (and say, how many days you need to teach a novice to manipulate an image, or to plot charts in Haskell?).
So, my opinion is that some exposure to low-level imperative programming is necessary (to OOP, probably, not). Then you can understand the value of Haskell. But to get things done, and to quickly become productive, Python is a better choice for beginners. Haskell requires a few weeks before it becomes your tool.
I would say that it is suitable as a first language, and that having learned an imperative language first would probably only interfere with the learning process (since it requires lots of unlearning first).
As a caveat, I would add that a functional language principles would probably be best understood by someone with a mathematical background, as the concepts are abstract mathematical ones.
I know that many schools do teach it as a first functional language, but not as a first language.
Yes it is. Real World Haskell is a great way to get into it http://book.realworldhaskell.org/
I would hesitantly say "yes" except for the fact that in learning, finding someone as a mentor or tutor would be a much less daunting task if you chose a more imperative language to start programming. Might I suggest R or Python (with NumPy and SciPy) instead?
No.
It's very easy for a haskell98 program to be clearly understood. LYAH is a great tutorial for people with no experience but trying to prevent a learner from stumbling on extensions x, y z is gona be tricky. Soon they start to explore and become overwhelmed with advanced programming/mathematical concepts which are much harder to understand but need to be understood to read other's code.
If every piece of haskell was written in just haskell'98/'10 I would probably say yes though.
Without necessarily addressing the question as such, I would add: if you find haskell's persnicketiness too hard, do not be discouraged.
There are other programming languages, even functional ones, which are late bound.

Why purely functional languages instead of "impure" functional languages?

What's the advantage, for someone who is not a theoretical computer scientist, of learning a purely functional language like Haskell or Erlang instead of an "impure" language with a strong functional component, like Python or version 2 of the D programming language? My arguments are as follows:
No paradigm is perfect. Languages that are single-paradigm, regardless of what paradigm that is, are very restrictive.
Python or D will ease you into functional programming while you get real work done. Haskell or Erlang will force you to learn functional style all at once before you can actually do anything of interest in them.
Edit: By "impure" functional languages, what I really mean is strongly multiparadigm languages w/ a functional flavor, not strongly functional languages with some non-functional abilities.
It all depends on what are trying to achieve. If your goal to write production code in a functional language - a 'pure' functional language can make it more difficult.
But if you are trying to learn new concepts, 'pure' language gives you the benefit of guarding where you are sliding off the mark of functional concepts. Once you have clear understanding of differences you can go to a mixed environments - like F#, but before that it is all too easy to slip to the OOP way of doing things and because of this miss the advantages of functional approach.
In some other thread I offered an opinion that a better way of learning F# is to start with let us say Haskell (and was voted down for this), but if you learn F# to do OOP than what's the point - stay with C#
You almost answered your own question:
Haskell or Erlang will force you to learn functional style all at once before you can actually do anything of interest in them.
Actually, depending on what you mean by 'of interest', you can be productive in Haskell in a week.
The main reason for anyone to learn Haskell (language theorists already know it, and other kinds of theorists are too busy proving theorems to be bothered with programming) is that learning Haskell will change the way you think about programming. Especially the type system, list comprehensions (stolen for Python—the highest form of praise), and programming with pattern matching. You will be able to use many of your new thoughts in all the programming you do. And Haskell will force you to think new thoughts in a way that other langauges won't.
Erlang is an honorable language but has nothing comparable to Haskell's type system.
If you like Paul Graham you can read more about this line of reasoning in his essay Beating the Averages, especially the part about the "Blub Paradox". Just substitute Haskell for Lisp :-)
You learn very little if your "new" language is just a slight permutation of what you already know. It's like asking, "Why learn Chinese when I can just get a dialect coach to teach me to speak with a Scottish brogue?" I guess it's fine if you enjoy speaking with a brogue, but you're not really expanding your expertise very much.
Learning a functional language teaches you a new way of looking at things. Impure or mixed-paradigm languages like OCaml are good as well, but it can be tempting to use the impure elements as a crutch to avoid having to look at the problem in a new way. No, functional languages are not a magic bullet, but they do have a lot of interesting benefits, and you're robbing yourself of those benefits if you learn a language that has a "functional components" but doesn't really work like a real functional language.
For example, in a pure functional language like Haskell, state is very carefully isolated from the rest of your program. This makes all sorts of optimizations trivial that are very hard in other languages. For example, state is the enemy of parallel processing. In Haskell, you can just look at a function's type and be 100% confident that it won't create any side effects.
