messed up using do_futex? - linux

I'm getting a weird error. I implemented these two functions:
int flag_and_sleep(volatile unsigned int *flag)
{
int res = 0;
(*flag) = 1;
res = syscall(__NR_futex, flag, FUTEX_WAIT, 1, NULL, NULL, 0);
if(0 == res && (0 != (*flag)))
die("0 == res && (0 != (*flag))");
return 0;
}
int wake_up_if_any(volatile unsigned int *flag)
{
if(1 == (*flag))
{
(*flag) = 0;
return syscall(__NR_futex, flag, FUTEX_WAKE, 1, NULL, NULL, 0);
}
return 0;
}
and test them by running two Posix threads:
static void die(const char *msg)
{
fprintf(stderr, "%s %u %lu %lu\n", msg, thread1_waits, thread1_count, thread2_count);
_exit( 1 );
}
volatile unsigned int thread1_waits = 0;
void* threadf1(void *p)
{
int res = 0;
while( 1 )
{
res = flag_and_sleep( &thread1_waits );
thread1_count++;
}
return NULL;
}
void* threadf2(void *p)
{
int res = 0;
while( 1 )
{
res = wake_up_if_any( &thread1_waits );
thread2_count++;
}
return NULL;
}
After thread2 has had a million or so iterations, I get the assert fire on me:
./a.out
0 == res && (0 != (*flag)) 1 261129 1094433
This means that the syscall - and thereby do_futex() - returned 0. Man says it should only do so if woken up by a do_futex(WAKE) call. But then before I do a WAKE call, I set the flag to 0. Here it appears that flag is still 1.
This is Intel, which means strong memory model. So if in thread1 I see results from a syscall in thread2, I must also see the results of the write in thread 2 which was before the call.
Flag and all pointers to it are volatile, so I don't see how gcc could fail to read the correct value.
I'm baffled.
Thanks!

the race happens when thread 1 goes the full cycle and re-enters WAIT call when thread 2 goes from
(*flag) = 0;
to
return syscall(__NR_futex, flag, FUTEX_WAKE, 1, NULL, NULL, 0);
So the test is faulty.

