How practical is it to embed the core of a language with an effectful function space (like ML) into Haskell? - haskell

As Moggi proposed 20 years ago, the effectful function space -> of languages like ML can be decomposed into the standard total function space => plus a strong monad T to capture effects.
A -> B decomposes to A => (T B)
Now, Haskell supports monads, including an IO monad that appears sufficient for the effects in ML, and it has a function space that contains => (but also includes partial functions). So, we should be able to translate a considerable fragment of ML into Haskell via this decomposition. In theory I think this works.
My question is whether an embedding like this can be practical: is it possible to design a Haskell library that allows programming in Haskell in a style not too far from ML? And if so how will the performance be?
My criteria for "practical" is that existing ML code with extensive use of effects could be relatively easily transcribed into Haskell via the embedding, including complicated cases involving higher-order functions.
To make this concrete, my own attempt at such a transcription via the embedding is below. The main function is a transcription of some simple ML code that imperatively generates 5 distinct variable names. Rather than use the decomposition directly, my version lifts functions so that they evaluate their arguments - the definitions prior to main are a mini-library including lifted primitives. This works okay, but some aspects aren't totally satisfactory.
There's a little too much syntactic noise for the injection of values into computations via val. Having unlifted versions of functions (like rdV) would help this, at the cost of requiring these to be defined.
Non-value definitions like varNum require monadic binding via <- in a do. This then forces any definitions that depend on them to also be in the same do expression.
It seems then that the whole program might end up being in one huge do expression. This is how ML programs are often considered, but in Haskell it's not quite as well supported - e.g., you're forced to use case instead of equations.
I guess there will be some laziness despite threading the IO monad throughout. Given that the ML program would be designed for strict evaluation, the laziness should probably be removed. I'm uncertain what the best way to do this is though.
So, any advice on improving this, or on better approaches using the same decomposition, or even quite different ways of achieving the same broad goal of programming in Haskell using a style that mirrors ML?
(It's not that I dislike the style of Haskell, it's just that I'd like to be able to map existing ML code easily.)
import Data.IORef
import Control.Monad
val :: Monad m => a -> m a
val = return
ref = join . liftM newIORef
rdV = readIORef -- Unlifted, hence takes a value
(!=) r x = do { rr <- r; xx <- x; writeIORef rr xx }
(.+),(.-) :: IO Int -> IO Int -> IO Int
( (.+),(.-) ) = ( liftM2(+), liftM2(-) )
(.:) :: IO a -> IO [a] -> IO [a]
(.:) = liftM2(:)
showIO :: Show a => IO a -> IO String
showIO = liftM show
main = do
varNum <- ref (val 0)
let newVar = (=<<) $ \() -> val varNum != (rdV varNum .+ val 1) >>
val 'v' .: (showIO (rdV varNum))
let gen = (=<<) $ \n -> case n of 0 -> return []
nn -> (newVar $ val ()) .: (gen (val n .- val 1))
gen (val 5)

Here's a possible way, by sigfpe. It doesn't cover lambdas, but it seems it can be extended to them.

Related

How to get the “inflexible semantics of monad transformers” using extensible effects?

Consider the following example.
newtype TooBig = TooBig Int deriving Show
choose :: MonadPlus m => [a] -> m a
choose = msum . map return
ex1 :: (MonadPlus m, MonadError TooBig m) => m Int
ex1 = do
x <- choose [5,7,1]
if x > 5
then throwError (TooBig x)
else return x
ex2 :: (MonadPlus m, MonadError TooBig m) => m Int
ex2 = ex1 `catchError` handler
where
handler (TooBig x) = if x > 7
then throwError (TooBig x)
else return x
ex3 :: Either TooBig [Int]
ex3 = runIdentity . runExceptT . runListT $ ex2
What should the value of ex3 be? If we use MTL then the answer is Right [7] which makes sense because ex1 is terminated since it throws an error, and the handler simply returns the pure value return 7 which is Right [7].
However, in the paper “Extensible Effects: An Alternative to Monad Transformers” by Oleg Kiselyov, et al. the authors say that this is “a surprising and undesirable result.” They expected the result to be Right [5,7,1] because the handler recovers from the exception by not re-throwing it. Essentially, they expected the catchError to be moved into ex1 as follows.
newtype TooBig = TooBig Int deriving Show
choose :: MonadPlus m => [a] -> m a
choose = msum . map return
ex1 :: (MonadPlus m, MonadError TooBig m) => m Int
ex1 = do
x <- choose [5,7,1]
if x > 5
then throwError (TooBig x) `catchError` handler
else return x
where
handler (TooBig x) = if x > 7
then throwError (TooBig x)
else return x
ex3 :: Either TooBig [Int]
ex3 = runIdentity . runExceptT . runListT $ ex1
Indeed, this is what extensible effects do. They change the semantics of the program by moving the effect handlers closer to the effect source. For example, local is moved closer to ask and catchError is moved closer to throwError. The authors of the paper tout this as one of the advantages of extensible effects over monad transformers, claiming that monad transformers have “inflexible semantics”.
But, what if I want the result to be Right [7] instead of Right [5,7,1] for whatever reason? As shown in the examples above, monad transformers can be used to get both results. However, because extensible effects always seem to move effect handlers closer to the effect source, it seems impossible to get the result Right [7].
So, the question is how to get the “inflexible semantics of monad transformers” using extensible effects? Is it possible to prevent individual effect handlers from moving closer to the effect source when using extensible effects? If not, then is this a limitation of extensible effects that needs to be addressed?
I'm also a little confused about the nuance in those excerpts from that particular paper. I think it's more useful to take a few steps back and to explain the motivations behind the enterprise of algebraic effects, to which that paper belongs.
