Can I write-protect every page in the address space of a Linux process? - linux

I'm wondering if there's a way to write-protect every page in a Linux
process' address space (from inside of the process itself, by way of
mprotect()). By "every page", I really mean every page of the
process's address space that might be written to by an ordinary
program running in user mode -- so, the program text, the constants,
the globals, and the heap -- but I would be happy with just constants,
globals, and heap. I don't want to write-protect the stack -- that
seems like a bad idea.
One problem is that I don't know where to start write-protecting
memory. Looking at /proc/pid/maps, which shows the sections of memory
in use for a given pid, they always seem to start with the address
0x08048000, with the program text. (In Linux, as far as I can tell,
the memory of a process is laid out with the program text at the
bottom, then constants above that, then globals, then the heap, then
an empty space of varying size depending on the size of the heap or
stack, and then the stack growing down from the top of memory at
virtual address 0xffffffff.) There's a way to tell where the top of
the heap is (by calling sbrk(0), which simply returns a pointer to the
current "break", i.e., the top of the heap), but not really a way to
tell where the heap begins.
If I try to protect all pages from 0x08048000 up to the break, I
eventually get an mprotect: Cannot allocate memory error. I don't know why mprotect would be
allocating memory anyway -- and Google is not very helpful. Any ideas?
By the way, the reason I want to do this is because I want to create a
list of all pages that are written to during a run of the program, and
the way that I can think of to do this is to write-protect all pages,
let any attempted writes cause a write fault, then implement a write
fault handler that will add the page to the list and then remove the write
protection. I think I know how to implement the handler, if only I could
figure out which pages to protect and how to do it.
Thanks!

You recieve ENOMEM from mprotect() if you try to call it on pages that aren't mapped.
Your best bet is to open /proc/self/maps, and read it a line at a time with fgets() to find all the mappings in your process. For each writeable mapping (indicated in the second field) that isn't the stack (indicated in the last field), call mprotect() with the right base address and length (calculated from the start and end addresses in the first field).
Note that you'll need to have your fault handler already set up at this point, because the act of reading the maps file itself will likely cause writes within your address space.

Start simple. Write-protect a few page and make sure your signal handler works for these pages. Then worry about expanding the scope of the protection. For example, you probably do not need to write-protect the code-section: operating systems can implement write-or-execute protection semantics on memory that will prevent code sections from ever being written to:
http://en.wikipedia.org/wiki/Self-modifying_code#Operating_systems

Related

If I private-`mmap` a file and read it, then another process writes to the same file, will another read at the same location return the same value?

(Context: I'm trying to establish which sequences of mmap operations are safe from the "memory safety" point of view, i.e. what assumptions I can make about mmaped memory without risking security bugs as a consequence of undefined behaviour, or miscompiles due to compilers making incorrect assumptions about how memory could behave. I'm currently working on Linux but am hoping to port the program to other operating systems in the future, so although I'm primarily interested in Linux, answers about how other operating systems behave would also be appreciated.)
Suppose I map a portion into file into memory using mmap with MAP_PRIVATE. Now, assuming that the file doesn't change while I have it mapped, if I access part of the returned memory, I'll be given information from the file at that offset; and (because I used MAP_PRIVATE) if I write to the returned memory, my writes will persist in my process's memory but will have no effect on the underlying file.
However, I'm interested in what will happen if the file does change while I have it mapped (because some other process also has the file open and is writing to it). There are several cases that I know the answers to already:
If I map the file with MAP_SHARED, then if any other process writes to the file via a shared mmap, my own process's memory will also be updated. (This is the intended behaviour of MAP_SHARED, as one of its intended purposes is for shared-memory concurrency.) It's less clear what will happen if another process writes to the file via other means, but I'm not interested in that case.
If the following sequence of events occurs:
I map the file with MAP_PRIVATE;
A portion of the file I haven't accessed yet is written by another process;
I read that portion of the file via my mapping;
then, at least on Linux, the read might return either the old value or the new value:
It is unspecified whether changes made to the file after the mmap() call are visible in the mapped region.
— man 2 mmap on Linux
(This case – which is not the case I'm asking about – is covered in this existing StackOverflow question.)
I also checked the POSIX definition of mmap, but (unless I missed it) it doesn't seem to cover this case at all, leaving it unclear whether all POSIX systems would act the same way.
Linux's behaviour makes sense here: at the time of the access, the kernel might have already mapped the requested part of the file into memory, in which case it doesn't want to change the portion that's already there, but it might need to load it from disk, in which case it will see any new value that may have been written to the file since it was opened. So there are performance reasons to use the new value in some cases and the old value in other cases.
If the following sequence of events occurs:
I map the file with MAP_PRIVATE;
I write to a memory address within the file mapping;
Another process changes that part of the file;
then although I don't know this for certain, I think it's very likely that the rule is that the memory address in question continues to reflect the old value, that was written by our process. The reason is that the kernel needs to maintain two copies of that part of the file anyway: the values as seen by our process (which, because it used MAP_PRIVATE, can write to its view of the file without changing the underlying file), and the values that are actually in the file on disk. Writes by other processes obviously need to change the second copy here, so it would be bizarre to also change the first copy; doing so would make the interface less usable and also come at a performance cost, and would have no advantages.
There is one sequence of events, though, where I don't know what happens (and for which the behaviour is hard to determine experimentally, given the number of possible factors that might be relevant):
I map the file with MAP_PRIVATE;
I read some portion of the file via the mapping, without writing;
Another process changes part of the file that I just read;
I read the same portion of the file via the mapping, again.
In this situation, am I guaranteed to read the same data twice? Or is it possible to read the old data the first time and the new data the second time?