Related

read/writes to shared variable b/w pthread not synchronized

I am trying to implement a simple producer/consumer code using pthreads. The only common shared data between producer and consumer thread is the count variable used for counting the number of available elements in the shared array. What is happening is the count updated in one thread is not getting reflected in other. How can I make sure the writes to count in one thread appear in other as well? Am I missing something?
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define ARRAY_SIZE 100
int array[ARRAY_SIZE];
volatile int count;
int head;
int tail;
pthread_cond_t full = PTHREAD_COND_INITIALIZER;
pthread_cond_t empty = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
void *producer(void *args)
{
int res = 0;
while (1) {
pthread_mutex_lock(&mutex);
if (count == ARRAY_SIZE) {
printf("\nNo space for new items waiting for consumer to consume");
pthread_cond_wait(&empty, &mutex);
// Sometimes, why is count variable still ARRAY_SIZE.
// How do I make sure writes to 'count' variable in
// consumer thread is visible immediately in producer
// thread?
if (count == ARRAY_SIZE) {
printf("\ncount is still ARRAY_SIZE");
exit(0);
}
}
head %= ARRAY_SIZE;
count++;
array[head] = head;
printf("\nproduced %d/%d", head, count);
head++;
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&full);
}
}
void *consumer(void *args)
{
int res = 0;
while (1) {
pthread_mutex_lock(&mutex);
if (count == 0) {
printf("\nNo items available waiting for producer to produce");
pthread_cond_wait(&full, &mutex);
// Sometimes, why is count variable still zero. How do I
// make sure writes to 'count' variable in producer
// thread is visible immediately in consumer thread?
if (count == 0) {
printf("\ncount is still zero");
exit(0);
}
}
tail %= ARRAY_SIZE;
int ele = array[tail];
count--;
printf("\nconsumed %d/%d", tail, count);
tail++;
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&empty);
}
}
int main()
{
pthread_t producer_thread;
pthread_t consumer_thread;
int ret = 0;
setbuf(stdout, NULL);
ret = pthread_create(&producer_thread, NULL, producer, NULL);
if (ret != 0) {
printf("\nUnable to create producer thread %d", ret);
goto exit;
}
ret = pthread_create(&consumer_thread, NULL, consumer, NULL);
if (ret != 0) {
printf("\nUnable to create consumer thread %d", ret);
goto exit;
}
pthread_join(producer_thread, NULL);
pthread_join(consumer_thread, NULL);
exit:
return ret;
}
produced 72/99
produced 73/100
No space for new items waiting for consumer to consume
consumed 74/99
consumed 75/98
consumed 76/97
consumed 77/96
produced 74/97
produced 75/98
produced 76/99
produced 77/100
No space for new items waiting for consumer to consume
count is still ARRAY_SIZE <------ incorrect
consumed 21/2
consumed 22/1
consumed 23/0
No items available waiting for producer to produce
produced 24/1
consumed 24/0
No items available waiting for producer to produce
produced 25/1
produced 26/2
produced 27/3
consumed 25/2
consumed 26/1
consumed 27/0
No items available waiting for producer to produce
count is still zero <------ incorrect
Solution that worked after the fix from Zan Lynx
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define ARRAY_SIZE 100
int array[ARRAY_SIZE];
volatile int count;
int head;
int tail;
pthread_cond_t full = PTHREAD_COND_INITIALIZER;
pthread_cond_t empty = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
void *producer(void *args)
{
int res = 0;
while (1) {
pthread_mutex_lock(&mutex);
if (count == ARRAY_SIZE) {
printf("\nNo space for new items waiting for consumer to consume");
// Spurious wakeups from the pthread_cond_timedwait() or
// pthread_cond_wait() functions may occur. Since the
// return from pthread_cond_timedwait() or
// pthread_cond_wait() does not imply anything about the
// value of this predicate, the predicate should be
// re-evaluated upon such return.
while (count == ARRAY_SIZE)
pthread_cond_wait(&empty, &mutex);
}
head %= ARRAY_SIZE;
count++;
array[head] = head;
printf("\nproduced %d/%d", head, count);
head++;
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&full);
}
return NULL;
}
void *consumer(void *args)
{
int res = 0;
while (1) {
pthread_mutex_lock(&mutex);
if (count == 0) {
printf("\nNo items available waiting for producer to produce");
// Spurious wakeups from the pthread_cond_timedwait() or
// pthread_cond_wait() functions may occur. Since the
// return from pthread_cond_timedwait() or
// pthread_cond_wait() does not imply anything about the
// value of this predicate, the predicate should be
// re-evaluated upon such return.
while (count == 0)
pthread_cond_wait(&full, &mutex);
}
tail %= ARRAY_SIZE;
int ele = array[tail];
count--;
printf("\nconsumed %d/%d", tail, count);
tail++;
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&empty);
}
return NULL;
}
int main()
{
pthread_t producer_thread;
pthread_t consumer_thread;
int ret = 0;
setbuf(stdout, NULL);
ret = pthread_create(&producer_thread, NULL, producer, NULL);
if (ret != 0) {
printf("\nUnable to create producer thread %d", ret);
goto exit;
}
ret = pthread_create(&consumer_thread, NULL, consumer, NULL);
if (ret != 0) {
printf("\nUnable to create consumer thread %d", ret);
goto exit;
}
pthread_join(producer_thread, NULL);
pthread_join(consumer_thread, NULL);
exit:
return ret;
}
I believe you missed the fact that condition waits must always check the predicate again after the wait returns. There must be a loop.
The wait may end for all sorts of reasons besides a signal/notify call.