The MTL approach is in some sense the most obvious and general: you have an interface (or "effect"), put it in a type class and call it a day. The cost of that generality is that it is unprincipled: you don't know what happens when you combine interfaces together. This issue appears most concretely when you implement an interface: you must implement all of them simultaneously. We like to think that each interface can be implemented in isolation in a dedicated transformer, but if you have two interfaces, say MonadPlus and MonadError, implemented by transformers ListT and ExceptT, in order to compose them, you will also have to either implement MonadError for ListT or MonadPlus for ExceptT. This O(n^2) instance problem is popularly understood as "just boilerplate", but the deeper issue is that if we allow interfaces to be of any shape, there is no telling what danger could hide in that "boilerplate", if it can even be implemented at all.
We must put more structure on those interfaces. For some definition of "lift" (lift from MonadTrans), the effects we can lift uniformly through transformers are exactly the algebraic effects. (See also, Monad Transformers and Modular Algebraic Effects, What Binds Them Together.)
This is not truly a restriction. While some interfaces are not algebraic in a technical sense, such as MonadError (because of catch), they can usually still be expressed within the framework of algebraic effects, just less literally. While restricting the definition of an "interface", we also gain richer ways of using them.
So I think algebraic effects are a different, more precise way of thinking about interfaces before all. As a way of thinking, it can thus be adopted without changing anything about your code, which is why comparisons tend to look at the same code twice and it is difficult to see the point without having a grasp on the surrounding context and motivations. If you think the O(n^2) instances problem is a trivial "boilerplate" problem, you already believe in the principle that interfaces ought to be composable; algebraic effects are one way of explicitly designing libraries and languages around that principle.
"Algebraic effects" are a fuzzy notion without a fixed definition. Nowadays they are most recognizable by syntax featuring a call and a handle construct (or op/perform/throw/raise and catch/match). call is the one construct to use interfaces and handle is how we implement them. The idea common to such languages is that there are equations (hence "algebraic") that provide a basic intuition of how call and handle behave in a way that's independent of the interface, notably via the interaction of handle with sequential composition (>>=).
Semantically, the meaning of a program can be denoted by a tree of calls, and a handle is a transformation of such trees. That's why many incarnations of "algebraic effects" in Haskell start with free monads, types of trees parameterized by the type of nodes f:
data Free f a
= Pure a
| Free (f (Free f a))
From that point of view, the program ex2 is a tree with three branches, with the branch labeled 7 ending in an exception:
ex2 :: Free ([] :+: Const Int) Int -- The functor "Const e" models exceptions (the equivalent of "MonadError e")
ex2 = Free [Pure 5, Free (Const 7), Pure 1]
-- You can write this with do notation to look like the original ex2, I'd say "it's just notation".
-- NB: constructors for (:+:) omitted
And each of the effects [] and Const Int corresponds to some way of transforming the tree, eliminating that effect from the tree (possibly introducing others, including itself).
"Catching" an exception corresponds to handling the Const effect by converting Free (Const x) nodes into some new tree h x.
To handle the [] effect, one way is to compose all children of a Free [...] node using (>>=), collecting their results in a final list. This can be seen as a generalization of depth-first search.
You get the result [7] or [5,7,1] depending on how those transformations are ordered.
Of course, there is a correspondence to the two orders of monad transformers in a MTL approach, but that intuition of programs as trees, which is generally applicable to all algebraic effects, is not as obvious when you're in the middle of implementing an instance such as MonadError e for ListT. That intuition might make sense a posteriori, but it is a priori obfuscated because type class instances are not first-class values like handlers, and monad transformers are typically expressed in terms of the final interpretation (hidden in the monad m they transform) instead of the initial syntax.

context-sensitive generation using quick check

I would like to generate random terms based on some sort of "context" and I was wondering if this is possible using quickcheck. Basically I would like to have an additional data type passed around so that the arbitrary function can generate terms based on the additional parameter... Is this possible with quickcheck or should I just write my own definition of Gen?
It's possible, though not really sane, to do this from within arbitrary. But if you step out of arbitrary, you can literally just pass an extra parameter around.
-- do whatever you want inside the implementation of these two
chooseIntRange :: Context -> Int
updateContext :: Int -> Context -> Context
arbitraryIntWithContext :: Context -> Gen (Context, Int)
arbitraryIntWithContext ctx = do
n <- choose (0, chooseIntRange ctx)
return (n, updateContext n ctx)
The plumbing of the context can be relieved somewhat with StateT, e.g.
-- do whatever you want inside the implementation of this
chooseIntRangeAndUpdate :: MonadState Context m => m Int
arbitraryIntStateT :: StateT Context Gen Int
arbitraryIntStateT = do
hi <- chooseIntRangeAndUpdate
lift (choose (0, hi))
While Daniel Wagner has supplied a fine answer for QuickCheck (+1), it also highlights one of QuickCheck's weaknesses. In QuickCheck, one writes properties using instances of Arbitrary, but due to its design, Arbitrary isn't monadic.
The workaround that Daniel Wagner shares is that Gen, on the other hand, is monadic, so that you can write context-dependent code using do notation. The disadvantage is that while you can convert a Gen a to an Arbitrary a, you'll either have to provide a custom shrink implementation, or forgo shrinking.
An alternative library for property-based testing, Hedgehog, is designed in such a way that properties themselves are monadic, which means you'd be able to write an entire property and simply embed ad-hoc context-specific value generation (including shrinking) in the test code itself:
propWithContext :: Property
propWithContext = property $ do
ctx <- forAll genContext
n <- forAll $ Gen.integral $ Range.linear 0 $ chooseIntRange ctx
let ctx' = updateContext n ctx
-- Exercise SUT and verify result here...
Here, genContext is a custom generator for the Context type, with the type
genContext :: MonadGen m => m Context

Why do we need monads?

In my humble opinion the answers to the famous question "What is a monad?", especially the most voted ones, try to explain what is a monad without clearly explaining why monads are really necessary. Can they be explained as the solution to a problem?
Why do we need monads?
We want to program only using functions. ("functional programming (FP)" after all).
Then, we have a first big problem. This is a program:
f(x) = 2 * x
g(x,y) = x / y
How can we say what is to be executed first? How can we form an ordered sequence of functions (i.e. a program) using no more than functions?