This way of thinking in functions that work with immutable data structures something that a pure functional language can teach you. I'm not saying pure functional languages are "the best," but they have their benefits. It's another tool in your belt. And you won't get that tool by sticking with what's familiar.
Is Erlang purely functional? I honestly thought it wasn't.
I'm not an expert on this, so take my words with a grain of salt.
Side-effects prevent (or make more complicated) lots of optimizations, including parallelism. So, in theory, going pure functional should mean better optimization for faster code, although I'm not sure this is true in practice. Even if it does not, it might someday be... it will be fun if a purely functional language comes along which makes using up all the cores easy peasy.
Additionally, in a way, programming without side-effects makes for easier to understand programs.
Because only pure is declarative at the operational semantics level. Pure functional programming (i.e. eliminating accidental dependencies) is required for parallelism.
Also, without the immutability restriction, you won't be forced to think about how to do algorithms just as fast as they can be done in imperative, or how to model interaction with the real world without state spaghetti, using functional reactive programming.
Thus you won't be maximizing your skills for writing code that is maximally composable and extensible.

What are the pros and cons of Haskell? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
I've learned several languages, but now I want to choose one. The language that I most liked was Haskell, which is like an interpreted language but is a compiled.
What are the pros and cons of Haskell?
Just a couple of ideas I've got in my head at the moment.
Pros
Learning Haskell will change the way you think about programming. (People often find themselves writing Haskell-like code in other languages once they learn Haskell.)
Type safety is miles above mainstream languages (null pointer exceptions, anyone?)
Type inference means you don't have to worry about types, unless absolutely necessary.
It produces high performant executables.
Parallelism is almost trivial with the par and pseq combinators
The interactive environment (hugs/ghci) allow you to prototype ideas quickly
Has a nice supportive community (IRC, mailing lists, etc.)
Very expressive and concise syntax
GHC is actively being developed and improved, including support for code execution on GPU for that extra kick of high-performance computing
QuickCheck > unit testing
Cons
Learning Haskell will ruin all other languages for you.
It's quite complicated to get into
Very easy to write cryptic programs that no-one understands, not even yourself a few days later
There are cons to using Haskell for certain projects, but there are no cons to learning Haskell. It takes time, but it is worth it. You will be a better programmer.
I would also like to stress some of the practical features of Haskell, despite its mere beauty:
Gets in your way exactly where it should, and keeps out of your way otherwise. That's one of the interesting features, which is responsible for why Haskell just works.
Has a great concurrency system, which is ready for high performance applications.
Provides the basis for new, innovative abstractions and design patterns, among them my personal favorite, functional reactive programming.
Makes even very complicated problems easy to tackle, because a lot of the things, which you need to think about in other languages (proper sequencing, locking, initialization, etc.), are much less of an issue in Haskell.
Laziness is not simply an optimization. It allows you to solve problems in entirely new ways, which are much easier on the brain. No destructive updates, yet the same result with about the same performance.
If you have the choice, I totally recommend learning Haskell over any other language. It seems to make the optimal tradeoff between safety, level of abstractness and practicality among the existing languages.
Pros:
1) Haskell is the most state-of-the-art programming language.
I did some research and haskell seems to be the only real state-of-the-art programming language. There are others like agda and coq, but those are quite experimental and lack features for real world programming (e.g. library support). It’s best to invest in a state-of-the art programming language.
(note: I don't argue about the details why haskell is state-of-the-art, and almost any other programming language is not. This would take too much time. So it's simply my subjective opinion. Same is true for the other statements.)
(note: some features I mention later are probably GHC specific, but I still write only haskell)
2) Haskell programmers are typically very smart. The code quality of the libraries is exceptionally high. Further, tips on stackoverflow are very well written, and also on a high level (thanks to people like Don Stewart, just to name one). I think one of the best ways to improve in programming is by learning from other peoples' code. Haskell is very good in that regard.
3) Imperative programming in moste OOP languages is obsolete. So is usual way of programming with side effects. But there are very few programming languages for declarative programming without side-effects. For instance Scala, F#, Ocaml and Erlang are not side effect free. (However, there is work, also in the academic field on OOP languages that are clearly not obsolete. Consider the work of Alan Kay in the past or for instance current state-of-the art academic work in the realm of Smalltalk.)