What happens if two threads call fork() simultaneously

I have a process with multiple threads. I have registered prepare function and parent handler using __register_atfork(blocksigprof,restoresigprof,NULL,NULL);
function.
Now let us assume that two threads call fork at the same time. And I have a counter increment in blocksigprof and counter decrement in restoresigprof.
Considering above scenario, will the blocksigprof and restoresigprof be called in pair always?
Is there any locking mechanism which inherently done in __register_atfork.
#define NUM_THREADS 8
static int go=0;
static int exec = 1;
static int ev_od = 0;
static void *
test_thread (void *arg) {
int j;
pid_t c, d;
while(!go) // Wait, so that all threads are here.
continue;
// All will fork, hopefully at same time because of go signal wait.
while(exec) {
c = fork();
if (c < 0) {
printf("SANJAY: fork() failed.\n");
exit(1);
} else if (c == 0) { // Child
exit(0);
}
else { // parent
d = waitpid(c, NULL, 0);
}
}
return NULL;
}
extern int __register_atfork(void (*)(void),void (*)(void),void (*)(void),void *);
static sigset_t s_new;
static sigset_t s_old;
static int count = 0;
static void blocksigprof(void){
count++;
#ifdef SYS_gettid
pid_t tid = syscall(SYS_gettid);
if (tid % 2) {
printf("sleep.\n");
usleep(1);
}
#else
#error "SYS_gettid unavailable on this system"
#endif
printf("Pre-fork. Count should be one. %d\n", count);
}
static void restoresigprof(void){
printf("Post-fork. Count should be one. %d\n", count);
count--;
}
int
main () {
pthread_t t[NUM_THREADS];
void *ptr;
long size = 500 * 1024 * 1024;
int i, m;
volatile int result = 0;
int g_iters = 100;
(void) __register_atfork(blocksigprof,restoresigprof,NULL,NULL);
// Increase size, so fork takes time.
printf("SANJAY: Increasing process size.\n");
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
ptr = malloc(size);
memset(ptr, 0, size);
// Create threads.
for (i = 0; i < NUM_THREADS; ++i) {
pthread_create(&t[i], NULL, test_thread, NULL);
}
printf("SANJAY: Killing time.\n");
// Kill time, so that all threads are at same place post it, waiting for go. 100M cycles.
for (m = 0; m < 1000000; ++m)
for (i = 0; i < g_iters; ++i )
result ^= i;
// Give all threads go at same time.
printf("SANJAY: Let threads execute.\n");
go = 1;
usleep(10000000); // Wait for 10 sec.
exec = 0;
// Wait for all threads to finish.
for (i = 0; i < NUM_THREADS; ++i) {
pthread_join(t[i], NULL);
}
printf("SANJAY: Done.\n");
return 0;
}
pthread_atfork specification doesn't require its implementation to serialize calls to prepare and parent handlers, so a safe assumption is that there is no syncronization.
glibc implementation does lock an internal mutex that prevents multiple threads from entering the handlers in parallel. However, that is an implementation detail. The comments in the code say that such an implementation is not POSIX-compliant because POSIX requires pthread_atfork to be async-signal-safe, and using a mutex there makes it not async-signal-safe.
To make your code robust, I recommend using atomics or a mutex to protect your shared state from race condition.