Solution: compose functions. If you want first g and then f, just write f(g(x,y)). This way, "the program" is a function as well: main = f(g(x,y)). OK, but ...
More problems: some functions might fail (i.e. g(2,0), divide by 0). We have no "exceptions" in FP (an exception is not a function). How do we solve it?
Solution: Let's allow functions to return two kind of things: instead of having g : Real,Real -> Real (function from two reals into a real), let's allow g : Real,Real -> Real | Nothing (function from two reals into (real or nothing)).
But functions should (to be simpler) return only one thing.
Solution: let's create a new type of data to be returned, a "boxing type" that encloses maybe a real or be simply nothing. Hence, we can have g : Real,Real -> Maybe Real. OK, but ...
What happens now to f(g(x,y))? f is not ready to consume a Maybe Real. And, we don't want to change every function we could connect with g to consume a Maybe Real.
Solution: let's have a special function to "connect"/"compose"/"link" functions. That way, we can, behind the scenes, adapt the output of one function to feed the following one.
In our case: g >>= f (connect/compose g to f). We want >>= to get g's output, inspect it and, in case it is Nothing just don't call f and return Nothing; or on the contrary, extract the boxed Real and feed f with it. (This algorithm is just the implementation of >>= for the Maybe type). Also note that >>= must be written only once per "boxing type" (different box, different adapting algorithm).
Many other problems arise which can be solved using this same pattern: 1. Use a "box" to codify/store different meanings/values, and have functions like g that return those "boxed values". 2. Have a composer/linker g >>= f to help connecting g's output to f's input, so we don't have to change any f at all.
Remarkable problems that can be solved using this technique are:
having a global state that every function in the sequence of functions ("the program") can share: solution StateMonad.
We don't like "impure functions": functions that yield different output for same input. Therefore, let's mark those functions, making them to return a tagged/boxed value: IO monad.
Total happiness!
The answer is, of course, "We don't". As with all abstractions, it isn't necessary.
Haskell does not need a monad abstraction. It isn't necessary for performing IO in a pure language. The IO type takes care of that just fine by itself. The existing monadic desugaring of do blocks could be replaced with desugaring to bindIO, returnIO, and failIO as defined in the GHC.Base module. (It's not a documented module on hackage, so I'll have to point at its source for documentation.) So no, there's no need for the monad abstraction.
So if it's not needed, why does it exist? Because it was found that many patterns of computation form monadic structures. Abstraction of a structure allows for writing code that works across all instances of that structure. To put it more concisely - code reuse.
In functional languages, the most powerful tool found for code reuse has been composition of functions. The good old (.) :: (b -> c) -> (a -> b) -> (a -> c) operator is exceedingly powerful. It makes it easy to write tiny functions and glue them together with minimal syntactic or semantic overhead.
But there are cases when the types don't work out quite right. What do you do when you have foo :: (b -> Maybe c) and bar :: (a -> Maybe b)? foo . bar doesn't typecheck, because b and Maybe b aren't the same type.
But... it's almost right. You just want a bit of leeway. You want to be able to treat Maybe b as if it were basically b. It's a poor idea to just flat-out treat them as the same type, though. That's more or less the same thing as null pointers, which Tony Hoare famously called the billion-dollar mistake. So if you can't treat them as the same type, maybe you can find a way to extend the composition mechanism (.) provides.
In that case, it's important to really examine the theory underlying (.). Fortunately, someone has already done this for us. It turns out that the combination of (.) and id form a mathematical construct known as a category. But there are other ways to form categories. A Kleisli category, for instance, allows the objects being composed to be augmented a bit. A Kleisli category for Maybe would consist of (.) :: (b -> Maybe c) -> (a -> Maybe b) -> (a -> Maybe c) and id :: a -> Maybe a. That is, the objects in the category augment the (->) with a Maybe, so (a -> b) becomes (a -> Maybe b).
And suddenly, we've extended the power of composition to things that the traditional (.) operation doesn't work on. This is a source of new abstraction power. Kleisli categories work with more types than just Maybe. They work with every type that can assemble a proper category, obeying the category laws.
Left identity: id . f = f
Right identity: f . id = f
Associativity: f . (g . h) = (f . g) . h
As long as you can prove that your type obeys those three laws, you can turn it into a Kleisli category. And what's the big deal about that? Well, it turns out that monads are exactly the same thing as Kleisli categories. Monad's return is the same as Kleisli id. Monad's (>>=) isn't identical to Kleisli (.), but it turns out to be very easy to write each in terms of the other. And the category laws are the same as the monad laws, when you translate them across the difference between (>>=) and (.).
So why go through all this bother? Why have a Monad abstraction in the language? As I alluded to above, it enables code reuse. It even enables code reuse along two different dimensions.
The first dimension of code reuse comes directly from the presence of the abstraction. You can write code that works across all instances of the abstraction. There's the entire monad-loops package consisting of loops that work with any instance of Monad.
The second dimension is indirect, but it follows from the existence of composition. When composition is easy, it's natural to write code in small, reusable chunks. This is the same way having the (.) operator for functions encourages writing small, reusable functions.
So why does the abstraction exist? Because it's proven to be a tool that enables more composition in code, resulting in creating reusable code and encouraging the creation of more reusable code. Code reuse is one of the holy grails of programming. The monad abstraction exists because it moves us a little bit towards that holy grail.
Benjamin Pierce said in TAPL
A type system can be regarded as calculating a kind of static
approximation to the run-time behaviours of the terms in a program.
That's why a language equipped with a powerful type system is strictly more expressive, than a poorly typed language. You can think about monads in the same way.
As #Carl and sigfpe point, you can equip a datatype with all operations you want without resorting to monads, typeclasses or whatever other abstract stuff. However monads allow you not only to write reusable code, but also to abstract away all redundant detailes.
As an example, let's say we want to filter a list. The simplest way is to use the filter function: filter (> 3) [1..10], which equals [4,5,6,7,8,9,10].