4) Haskell supports programming with abstract mathematical concepts (e.g. monads, functors, combinators, GADT, etc.). I think this boosts programming productivity.
5) The Haskell type system is very flexible, and supports type inference. This reduces the possible errors a lot. The type system is checked at compile time. The type systems helps as documentation.
6) Some state-of-the art concepts are implemented in haskell first (like the QuickCheck library). There are a lot of interesting extensions.
7) The haskell syntax is very well designed. There are no unnecessary parenthesis. The code is compact and the synatax for pattern matching and list comprehension is quite nice. People like Knuth advocate literate programming, and haskell/GHC supports it.
8) haskell supports lazy evaluation
Cons:
1) It's very hard to learn, and it takes hours, months to master haskell. It’s even harder without a proper computer science background. Things like Monads and Functors are hard to understand, especially without mathematical background. So most programmers probably don’t have the ability or will to learn haskell. Haskell is not ‘simple’. Howevery it’s impossible to have a simple language that supports all the advanced features.
2) The IDE options are not as good as those for other programming languages. I use leksah as my IDE, it’s very good, but it’s not comparable to Eclipse for java development.
3) Haskell cannot be used for android or Iphone development. In contrast Scala can be used for android development, and it’s also compatible to java, which is a huge advantage.
4) I think some libraries lack supporting people who maintain and improve them. I do semantic web programming in haskell, and the library support could be better.
Haskell is not suited for all projects. If you need every millisecond of performance, C/C++ is still probably the best option. So haskell is suited for many projects, but not all.
Haskell has many technical advantages over other programming languages. However, there might be political reason against using haskell. For example Scala integrates better with existing java infrastructure.
What do you want to write, what type of applications? What problems do you want to solve?
There are some problem types that Haskell will excel in, but, if you write a program that requires constantly changing state then Haskell is a bad choice.
If while modeling the problem it doesn't fit well with functional programming, such as writing a CAD (computer-aided design) program, OOP would be a better choice, just because the programming paradigm fits better with the model.
But, if you are not affected by these problems then Haskell can be a great language to use.
but now I want to choose one
...
Then I want to know the pros and cons of this powerfull language(just to make the correct choice).
If you will permit me to generalize, the choice of a language really depends on the problem you are trying to solve. There is no one choice that will work for everything, and
there will always be some language that will look better than the one you are using now.
Keep learning new languages, however, since the experiences will heighten your abilities to know when a language is wrong for a project.

Haskell, Lisp, and verbosity [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
For those of you experienced in both Haskell and some flavor of Lisp, I'm curious how "pleasant" (to use a horrid term) it is to write code in Haskell vs. Lisp.
Some background: I'm learning Haskell now, having earlier worked with Scheme and CL (and a little foray into Clojure). Traditionally, you could consider me a fan of dynamic languages for the succinctness and rapidity they provide. I quickly fell in love with Lisp macros, as it gave me yet another way to avoid verbosity and boilerplate.
I'm finding Haskell incredibly interesting, as it's introducing me to ways of coding I didn't know existed. It definitely has some aspects that seem like they would aid in achieving agility, like ease of writing partial functions. However, I'm a bit concerned about losing Lisp macros (I assume I lose them; truth be told I may have just not learned about them yet?) and the static typing system.
Would anyone who has done a decent amount of coding in both worlds mind commenting on how the experiences differ, which you prefer, and if said preference is situational?
Short answer:
almost anything you can do with macros you can do with a higher-order function (and I include monads, arrows, etc.), but it might require more thinking (but only the first time, and it's fun and you'll be a better programmer for it), and
the static system is sufficiently general that it never gets in your way, and somewhat surprisingly it actually "aids in achieving agility" (as you said) because when your program compiles you can be almost certain that is correct, so this certainty lets you try out things you might be otherwise afraid to try -- there is a "dynamic" feel to programming although it's not the same as with Lisp.
[Note: There is a "Template Haskell" that lets you write macros just as in Lisp, but strictly speaking you should never need it.]
First of all, don't worry about losing particular features like dynamic typing. As you're familiar with Common Lisp, a remarkably well-designed language, I assume you're aware that a language can't be reduced to its feature set. It's all about a coherent whole, isn't it?