Which thread is used in the same function of multithread

In mfc code,
Declare as follow
CWinThread* _pThread[5];
DWORD _ThreadArg[5] = { HIGHEST_THREAD, // 0x00
ABOVE_AVE_THREAD, // 0x3F
NORMAL_THREAD, // 0x7F
BELOW_AVE_THREAD, // 0xBF
LOWEST_THREAD // 0xFF
};
int i;
for (i= 0; i< 5; i++)
{
_pThread[i] = AfxBeginThread(ThreadFunc,
&_ThreadArg[i],
THREAD_PRIORITY_NORMAL,
0,
//CREATE_SUSPENDED,
NULL,
NULL);
//_pThread[i]->ResumeThread();
}
// setup relative priority of threads
_pThread[0]->SetThreadPriority(THREAD_PRIORITY_HIGHEST);
_pThread[1]->SetThreadPriority(THREAD_PRIORITY_ABOVE_NORMAL);
_pThread[2]->SetThreadPriority(THREAD_PRIORITY_NORMAL);
_pThread[3]->SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL);
_pThread[4]->SetThreadPriority(THREAD_PRIORITY_LOWEST);
use same thread function
UINT CThreadPoolDlg::ThreadFuncTh1(LPVOID ThreadArg)
{
DWORD dwArg = *(DWORD*)ThreadArg;
//txtTh[0].SetWindowTextW(_T("23"));
AfxGetMainWnd()->GetDlgItem(IDC_THD1)->SetWindowText(_T("1"));
return 0;
}
How do I check which thread is in use in same function?
I get a answer as follow
_pThread[0] = AfxBeginThread(ThreadFunc,this,
THREAD_PRIORITY_NORMAL,
0,
NULL,
NULL);
_pThread[1] = AfxBeginThread(ThreadFunc,this,
THREAD_PRIORITY_NORMAL,
0,
CREATE_SUSPENDED,
NULL);
_pThread[2] = AfxBeginThread(ThreadFunc,this,
THREAD_PRIORITY_NORMAL,
0,
CREATE_SUSPENDED,
NULL);
the thread function is declare as follow
UINT CThreadPoolDlg::ThreadFunc(LPVOID ThreadArg)
{
CThreadPoolDlg* dwArg = (CThreadPoolDlg*)ThreadArg;
DWORD dThread = GetCurrentThreadId();
//txtTh[0].SetWindowTextW(_T("23"));
while(1)
{
CString strTemp;
if(dThread == dwArg->_pThread[0]->m_nThreadID)
{
AfxGetMainWnd()->GetDlgItem(IDC_THD1)->GetWindowText(strTemp);
int n = _wtoi(strTemp);
strTemp.Format(_T("%d"), ++n);
AfxGetMainWnd()->GetDlgItem(IDC_THD1)->SetWindowText(strTemp);
if(n > 5)
{
::SendMessage(dwArg->GetSafeHwnd(), OWM_MYMETHOD, 0, 0);
//dwArg->_pThread[1]->ResumeThread();
}
}
if(dThread == dwArg->_pThread[1]->m_nThreadID)
{
AfxGetMainWnd()->GetDlgItem(IDC_THD2)->GetWindowText(strTemp);
int n = _wtoi(strTemp);
strTemp.Format(_T("%d"), ++n);
AfxGetMainWnd()->GetDlgItem(IDC_THD2)->SetWindowText(strTemp);
if(n > 5)
{
dwArg->_pThread[2]->ResumeThread();
}
}
if(dThread == dwArg->_pThread[2]->m_nThreadID)
{
AfxGetMainWnd()->GetDlgItem(IDC_THD3)->GetWindowText(strTemp);
int n = _wtoi(strTemp);
strTemp.Format(_T("%d"), ++n);
AfxGetMainWnd()->GetDlgItem(IDC_THD3)->SetWindowText(strTemp);
}
Sleep(500);
}
return 0;
}
Just look at the
DWORD dThread = GetCurrentThreadId();
dThread == dwArg->_pThread[1]->m_nThreadID
then I will get current thread id...