A slightly more complicated version of filter, that also passes an accumulator from left to right, is
swap (x, y) = (y, x)
(.*) = (.) . (.)
filterAccum :: (a -> b -> (Bool, a)) -> a -> [b] -> [b]
filterAccum f a xs = [x | (x, True) <- zip xs $ snd $ mapAccumL (swap .* f) a xs]
To get all i, such that i <= 10, sum [1..i] > 4, sum [1..i] < 25, we can write
filterAccum (\a x -> let a' = a + x in (a' > 4 && a' < 25, a')) 0 [1..10]
which equals [3,4,5,6].
Or we can redefine the nub function, that removes duplicate elements from a list, in terms of filterAccum:
nub' = filterAccum (\a x -> (x `notElem` a, x:a)) []
nub' [1,2,4,5,4,3,1,8,9,4] equals [1,2,4,5,3,8,9]. A list is passed as an accumulator here. The code works, because it's possible to leave the list monad, so the whole computation stays pure (notElem doesn't use >>= actually, but it could). However it's not possible to safely leave the IO monad (i.e. you cannot execute an IO action and return a pure value — the value always will be wrapped in the IO monad). Another example is mutable arrays: after you have leaved the ST monad, where a mutable array live, you cannot update the array in constant time anymore. So we need a monadic filtering from the Control.Monad module:
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM _ [] = return []
filterM p (x:xs) = do
flg <- p x
ys <- filterM p xs
return (if flg then x:ys else ys)
filterM executes a monadic action for all elements from a list, yielding elements, for which the monadic action returns True.
A filtering example with an array:
nub' xs = runST $ do
arr <- newArray (1, 9) True :: ST s (STUArray s Int Bool)
let p i = readArray arr i <* writeArray arr i False
filterM p xs
main = print $ nub' [1,2,4,5,4,3,1,8,9,4]
prints [1,2,4,5,3,8,9] as expected.
And a version with the IO monad, which asks what elements to return:
main = filterM p [1,2,4,5] >>= print where
p i = putStrLn ("return " ++ show i ++ "?") *> readLn
E.g.
return 1? -- output
True -- input
return 2?
False
return 4?
False
return 5?
True
[1,5] -- output
And as a final illustration, filterAccum can be defined in terms of filterM:
filterAccum f a xs = evalState (filterM (state . flip f) xs) a
with the StateT monad, that is used under the hood, being just an ordinary datatype.
This example illustrates, that monads not only allow you to abstract computational context and write clean reusable code (due to the composability of monads, as #Carl explains), but also to treat user-defined datatypes and built-in primitives uniformly.
I don't think IO should be seen as a particularly outstanding monad, but it's certainly one of the more astounding ones for beginners, so I'll use it for my explanation.
Naïvely building an IO system for Haskell
The simplest conceivable IO system for a purely-functional language (and in fact the one Haskell started out with) is this:
main₀ :: String -> String
main₀ _ = "Hello World"
With lazyness, that simple signature is enough to actually build interactive terminal programs – very limited, though. Most frustrating is that we can only output text. What if we added some more exciting output possibilities?
data Output = TxtOutput String
| Beep Frequency
main₁ :: String -> [Output]
main₁ _ = [ TxtOutput "Hello World"
-- , Beep 440 -- for debugging
]
cute, but of course a much more realistic “alterative output” would be writing to a file. But then you'd also want some way to read from files. Any chance?
Well, when we take our main₁ program and simply pipe a file to the process (using operating system facilities), we have essentially implemented file-reading. If we could trigger that file-reading from within the Haskell language...
readFile :: Filepath -> (String -> [Output]) -> [Output]
This would use an “interactive program” String->[Output], feed it a string obtained from a file, and yield a non-interactive program that simply executes the given one.
There's one problem here: we don't really have a notion of when the file is read. The [Output] list sure gives a nice order to the outputs, but we don't get an order for when the inputs will be done.
Solution: make input-events also items in the list of things to do.
data IO₀ = TxtOut String
| TxtIn (String -> [Output])
| FileWrite FilePath String
| FileRead FilePath (String -> [Output])
| Beep Double
main₂ :: String -> [IO₀]
main₂ _ = [ FileRead "/dev/null" $ \_ ->
[TxtOutput "Hello World"]
]
Ok, now you may spot an imbalance: you can read a file and make output dependent on it, but you can't use the file contents to decide to e.g. also read another file. Obvious solution: make the result of the input-events also something of type IO, not just Output. That sure includes simple text output, but also allows reading additional files etc..
data IO₁ = TxtOut String
| TxtIn (String -> [IO₁])
| FileWrite FilePath String
| FileRead FilePath (String -> [IO₁])
| Beep Double
main₃ :: String -> [IO₁]
main₃ _ = [ TxtIn $ \_ ->
[TxtOut "Hello World"]
]
That would now actually allow you to express any file operation you might want in a program (though perhaps not with good performance), but it's somewhat overcomplicated:
main₃ yields a whole list of actions. Why don't we simply use the signature :: IO₁, which has this as a special case?
The lists don't really give a reliable overview of program flow anymore: most subsequent computations will only be “announced” as the result of some input operation. So we might as well ditch the list structure, and simply cons a “and then do” to each output operation.
data IO₂ = TxtOut String IO₂
| TxtIn (String -> IO₂)
| Terminate
main₄ :: IO₂
main₄ = TxtIn $ \_ ->
TxtOut "Hello World"
Terminate
Not too bad!
So what has all of this to do with monads?
In practice, you wouldn't want to use plain constructors to define all your programs. There would need to be a good couple of such fundamental constructors, yet for most higher-level stuff we would like to write a function with some nice high-level signature. It turns out most of these would look quite similar: accept some kind of meaningfully-typed value, and yield an IO action as the result.
getTime :: (UTCTime -> IO₂) -> IO₂
randomRIO :: Random r => (r,r) -> (r -> IO₂) -> IO₂
findFile :: RegEx -> (Maybe FilePath -> IO₂) -> IO₂
There's evidently a pattern here, and we'd better write it as
type IO₃ a = (a -> IO₂) -> IO₂ -- If this reminds you of continuation-passing
-- style, you're right.
getTime :: IO₃ UTCTime
randomRIO :: Random r => (r,r) -> IO₃ r
findFile :: RegEx -> IO₃ (Maybe FilePath)
Now that starts to look familiar, but we're still only dealing with thinly-disguised plain functions under the hood, and that's risky: each “value-action” has the responsibility of actually passing on the resulting action of any contained function (else the control flow of the entire program is easily disrupted by one ill-behaved action in the middle). We'd better make that requirement explicit. Well, it turns out those are the monad laws, though I'm not sure we can really formulate them without the standard bind/join operators.