In this regard, Haskell shines just as brightly as Common Lisp does. Its features combine to provide you with a way of programming that makes code extremely short and elegant. The lack of macros is mitigated somewhat by more elaborate (but, likewise, harder to understand and use) concepts like monads and arrows. The static type system adds to your power rather than getting in your way as it does in most object-oriented languages.
On the other hand, programming in Haskell is much less interactive than Lisp, and the tremendous amount of reflection present in languages like Lisp just doesn't fit the static view of the world that Haskell presupposes. The tool sets available to you are therefore quite different between the two languages, but hard to compare to one another.
I personally prefer the Lisp way of programming in general, as I feel it fits the way I work better. However, this doesn't mean you're bound to do so as well.
There's less need for metaprogramming in Haskell than in Common Lisp because much can be structured around monads and the added syntax makes embedded DSLs look less tree-like, but there's always Template Haskell, as mentioned by ShreevatsaR, and even Liskell (Haskell semantics + Lisp syntax) if you like the parentheses.
Concerning macros, here is a page which talk about it : Hello Haskell, Goodbye Lisp. It explains a point of view where macros are just not needed in Haskell. It comes with a short example for comparison.
Example case where a LISP macro is required to avoid evaluation of both arguments :
(defmacro doif (x y) `(if ,x ,y))
Example case where Haskell does not systematically evaluates both argument, without the need of anything like a macro definition :
doif x y = if x then (Just y) else Nothing
And voilà
I'm a Common Lisp programmer.
Having tried Haskell some time ago my personal bottom line was to stick with CL.
Reasons:
dynamic typing (check out Dynamic vs. Static Typing — A Pattern-Based Analysis by
Pascal Costanza)
optional and keyword arguments
uniform homoiconic list syntax with macros
prefix syntax (no need to remember precedence rules)
impure and thus more suited for quick prototyping
powerful object system with meta-object protocol
mature standard
wide range of compilers
Haskell does have its own merits of course and does some things in a fundamentally different way, but it just doesn't cut it in the long term for me.
In Haskell you can define an if function, which is impossible in LISP. This is possible because of laziness, which allows for more modularity in programs. This classic paper: Why FP matters by John Hughes, explains how laziness enhances composability.
There are really cool things that you can achieve in Lisp with macros that are cumbersome (if possible) in Haskell. Take for example the `memoize' macro (see Chapter 9 of Peter Norvig's PAIP). With it, you can define a function, say foo, and then simply evaluate (memoize 'foo), which replaces foo's global definition with a memoized version. Can you achieve the same effect in Haskell with higher-order functions?
As I continue my Haskell-learning journey, it seems that one thing that helps "replace" macros is the ability to define your own infix operators and customize their precedence and associativity. Kinda complicated, but an interesting system!

Most interesting non-mainstream language? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I'm interested in compilers, interpreters and languages.
What is the most interesting, but forgotten or unknown, language you know about? And more importantly, why?
I'm interested both in compiled, interpreted and VM languages, but not esoteric languages like Whitespace or BF. Open source would be a plus, of course, since I plan to study and hopefully learn from it.
I love compilers and VMs, and I love Lua.
Lua is not as well supported as many other scripting languages, but from a mindset like yours I'm sure you will fall in love with Lua too. I mean it's like lisp, (can do anything lisp can as far as I know), has lots of the main features from ADA, plus it's got meta programming built right in, with functional programming and object oriented programming loose enough to make any type of domain language you might want. Besides the VM's code is simple C which means you can easily dig right into it to appreciate even at that level.
(And it's open-source MIT license)
I am a fan of the D programming language. Here is a wikipedia article and and intro from the official site.
Some snippets from the wikipedia article:
The D programming language, also known simply as D, is an object-oriented, imperative, multiparadigm system programming language by Walter Bright of Digital Mars. It originated as a re-engineering of C++, but even though it is predominantly influenced by that language, it is not a variant of C++. D has redesigned some C++ features and has been influenced by concepts used in other programming languages, such as Java, C# and Eiffel. A stable version, 1.0, was released on January 2, 2007. An experimental version, 2.0, was released on June 17, 2007.
on features:
D is being designed with lessons learned from practical C++ usage rather than from a theoretical perspective. Even though it uses many C/C++ concepts it also discards some, and as such is not strictly backward compatible with C/C++ source code. It adds to the functionality of C++ by also implementing design by contract, unit testing, true modules, garbage collection, first class arrays, associative arrays, dynamic arrays, array slicing, nested functions, inner classes, closures[2], anonymous functions, compile time function execution, lazy evaluation and has a reengineered template syntax. D retains C++'s ability to do low-level coding, and adds to it with support for an integrated inline assembler. C++ multiple inheritance is replaced by Java style single inheritance with interfaces and mixins. D's declaration, statement and expression syntax closely matches that of C++.