Pthread Scheduling policy and priority

I have four threads which are waiting on a condition variable and fifth thread posts condition variable when all four threads are waiting. When I set thread priority to maximum that is 99, threads switch takes a lot of time which is far from acceptable. Can anybody please take a look and tell what's happening ?
#define N_WORK_THREADS 4
pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condition_var = PTHREAD_COND_INITIALIZER;
void *functionCount1(void * arg);
void *functionCount2(void * arg);
int count = 0;
int valid = 0;
int thread_personal[N_WORK_THREADS];
static int display_thread_sched_attr(int id)
{
int policy, s;
struct sched_param param;
s = pthread_getschedparam(pthread_self(), &policy, &param);
if (s != 0) { printf("pthread_getschedparam"); return 1; }
printf("Thread Id=%d policy=%s, priority=%d\n",id,
(policy == SCHED_FIFO) ? "SCHED_FIFO" : (policy == SCHED_RR) ? "SCHED_RR" : (policy == SCHED_OTHER) ? "SCHED_OTHER" : "???",
param.sched_priority);
return 0;
}
int main(void)
{
pthread_t thread_work[N_WORK_THREADS];
pthread_t thread;
int i,s;
pthread_attr_t attr;
struct sched_param param;
s = pthread_attr_init(&attr);
if (s != 0) { printf("pthread_attr_init"); return 1; }
s = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (s != 0) { printf("pthread_attr_setinheritsched"); return 1; }
s = pthread_attr_setschedpolicy(&attr, SCHED_RR);
if (s != 0) { printf("pthread_attr_setschedpolicy"); return 1; }
param.sched_priority = 99;
s = pthread_attr_setschedparam(&attr, &param);
if (s != 0) { printf("pthread_attr_setschedparam"); return 1; }
for (i=0; i<N_WORK_THREADS; i++) { thread_personal[i] = 0; }
for (i=0; i<N_WORK_THREADS; i++) { pthread_create( &thread_work[i], &attr, &functionCount1, (void *)i); }
param.sched_priority = 99;
s = pthread_attr_setschedparam(&attr, &param);
if (s != 0) { printf("pthread_attr_setschedparam"); return 1; }
pthread_create( &thread, &attr, &functionCount2, (void *)N_WORK_THREADS);
for (i=0; i<N_WORK_THREADS; i++) { pthread_join( thread_work[i], NULL); }
pthread_join( thread, NULL);
for (i=0; i<N_WORK_THREADS; i++) { printf("Thread Id=%d Mutex USed=%d\n",i,thread_personal[i]); }
exit(EXIT_SUCCESS);
}
void *functionCount1(void * arg)
{
int i;
int id = (int) arg;
display_thread_sched_attr(id);
for(i=0; i<10; i++)
{
pthread_mutex_lock( &count_mutex );
thread_personal[id] += 1;
while (((count>>id) & 0x1) == 0)
{
pthread_cond_wait( &condition_var, &count_mutex );
}
count = count^ (1<<id);
printf("Thread Id %d: Valid = %d\n",id,valid);
pthread_mutex_unlock( &count_mutex );
}
return NULL;
}
void *functionCount2(void * arg)
{
int check;
int id = (int) arg;
display_thread_sched_attr(id);
check =0;
while (check < 10)
{
pthread_mutex_lock( &count_mutex );
if (count == 0)
{
pthread_cond_broadcast ( &condition_var );
count =0xF;
printf("Thread Id %d: Counter = %d\n",id,check);
valid = check++;
}
pthread_mutex_unlock( &count_mutex );
}
return NULL;
}
I'm unable to test your program with the scheduling policy code enabled because the program simply doesn't work when that's in there (as I mention in a comment: Linux 3.16.0 x86_64 with gcc 4.8.4).
But I'm guessing that your problem might be due to the loop in functionCount2():
while (check < 10)
{
pthread_mutex_lock( &count_mutex );
if (count == 0)
{
pthread_cond_broadcast ( &condition_var );
count =0xF;
printf("Thread Id %d: Counter = %d\n",id,check);
valid = check++;
}
pthread_mutex_unlock( &count_mutex );
}
In general, acquisition of mutex objects in pthreads is not guaranteed to be fair or FIFO (though to be honest, I'm not sure how thread scheduling policies might affect it). What I believe is happening is that this loop releases count_mutex then immediately re-acquires it even though other threads are blocked waiting to claim the mutex. And with the scheduling policy in place, this may occur until the thread uses its quantum.