At any rate, we've now reached a formulation of IO that has a proper monad instance:
data IO₄ a = TxtOut String (IO₄ a)
| TxtIn (String -> IO₄ a)
| TerminateWith a
txtOut :: String -> IO₄ ()
txtOut s = TxtOut s $ TerminateWith ()
txtIn :: IO₄ String
txtIn = TxtIn $ TerminateWith
instance Functor IO₄ where
fmap f (TerminateWith a) = TerminateWith $ f a
fmap f (TxtIn g) = TxtIn $ fmap f . g
fmap f (TxtOut s c) = TxtOut s $ fmap f c
instance Applicative IO₄ where
pure = TerminateWith
(<*>) = ap
instance Monad IO₄ where
TerminateWith x >>= f = f x
TxtOut s c >>= f = TxtOut s $ c >>= f
TxtIn g >>= f = TxtIn $ (>>=f) . g
Obviously this is not an efficient implementation of IO, but it's in principle usable.
Monads serve basically to compose functions together in a chain. Period.
Now the way they compose differs across the existing monads, thus resulting in different behaviors (e.g., to simulate mutable state in the state monad).
The confusion about monads is that being so general, i.e., a mechanism to compose functions, they can be used for many things, thus leading people to believe that monads are about state, about IO, etc, when they are only about "composing functions".
Now, one interesting thing about monads, is that the result of the composition is always of type "M a", that is, a value inside an envelope tagged with "M". This feature happens to be really nice to implement, for example, a clear separation between pure from impure code: declare all impure actions as functions of type "IO a" and provide no function, when defining the IO monad, to take out the "a" value from inside the "IO a". The result is that no function can be pure and at the same time take out a value from an "IO a", because there is no way to take such value while staying pure (the function must be inside the "IO" monad to use such value). (NOTE: well, nothing is perfect, so the "IO straitjacket" can be broken using "unsafePerformIO : IO a -> a" thus polluting what was supposed to be a pure function, but this should be used very sparingly and when you really know to be not introducing any impure code with side-effects.
Monads are just a convenient framework for solving a class of recurring problems. First, monads must be functors (i.e. must support mapping without looking at the elements (or their type)), they must also bring a binding (or chaining) operation and a way to create a monadic value from an element type (return). Finally, bind and return must satisfy two equations (left and right identities), also called the monad laws. (Alternatively one could define monads to have a flattening operation instead of binding.)
The list monad is commonly used to deal with non-determinism. The bind operation selects one element of the list (intuitively all of them in parallel worlds), lets the programmer to do some computation with them, and then combines the results in all worlds to single list (by concatenating, or flattening, a nested list). Here is how one would define a permutation function in the monadic framework of Haskell:
perm [e] = [[e]]
perm l = do (leader, index) <- zip l [0 :: Int ..]
let shortened = take index l ++ drop (index + 1) l
trailer <- perm shortened
return (leader : trailer)
Here is an example repl session:
*Main> perm "a"
["a"]
*Main> perm "ab"
["ab","ba"]
*Main> perm ""
[]
*Main> perm "abc"
["abc","acb","bac","bca","cab","cba"]
It should be noted that the list monad is in no way a side effecting computation. A mathematical structure being a monad (i.e. conforming to the above mentioned interfaces and laws) does not imply side effects, though side-effecting phenomena often nicely fit into the monadic framework.
You need monads if you have a type constructor and functions that returns values of that type family. Eventually, you would like to combine these kind of functions together. These are the three key elements to answer why.
Let me elaborate. You have Int, String and Real and functions of type Int -> String, String -> Real and so on. You can combine these functions easily, ending with Int -> Real. Life is good.
Then, one day, you need to create a new family of types. It could be because you need to consider the possibility of returning no value (Maybe), returning an error (Either), multiple results (List) and so on.
Notice that Maybe is a type constructor. It takes a type, like Int and returns a new type Maybe Int. First thing to remember, no type constructor, no monad.
Of course, you want to use your type constructor in your code, and soon you end with functions like Int -> Maybe String and String -> Maybe Float. Now, you can't easily combine your functions. Life is not good anymore.
And here's when monads come to the rescue. They allow you to combine that kind of functions again. You just need to change the composition . for >==.
Why do we need monadic types?
Since it was the quandary of I/O and its observable effects in nonstrict languages like Haskell that brought the monadic interface to such prominence:
[...] monads are used to address the more general problem of computations (involving state, input/output, backtracking, ...) returning values: they do not solve any input/output-problems directly but rather provide an elegant and flexible abstraction of many solutions to related problems. [...] For instance, no less than three different input/output-schemes are used to solve these basic problems in Imperative functional programming, the paper which originally proposed `a new model, based on monads, for performing input/output in a non-strict, purely functional language'. [...]
[Such] input/output-schemes merely provide frameworks in which side-effecting operations can safely be used with a guaranteed order of execution and without affecting the properties of the purely functional parts of the language.
Claus Reinke (pages 96-97 of 210).
(emphasis by me.)
[...] When we write effectful code – monads or no monads – we have to constantly keep in mind the context of expressions we pass around.
The fact that monadic code ‘desugars’ (is implementable in terms of) side-effect-free code is irrelevant. When we use monadic notation, we program within that notation – without considering what this notation desugars into. Thinking of the desugared code breaks the monadic abstraction. A side-effect-free, applicative code is normally compiled to (that is, desugars into) C or machine code. If the desugaring argument has any force, it may be applied just as well to the applicative code, leading to the conclusion that it all boils down to the machine code and hence all programming is imperative.