I guess a lot depends on what you mean by 'non-mainstream'.
Would lisp count as non-mainstream?
I would suggest having a look at Erlang - it's been getting a bit of press recently, so some of the learning resources are excellent. If you've used OO and/or procedural languages, Erlang will definitely bend your mind in new and exciting ways.
Erlang is a pure functional language, with ground-up support for concurrent, distributed and fault-tolerant programs. It has a number of interesting features, including the fact that variables aren't really variables at all - they cannot be changed once declared, and are in fact better understood as a form of pattern.
There is some talk around the blogosphere about building on top of the Erlang platform (OTP) and machine support for other languages like Ruby - Erlang would then become a kind of virtual machine for running concurrent apps, which would be a pretty exciting possibility.
I've recently fallen in love with Ocaml and functional languages in general.
Ocaml, for instance, offers the best of all possible worlds. You get code that compiles to executable native machine language as fast as C, or universally portable byte code. You get an interpreter to bring REPL-speed to development. You get all the power of functional programming to produce perfectly orthogonal structures, deep recursion, and true polymorphism. Atop all of this is support for Object-Orientation, which in the context of a functional language that already provides everything OOP promises (encapsulation, modularization, orthogonal functions, and polymorphic recyclability), means OOP that is forced to actually prove itself.
Smalltalk (see discussion linked here). Sort of the grand-daddy of the dynamic languages (with the possible exception of Lisp and SNOBOL). Very nice to work with and sadly trampled by Java and now the newer languages like Python and Ruby.
FORTH was a language designed for low level code on early CPU's. Its most notable feature was RPN stack based math operations. The same type of math used on early HP calculators. For example 1+2+3+4= would be written as 1, 2, 3, 4, + , +, +
Haskell and REBOL are both fascinating languages, for very different reasons.
Haskell can really open your eyes as a developer, with concepts like monads, partial application, pattern matching, algebraic types, etc. It's a smorgasbord for the curious programmer.
REBOL is no slouch either. It's deceptively simple at first, but when you begin to delve into concepts like contexts, PARSE dialects, and Bindology, you realize there's much more than meets the eye. The nice thing about REBOL is that it's much easier to get started with it than with Haskell.
I can't decide which I like better.
Boo targets the .NET framework and is open source. Inspired by Python.
Try colorForth.
PROLOG is a rule-based language with back-track functionality. You can produce very human-readable (as in prosa) code.
I find constraint languages interesting, but it is hard to know what constitutes forgotten or unknown. Here are some languages I know about (this is certainly not an exhaustive list of any kind):
Ciao, YAP, SWI-Prolog, and GNU Prolog are all Prolog implementations. I think they are all open source. Ciao, gnu prolog, and probably the others also, as is common in Prolog implementations, support other constraint types. Integer programming for example.
Mozart and Mercury are both, as I understand it, alternative logic programming languages.
Alice is more in the ML family, but supports constraint programming using the GECODE C++ library.
Drifting a little bit off topic....
Maude is an interesting term rewrite language.
HOL and COQ are both mechanized proof systems which are commonly used in the languages community.
Lambda-the-Ultimate is a good place to talk about and learn more about programming languages.
I would have to say Scheme, especially in it's R6RS incarnation.
Modula-2 is the non-mainstream language that I've found most interesting. Looks mainstream, but doesn't quite work like what we're used to. Inherits a lot from Pascal, and yet is different enough to provide interesting learning possibilities.
Have a look at Io at http://www.iolanguage.com/
or Lisaac at: https://gna.org/projects/isaac/
or Self at: http://self.sourceforge.net/
or Sather (now absolutly forgotten)
or Eiffel http://www.eiffel.com
Why here are a few reasons. Io is absolutly minimalistic and does not even have "control flow elements" as syntacit entities. Lisaad is a follow-up to Eiffel with many simplifications AFAIKT. Self is a followup to Smalltalk and Io has taken quite alot from Self also. The base thing is that the distinction between Class and Object has been given up. Sather is a anwer to Eiffel with a few other rules and better support for functional programming (right from the start).