3.10 kernel crash BUG() in mark_bootmem()

I get a kernel crash at BUG() here - http://lxr.free-electrons.com/source/mm/bootmem.c?v=3.10#L385 with the following message
2kernel BUG at /kernel/mm/bootmem.c:385!
What could be a possible reason for this?
Following is the function call trace
[<c0e165f8>] (mark_bootmem+0xd0/0xe0) from [<c0e05d64>] (bootmem_init+0x16c/0x26
[<c0e05d64>] (bootmem_init+0x16c/0x264) from [<c0e07980>] (paging_init+0x734/0x7
[<c0e07980>] (paging_init+0x734/0x7d4) from [<c0e03f20>] (setup_arch+0x3e8/0x69c
[<c0e03f20>] (setup_arch+0x3e8/0x69c) from [<c0e007d8>] (start_kernel+0x78/0x370
[<c0e007d8>] (start_kernel+0x78/0x370) from [<10008074>] (0x10008074)
Thanks
The mm/bootmem.c file is responsible for Boot Memory Allocator. Function mark_bootmem marks memory pages between start and end addresses (start is rounded down and end is rounded up to page boundaries) as reserved (or not reserved when used for freeing) for this allocator.
It iterates over bdata_list trying to find a region containing first page from requested address range. It it won't find it, the BUG() you mentioned will be triggered. The same BUG() will be triggered if it succeeds finding it, but the region is not large enough (end is outside of the region). So this BUG() means that it wasn't able to find requested memory region to mark.
Now if I understand the kernel code correctly, on normal UMA systems there will be only one entry in bdata_list and it should describe the range of lowmemory pages available in the system. Since you didn't provide too much information about your system it's hard to guess exact reason for the problem but in general, it seems that your memory setup is broken. This thing is very architecture specific so it's hard to tell what exactly is going on.

How to portably extend a file accessed using mmap()

We're experimenting with changing SQLite, an embedded database system,
to use mmap() instead of the usual read() and write() calls to access
the database file on disk. Using a single large mapping for the entire
file. Assume that the file is small enough that we have no trouble
finding space for this in virtual memory.
So far so good. In many cases using mmap() seems to be a little faster
than read() and write(). And in some cases much faster.
Resizing the mapping in order to commit a write-transaction that
extends the database file seems to be a problem. In order to extend
the database file, the code could do something like this:
ftruncate(); // extend the database file on disk
munmap(); // unmap the current mapping (it's now too small)
mmap(); // create a new, larger, mapping
then copy the new data into the end of the new memory mapping.
However, the munmap/mmap is undesirable as it means the next time each
page of the database file is accessed a minor page fault occurs and
the system has to search the OS page cache for the correct frame to
associate with the virtual memory address. In other words, it slows
down subsequent database reads.
On Linux, we can use the non-standard mremap() system call instead
of munmap()/mmap() to resize the mapping. This seems to avoid the
minor page faults.
QUESTION: How should this be dealt with on other systems, like OSX,
that do not have mremap()?
We have two ideas at present. And a question regarding each:
1) Create mappings larger than the database file. Then, when extending
the database file, simply call ftruncate() to extend the file on
disk and continue using the same mapping.
This would be ideal, and seems to work in practice. However, we're
worried about this warning in the man page:
"The effect of changing the size of the underlying file of a
mapping on the pages that correspond to added or removed regions of
the file is unspecified."
QUESTION: Is this something we should be worried about? Or an anachronism
at this point?
2) When extending the database file, use the first argument to mmap()
to request a mapping corresponding to the new pages of the database
file located immediately after the current mapping in virtual
memory. Effectively extending the initial mapping. If the system
can't honour the request to place the new mapping immediately after
the first, fall back to munmap/mmap.
In practice, we've found that OSX is pretty good about positioning
mappings in this way, so this trick works there.
QUESTION: if the system does allocate the second mapping immediately
following the first in virtual memory, is it then safe to eventually
unmap them both using a single big call to munmap()?
2 will work but you don't have to rely on the OS happening to have space available, you can reserve your address space beforehand so your fixed mmapings will always succeed.
For instance, To reserve one gigabyte of address space. Do a
mmap(NULL, 1U << 30, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
Which will reserve one gigabyte of continuous address space without actually allocating any memory or resources. You can then perform future mmapings over this space and they will succeed. So mmap the file into the beginning of the space returned, then mmap further sections of the file as needed using the fixed flag. The mmaps will succeed because your address space is already allocated and reserved by you.
Note: linux also has the MAP_NORESERVE flag which is the behavior you would want for the initial mapping if you were allocating RAM, but in my testing it is ignored as PROT_NONE is sufficient to say you don't want any resources allocated yet.
I think #2 is the best currently available solution. In addition to this, on 64bit systems you may create your mapping explicitly at an address that OS would never choose for an mapping (for example 0x6000 0000 0000 0000 in Linux) to avoid the case that OS cannot place the new mapping immediatly after the first one.
It is always safe to unmap mutiple mappinsg with a single munmap call. You can even unmap a part of the mapping if you wish to do so.
Use fallocate() instead of ftruncate() where available. If not, just open file in O_APPEND mode and increase file by writing some amount of zeroes. This greatly reduce fragmentation.
Use "Huge pages" if available - this greatly reduce overhead on big mappings.
pread()/pwrite()/pwritev()/preadv() with not-so-small block size is not slow really. Much faster than IO can actually be performed.
IO errors when using mmap() will generate just segfault instead of EIO or so.
The most of SQLite WRITE performance problems is concentrated in good transactional use (i.e. you should debug when COMMIT actually performed).