[...] From the personal experience, I have noticed that the mistakes I make when writing monadic code are exactly the mistakes I made when programming in C. Actually, monadic mistakes tend to be worse, because monadic notation (compared to that of a typical imperative language) is ungainly and obscuring.
Oleg Kiselyov (page 21 of 26).
The most difficult construct for students to understand is the monad. I introduce IO without mentioning monads.
Olaf Chitil.
More generally:
Still, today, over 25 years after the introduction of the concept of monads to the world of functional programming, beginning functional programmers struggle to grasp the concept of monads. This struggle is exemplified by the numerous blog posts about the effort of trying to learn about monads. From our own experience we notice that even at university level, bachelor level students often struggle to comprehend monads and consistently score poorly on monad-related exam questions.
Considering that the concept of monads is not likely to disappear from the functional programming landscape any time soon, it is vital that we, as the functional programming community, somehow overcome the problems novices encounter when first studying monads.
Tim Steenvoorden, Jurriën Stutterheim, Erik Barendsen and Rinus Plasmeijer.
If only there was another way to specify "a guaranteed order of execution" in Haskell, while keeping the ability to separate regular Haskell definitions from those involved in I/O (and its observable effects) - translating this variation of Philip Wadler's echo:
val echoML : unit -> unit
fun echoML () = let val c = getcML () in
if c = #"\n" then
()
else
let val _ = putcML c in
echoML ()
end
fun putcML c = TextIO.output1(TextIO.stdOut,c);
fun getcML () = valOf(TextIO.input1(TextIO.stdIn));
...could then be as simple as:
echo :: OI -> ()
echo u = let !(u1:u2:u3:_) = partsOI u in
let !c = getChar u1 in
if c == '\n' then
()
else
let !_ = putChar c u2 in
echo u3
where:
data OI -- abstract
foreign import ccall "primPartOI" partOI :: OI -> (OI, OI)
⋮
foreign import ccall "primGetCharOI" getChar :: OI -> Char
foreign import ccall "primPutCharOI" putChar :: Char -> OI -> ()
⋮
and:
partsOI :: OI -> [OI]
partsOI u = let !(u1, u2) = partOI u in u1 : partsOI u2
How would this work? At run-time, Main.main receives an initial OI pseudo-data value as an argument:
module Main(main) where
main :: OI -> ()
⋮
...from which other OI values are produced, using partOI or partsOI. All you have to do is ensure each new OI value is used at most once, in each call to an OI-based definition, foreign or otherwise. In return, you get back a plain ordinary result - it isn't e.g. paired with some odd abstract state, or requires the use of a callback continuation, etc.
Using OI, instead of the unit type () like Standard ML does, means we can avoid always having to use the monadic interface:
Once you're in the IO monad, you're stuck there forever, and are reduced to Algol-style imperative programming.
Robert Harper.
But if you really do need it:
type IO a = OI -> a
unitIO :: a -> IO a
unitIO x = \ u -> let !_ = partOI u in x
bindIO :: IO a -> (a -> IO b) -> IO b
bindIO m k = \ u -> let !(u1, u2) = partOI u in
let !x = m u1 in
let !y = k x u2 in
y
⋮
So, monadic types aren't always needed - there are other interfaces out there:
LML had a fully fledged implementation of oracles running of a multi-processor (a Sequent Symmetry) back in ca 1989. The description in the Fudgets thesis refers to this implementation. It was fairly pleasant to work with and quite practical.
[...]
These days everything is done with monads so other solutions are sometimes forgotten.
Lennart Augustsson (2006).
Wait a moment: since it so closely resembles Standard ML's direct use of effects, is this approach and its use of pseudo-data referentially transparent?
Absolutely - just find a suitable definition of "referential transparency"; there's plenty to choose from...

Why monads? How does it resolve side-effects?

I am learning Haskell and trying to understand Monads. I have two questions:
From what I understand, Monad is just another typeclass that declares ways to interact with data inside "containers", including Maybe, List, and IO. It seems clever and clean to implement these 3 things with one concept, but really, the point is so there can be clean error handling in a chain of functions, containers, and side effects. Is this a correct interpretation?
How exactly is the problem of side-effects solved? With this concept of containers, the language essentially says anything inside the containers is non-deterministic (such as i/o). Because lists and IOs are both containers, lists are equivalence-classed with IO, even though values inside lists seem pretty deterministic to me. So what is deterministic and what has side-effects? I can't wrap my head around the idea that a basic value is deterministic, until you stick it in a container (which is no special than the same value with some other values next to it, e.g. Nothing) and it can now be random.
Can someone explain how, intuitively, Haskell gets away with changing state with inputs and output? I'm not seeing the magic here.
The point is so there can be clean error handling in a chain of functions, containers, and side effects. Is this a correct interpretation?
Not really. You've mentioned a lot of concepts that people cite when trying to explain monads, including side effects, error handling and non-determinism, but it sounds like you've gotten the incorrect sense that all of these concepts apply to all monads. But there's one concept you mentioned that does: chaining.
There are two different flavors of this, so I'll explain it two different ways: one without side effects, and one with side effects.
No Side Effects:
Take the following example:
addM :: (Monad m, Num a) => m a -> m a -> m a
addM ma mb = do
a <- ma
b <- mb
return (a + b)
This function adds two numbers, with the twist that they are wrapped in some monad. Which monad? Doesn't matter! In all cases, that special do syntax de-sugars to the following:
addM ma mb =
ma >>= \a ->
mb >>= \b ->
return (a + b)
... or, with operator precedence made explicit:
ma >>= (\a -> mb >>= (\b -> return (a + b)))
Now you can really see that this is a chain of little functions, all composed together, and its behavior will depend on how >>= and return are defined for each monad. If you're familiar with polymorphism in object-oriented languages, this is essentially the same thing: one common interface with multiple implementations. It's slightly more mind-bending than your average OOP interface, since the interface represents a computation policy rather than, say, an animal or a shape or something.