And Eiffel is definitly a hallmark for statically typed OO-languages. Eiffel was the first langauge whith support for Design by contract, generics (aka templates) and one of the best ways to handle inheritance. It was and is one of the simpler languages still. I for my part found the best libraries for Eiffel.....
It's creator just has one problem, he did not accept other contributions to the OO field.....
Regards
I recently learned of the existence of Icon from this question.
I have since used it in answers to several questions. (1, 2, 3, 4)
It's interesting because of its evaluation strategy - it is the only imperative language I know that supports backtracking. It allows some nice succinct code for many things :)
Learning any language that requires you to rethink your programming habits is a must. A sure sign is the pace at which you skim through the documentation of a language's core (not library). Fast meaning fruitless here.
My short list would be, in my order of exposure and what were the concepts I learned from them:
Assembly, C: great for learning pointers and their arithmetic.
C++: same as C with an introduction to generics, as long as you can stand the incredibly verbose syntax.
Ruby/Lua: scripting languages, dynamically typed, writing bindings for existing C libraries.
Python/C#/Java: skipped, these languages look to me as a rehash of notions originating elsewhere with a huge standard library. Sure the whole packages are nice, but you won't learn new concepts here.
OCaml: type infererence done right, partial application, compiler infered genericity, immutability as a default, how to handle nulls elegantly.
Haskell: laziness by default, monads.
My €.02.
I can't believe Logo is so forgotten. Ok, it's Logo. Sort of like lisp, but with slightly uglier syntax. Although working with lists in Logo, one encounters the delightfully named 'butfirst' and 'butlast' operations. =P
ML. Learning it and using it forces you think differently about programming problems differently. It also grants one patience, in most cases. Most.
How about go? It's brand new, so it's unknown and not mainstream (yet).
It's interesting because the syntax looks like what happens after you put C and pascal into a jar and make 'em fight.
Well once it was called MUMPS but now its called InterSystems Caché
http://www.intersystems.com/cache/
First answer - Scheme. It's not too widely used, but definitely seems like a solid language to use, especially considering the robustness of DrScheme (which in fact compiles Scheme programs to native binary code).
After that - Haskell is incredibly interesting. It's a language which does lazy evaluation right, and the consequences are incredible (including such things as a one-line definition of the fibonnaci sequence).
Going more mainstream, Python is still not really widely accepted in the business circles, but it definitely should be, by now...
Ken Kahn's ToonTalk, a cartoon language with hard-core theoretic underpinnings:
http://www.toontalk.com/
Prograph: http://en.wikipedia.org/wiki/Prograph ... seems Prograph lives on as Marten:
http://andescotia.com/products/marten/
Self's IDE was/is a thing of beauty, talk about Flow (in the Csíkszentmihályi sense)...
Overall, though, I'd have to say Haskell is the most interesting, for the potential adavances in computing that it represents.
Harbour for dynamic type. Great opition to business apps.
Reia!
http://wiki.reia-lang.org/wiki/Reia_Programming_Language
It's Erlang made sense, it's beutifull and I'm in love. It's so unknown that it doesn't even have a wikipedia page!
The first major (non-BASIC) language that I learned was Dream Maker, from http://www.byond.com.
It's somewhat similar to C++ or Java, but it's largely pre-built for designing multiplayer online games. It's very much based on inheritance.
It's an intersting language especially as a starting language, it gets gratifying results quicker, and lets be honest, most people who are first learning to program are interested in one thing... games.
I find Factor, Oz and OCaml quite interesting. In fact, I have started using Factor for personal projects.
Rebol of course !
It's so simple but so powerfull learn it at http://reboltutorial.com
I've recently looked up a lot about Windows PowerShell.
While not necessarily just a language. It's an awesome shell that has a built-in scripting language. It's basically a super-beefed up command line shell.
Unlike Unix shells, where everything is string text (which definitely has it's benefits), PowerShell commands (cmdlets) use objects. It's based on the .Net framework so you guys who are familiar with that will have probably already figured out that anything PowerShell returns can be piped and the properties and methods of that object can be used. It's fun to say "everything is an object!" again just like when OOP was getting big.
Very neat stuff. For the first time, Windows is implementing some of the Unix command-line interface tools similar to grep and the whole bunch.
If you're interested in VMs, you should look at Parrot...There's a bunch of languages supported and that's pretty neat....
O'caml is a good language if you want to learn how to implement a compiler...

Resources