Remote Code injection in Win 7 SP 1 using NtCreateThreadEx API

I am trying to learn how to inject code into a running process using NtCreateThreadEx. I found few tutorials online and tried the code shown below which basically tries to inject a piece of code to a a running notepad.exe. Code injection to notepad.exe was successful; however, this program crashes just after injection (i.e., after calling funNtCreateThreadEx) throwing following error:
Run-Time Check Failure #2 - Stack around the variable 'temp2' was corrupted.
Could someone help me explaining why I am getting this error? I tried to Google about this error and figured out its something related to memory overflow. However, I don't see any memory overflow in this following code. Please let me know what could be the reason for the above error. Thank you so much for your time.
HANDLE NtCreateThreadEx(HANDLE process, LPTHREAD_START_ROUTINE Start, LPVOID lpParameter);
typedef NTSTATUS(WINAPI *LPFUN_NtCreateThreadEx)
(
OUT PHANDLE hThread,
IN ACCESS_MASK DesiredAccess,
IN LPVOID ObjectAttributes,
IN HANDLE ProcessHandle,
IN LPTHREAD_START_ROUTINE lpStartAddress,
IN LPVOID lpParameter,
IN BOOL CreateSuspended,
IN DWORD StackZeroBits,
IN DWORD SizeOfStackCommit,
IN DWORD SizeOfStackReserve,
OUT LPVOID lpBytesBuffer
);
struct NtCreateThreadExBuffer
{
ULONG Size;
ULONG Unknown1;
ULONG Unknown2;
PULONG Unknown3;
ULONG Unknown4;
ULONG Unknown5;
ULONG Unknown6;
PULONG Unknown7;
ULONG Unknown8;
};
HANDLE NtCreateThreadEx(HANDLE process, LPTHREAD_START_ROUTINE Start, LPVOID lpParameter) {
HMODULE modNtDll = LoadLibrary(L"ntdll.dll");
if (!modNtDll) {
std::cout << "Error loading ntdll.dll" << std::endl;
return 0;
}
LPFUN_NtCreateThreadEx funNtCreateThreadEx = (LPFUN_NtCreateThreadEx)GetProcAddress(modNtDll, "NtCreateThreadEx");
if (!funNtCreateThreadEx) {
std::cout << "Error loading NtCreateThreadEx()" << std::endl;
return 0;
}
NtCreateThreadExBuffer ntbuffer;
memset(&ntbuffer, 0, sizeof(NtCreateThreadExBuffer));
DWORD temp1 = 0;
DWORD temp2 = 0;
ntbuffer.Size = sizeof(NtCreateThreadExBuffer);
ntbuffer.Unknown1 = 0x10003;
ntbuffer.Unknown2 = 0x8;
ntbuffer.Unknown3 = &temp2;
ntbuffer.Unknown4 = 0;
ntbuffer.Unknown5 = 0x10004;
ntbuffer.Unknown6 = 4;
ntbuffer.Unknown7 = &temp1;
// ntbuffer.Unknown8 = 0;
HANDLE hThread;
NTSTATUS status = funNtCreateThreadEx(
&hThread,
0x1FFFFF,
NULL,
process,
(LPTHREAD_START_ROUTINE)Start,
lpParameter,
FALSE, //start instantly
0, //null
0, //null
0, //null
&ntbuffer
);
return hThread;
}
int main()
{
int res = -1;
res = privileges(); //get all required privileges
DWORD pid = getPid(L"notepad.exe");
if (pid == 0)
return PROCESS_NOT_FOUND; //error
HANDLE p;
p = OpenProcess(PROCESS_ALL_ACCESS, false, pid);
if (p == NULL) return OPEN_PROCESS_FAILED; //error
char * mytext = "Hello by CodeCave!";
char * mycaption = "Injection result";
PARAMETERS data; //let's fill in a PARAMETERS struct
HMODULE user32 = LoadLibrary(L"User32.dll");
data.MessageBoxInj = (DWORD)GetProcAddress(user32, "MessageBoxA");
strcpy_s(data.text, mytext);
strcpy_s(data.caption, mycaption);
data.buttons = MB_OKCANCEL | MB_ICONQUESTION;
//Writing funtion to notepad memory
DWORD size_myFunc = 0x8000; //Creating more memory than required
LPVOID MyFuncAddress = VirtualAllocEx(p, NULL, size_myFunc, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
WriteProcessMemory(p, MyFuncAddress, (void*)myFunc, 0x1000, NULL);
//Parameters to the function to notepad's memory
LPVOID DataAddress = VirtualAllocEx(p, NULL, sizeof(PARAMETERS), MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
WriteProcessMemory(p, DataAddress, &data, sizeof(PARAMETERS), NULL);
//invokes injected function
HANDLE thread = NtCreateThreadEx(p, (LPTHREAD_START_ROUTINE)MyFuncAddress, DataAddress);
if (thread != 0) {
//injection completed, not we can wait it to end and free the memory
}
return 0;
}
static DWORD myFunc(PARAMETERS * myparam) {
MsgBoxParam MsgBox = (MsgBoxParam)myparam->MessageBoxInj;
int result = MsgBox(0, myparam->text, myparam->caption, myparam->buttons);
switch (result) {
case IDOK:
//your code
break;
case IDCANCEL:
//your code
break;
}
return 0;
}
int privileges() {
HANDLE Token;
TOKEN_PRIVILEGES tp;
if (OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &Token))
{
LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &tp.Privileges[0].Luid);
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
if (AdjustTokenPrivileges(Token, 0, &tp, sizeof(tp), NULL, NULL) == 0) {
return 1; //FAIL
}
else {
return 0; //SUCCESS
}
}
return 1;
}
typedef int (WINAPI* MsgBoxParam)(HWND, LPCSTR, LPCSTR, UINT);
struct PARAMETERS {
DWORD MessageBoxInj;
char text[50];
char caption[25];
int buttons;
};
DWORD myFunc(PARAMETERS * myparam);

Resources