Okay, let's see some examples of how addM behaves across different monads. The Identity monad is a decent place to start, since its definition is trivial:
instance Monad Identity where
return a = Identity a -- create an Identity value
(Identity a) >>= f = f a -- apply f to a
So what happens when we say:
addM (Identity 1) (Identity 2)
Expanding this, step by step:
(Identity 1) >>= (\a -> (Identity 2) >>= (\b -> return (a + b)))
(\a -> (Identity 2) >>= (\b -> return (a + b)) 1
(Identity 2) >>= (\b -> return (1 + b))
(\b -> return (1 + b)) 2
return (1 + 2)
Identity 3
Great. Now, since you mentioned clean error handling, let's look at the Maybe monad. Its definition is only slightly trickier than Identity:
instance Monad Maybe where
return a = Just a -- same as Identity monad!
(Just a) >>= f = f a -- same as Identity monad again!
Nothing >>= _ = Nothing -- the only real difference from Identity
So you can imagine that if we say addM (Just 1) (Just 2) we'll get Just 3. But for grins, let's expand addM Nothing (Just 1) instead:
Nothing >>= (\a -> (Just 1) >>= (\b -> return (a + b)))
Nothing
Or the other way around, addM (Just 1) Nothing:
(Just 1) >>= (\a -> Nothing >>= (\b -> return (a + b)))
(\a -> Nothing >>= (\b -> return (a + b)) 1
Nothing >>= (\b -> return (1 + b))
Nothing
So the Maybe monad's definition of >>= was tweaked to account for failure. When a function is applied to a Maybe value using >>=, you get what you'd expect.
Okay, so you mentioned non-determinism. Yes, the list monad can be thought of as modeling non-determinism in a sense... It's a little weird, but think of the list as representing alternative possible values: [1, 2, 3] is not a collection, it's a single non-deterministic number that could be either one, two or three. That sounds dumb, but it starts to make some sense when you think about how >>= is defined for lists: it applies the given function to each possible value. So addM [1, 2] [3, 4] is actually going to compute all possible sums of those two non-deterministic values: [4, 5, 5, 6].
Okay, now to address your second question...
Side Effects:
Let's say you apply addM to two values in the IO monad, like:
addM (return 1 :: IO Int) (return 2 :: IO Int)
You don't get anything special, just 3 in the IO monad. addM does not read or write any mutable state, so it's kind of no fun. Same goes for the State or ST monads. No fun. So let's use a different function:
fireTheMissiles :: IO Int -- returns the number of casualties
Clearly the world will be different each time missiles are fired. Clearly. Now let's say you're trying to write some totally innocuous, side effect free, non-missile-firing code. Perhaps you're trying once again to add two numbers, but this time without any monads flying around:
add :: Num a => a -> a -> a
add a b = a + b
and all of a sudden your hand slips, and you accidentally typo:
add a b = a + b + fireTheMissiles
An honest mistake, really. The keys were so close together. Fortunately, because fireTheMissiles was of type IO Int rather than simply Int, the compiler is able to avert disaster.
Okay, totally contrived example, but the point is that in the case of IO, ST and friends, the type system keeps effects isolated to some specific context. It doesn't magically eliminate side effects, making code referentially transparent that shouldn't be, but it does make it clear at compile time what scope the effects are limited to.
So getting back to the original point: what does this have to do with chaining or composition of functions? Well, in this case, it's just a handy way of expressing a sequence of effects:
fireTheMissilesTwice :: IO ()
fireTheMissilesTwice = do
a <- fireTheMissiles
print a
b <- fireTheMissiles
print b
Summary:
A monad represents some policy for chaining computations. Identity's policy is pure function composition, Maybe's policy is function composition with failure propogation, IO's policy is impure function composition and so on.
Let me start by pointing at the excellent "You could have invented monads" article. It illustrates how the Monad structure can naturally manifest while you are writing programs. But the tutorial doesn't mention IO, so I will have a stab here at extending the approach.
Let us start with what you probably have already seen - the container monad. Let's say we have:
f, g :: Int -> [Int]
One way of looking at this is that it gives us a number of possible outputs for every possible input. What if we want all possible outputs for the composition of both functions? Giving all possibilities we could get by applying the functions one after the other?
Well, there's a function for that:
fg x = concatMap g $ f x
If we put this more general, we get
fg x = f x >>= g
xs >>= f = concatMap f xs
return x = [x]
Why would we want to wrap it like this? Well, writing our programs primarily using >>= and return gives us some nice properties - for example, we can be sure that it's relatively hard to "forget" solutions. We'd explicitly have to reintroduce it, say by adding another function skip. And also we now have a monad and can use all combinators from the monad library!
Now, let us jump to your trickier example. Let's say the two functions are "side-effecting". That's not non-deterministic, it just means that in theory the whole world is both their input (as it can influence them) as well as their output (as the function can influence it). So we get something like:
f, g :: Int -> RealWorld# -> (Int, RealWorld#)
If we now want f to get the world that g left behind, we'd write:
fg x rw = let (y, rw') = f x rw
(r, rw'') = g y rw'
in (r, rw'')
Or generalized:
fg x = f x >>= g
x >>= f = \rw -> let (y, rw') = x rw
(r, rw'') = f y rw'
in (r, rw'')
return x = \rw -> (x, rw)
Now if the user can only use >>=, return and a few pre-defined IO values we get a nice property again: The user will never actually see the RealWorld# getting passed around! And that is a very good thing, as you aren't really interested in the details of where getLine gets its data from. And again we get all the nice high-level functions from the monad libraries.
So the important things to take away:
The monad captures common patterns in your code, like "always pass all elements of container A to container B" or "pass this real-world-tag through". Often, once you realize that there is a monad in your program, complicated things become simply applications of the right monad combinator.
The monad allows you to completely hide the implementation from the user. It is an excellent encapsulation mechanism, be it for your own internal state or for how IO manages to squeeze non-purity into a pure program in a relatively safe way.