How to tell Linux that a mmap()'d page does not need to be written to swap if the backing physical page is needed?

Hopefully the title is clear. I have a chunk of memory obtained via mmap(). After some time, I have concluded that I no longer need the data within this range. I still wish to keep this range, however. That is, I do not want to call mummap(). I'm trying to be a good citizen and not make the system swap more than it needs.
Is there a way to tell the Linux kernel that if the given page is backed by a physical page and if the kernel decides it needs that physical page, do not bother writing that page to swap?
I imagine under the hood this magical function call would destroy any mapping between the given virtual page and physical page, if present, without writing to swap first.
Your question (as stated) makes no sense.
Let's assume that there was a way for you to tell the kernel to do what you want.
Let's further assume that it did need the extra RAM, so it took away your page, and didn't swap it out.
Now your program tries to read that page (since you didn't want to munmap the data, presumably you might try to access it). What is the kernel to do? The choices I see:
it can give you a new page filled with 0s.
it can give you SIGSEGV
If you wanted choice 2, you could achieve the same result with munmap.
If you wanted choice 1, you could mremap over the existing mapping with MAP_ANON (or munmap followed by new mmap).
In either case, you can't depend on the old data being there when you need it.
The only way your question would make sense is if there was some additional mechanism for the kernel to let you know that it is taking away your page (e.g. send you a special signal). But the situation you described is likely rare enough to warrant additional complexity.
EDIT:
You might be looking for madvise(..., MADV_DONTNEED)
You could munmap the region, then mmap it again with MAP_NORESERVE
If you know at initial mapping time that swapping is not needed, use MAP_NORESERVE

Allocating specific address in Linux

I would like to allocate a memory in Linux in process at a specific address.
Actually I would like to do something like :
I will have number of process.
Each process will call an initialization function in a library (written by me) which will allocate some memory in address space of the process (which will store process related information). This will be done by each process
Once this memory is allocated, latter the program will call other function in the library. Now these function would like to access the memory allocated (containing process related information) by the first function.
The problem is that i cannot store the address of the memory allocated in the process address space in library (not even in static pointer as there are number of process) and i don't even want user program to store that address. I just don't want user program to know that there is memory allocated by library in their address space. Library function will be abstraction for them and they have to just use them.
Is it possible to to over come this problem.
I was thinking like, whenever any process calls initialization function of library which allocates memory , the memory always gets allocated at same address(say 10000) in all the process irrespective of all other things .
So that any library function which wants to access that memory can easily do by :
char *p=10000;
and then access, which will be access into the address space of the process which called the library function.
Not 100% I got what you are aiming for, but if you want to map memory into a specific set address you can use the MAP_FIXED flag to mmap():
"When MAP_FIXED is set in the flags argument, the implementation is informed that the value of pa shall be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to [EINVAL]. If a MAP_FIXED request is successful, the mapping established by mmap() replaces any previous mappings for the process' pages in the range [pa,pa+len)."
See mmap man page: http://linux.die.net/man/3/mmap
Your question doesnt make sense. As you have worded your question, a global variable in your library would work fine.
Maybe you are saying "a single process might load/unload your library and then load the library again and want the address on the second load". Maybe you are saying "there are 2 libraries and each library needs the same address". Simple. Use setenv() and getenv(). These will store/retrieve anything that can be represented as a string in a variable that has PROCESS WIDE SCOPE....i.e all libraries can see the same environment variables. Simply convert your address to a string (itoa), use setenv() to save it in an environment variable named "__SuperSecretGlobalAddress__", and then use getenv() to retrieve the value.
When your program starts up, a copy of the shell's environment is made for your process. getenv and setenv access and modify that copy. You cannot change the shell's environment with these functions.
See this post.

Resources