Appendix
In case someone is still scratching his head over RealWorld# as much as I did when I started: There's obviously more magic going on after all the monad abstraction has been removed. Then the compiler will make use of the fact that there can only ever be one "real world". That's good news and bad news:
It follows that the compiler must guarantuee execution ordering between functions (which is what we were after!)
But it also means that actually passing the real world isn't necessary as there is only one we could possibly mean: The one that is current when the function gets executed!
Bottom line is that once execution order is fixed, RealWorld# simply gets optimized out. Therefore programs using the IO monad actually have zero runtime overhead. Also note that using RealWorld# is obviously only one possible way to put IO - but it happens to be the one GHC uses internally. The good thing about monads is that, again, the user really doesn't need to know.
You could see a given monad m as a set/family (or realm, domain, etc.) of actions (think of a C statement). The monad m defines the kind of (side-)effects that its actions may have:
with [] you can define actions which can fork their executions in different "independent parallel worlds";
with Either Foo you can define actions which can fail with errors of type Foo;
with IO you can define actions which can have side-effects on the "outside world" (access files, network, launch processes, do a HTTP GET ...);
you can have a monad whose effect is "randomness" (see package MonadRandom);
you can define a monad whose actions can make a move in a game (say chess, Go…) and receive move from an opponent but are not able to write to your filesystem or anything else.
Summary
If m is a monad, m a is an action which produces a result/output of type a.
The >> and >>= operators are used to create more complex actions out of simpler ones:
a >> b is a macro-action which does action a and then action b;
a >> a does action a and then action a again;
with >>= the second action can depend on the output of the first one.
The exact meaning of what an action is and what doing an action and then another one is depends on the monad: each monad defines an imperative sublanguage with some features/effects.
Simple sequencing (>>)
Let's say with have a given monad M and some actions incrementCounter, decrementCounter, readCounter:
instance M Monad where ...
-- Modify the counter and do not produce any result:
incrementCounter :: M ()
decrementCounter :: M ()
-- Get the current value of the counter
readCounter :: M Integer
Now we would like to do something interesting with those actions. The first thing we would like to do with those actions is to sequence them. As in say C, we would like to be able to do:
// This is C:
counter++;
counter++;
We define an "sequencing operator" >>. Using this operator we can write:
incrementCounter >> incrementCounter
What is the type of "incrementCounter >> incrementCounter"?
It is an action made of two smaller actions like in C you can write composed-statements from atomic statements :
// This is a macro statement made of several statements
{
counter++;
counter++;
}
// and we can use it anywhere we may use a statement:
if (condition) {
counter++;
counter++;
}
it can have the same kind of effects as its subactions;
it does not produce any output/result.
So we would like incrementCounter >> incrementCounter to be of type M (): an (macro-)action with the same kind of possible effects but without any output.
More generally, given two actions:
action1 :: M a
action2 :: M b
we define a a >> b as the macro-action which is obtained by doing (whatever that means in our domain of action) a then b and produces as output the result of the execution of the second action. The type of >> is:
(>>) :: M a -> M b -> M b
or more generally:
(>>) :: (Monad m) => m a -> m b -> m b
We can define bigger sequence of actions from simpler ones:
action1 >> action2 >> action3 >> action4
Input and outputs (>>=)
We would like to be able to increment by something else that 1 at a time:
incrementBy 5
We want to provide some input in our actions, in order to do this we define a function incrementBy taking an Int and producing an action:
incrementBy :: Int -> M ()
Now we can write things like:
incrementCounter >> readCounter >> incrementBy 5
But we have no way to feed the output of readCounter into incrementBy. In order to do this, a slightly more powerful version of our sequencing operator is needed. The >>= operator can feed the output of a given action as input to the next action. We can write:
readCounter >>= incrementBy
It is an action which executes the readCounter action, feeds its output in the incrementBy function and then execute the resulting action.
The type of >>= is:
(>>=) :: Monad m => m a -> (a -> m b) -> m b
A (partial) example
Let's say I have a Prompt monad which can only display informations (text) to the user and ask informations to the user:
-- We don't have access to the internal structure of the Prompt monad
module Prompt (Prompt(), echo, prompt) where
-- Opaque
data Prompt a = ...
instance Monad Prompt where ...
-- Display a line to the CLI:
echo :: String -> Prompt ()
-- Ask a question to the user:
prompt :: String -> Prompt String
Let's try to define a promptBoolean message actions which asks for a question and produces a boolean value.
We use the prompt (message ++ "[y/n]") action and feed its output to a function f:
f "y" should be an action which does nothing but produce True as output;
f "n" should be an action which does nothing but produce False as output;
anything else should restart the action (do the action again);
promptBoolean would look like this:
-- Incomplete version, some bits are missing:
promptBoolean :: String -> M Boolean
promptBoolean message = prompt (message ++ "[y/n]") >>= f
where f result = if result == "y"
then ???? -- We need here an action which does nothing but produce `True` as output
else if result=="n"
then ???? -- We need here an action which does nothing but produce `False` as output
else echo "Input not recognised, try again." >> promptBoolean
Producing a value without effect (return)
In order to fill the missing bits in our promptBoolean function, we need a way to represent dummy actions without any side effect but which only outputs a given value:
-- "return 5" is an action which does nothing but outputs 5
return :: (Monad m) => a -> m a
and we can now write out promptBoolean function:
promptBoolean :: String -> Prompt Boolean
promptBoolean message :: prompt (message ++ "[y/n]") >>= f
where f result = if result=="y"
then return True
else if result=="n"
then return False
else echo "Input not recognised, try again." >> promptBoolean message
By composing those two simple actions (promptBoolean, echo) we can define any kind of dialogue between the user and your program (the actions of the program are deterministic as our monad does not have a "randomness effect").
promptInt :: String -> M Int
promptInt = ... -- similar
-- Classic "guess a number game/dialogue"
guess :: Int -> m()
guess n = promptInt "Guess:" m -> f
where f m = if m == n
then echo "Found"
else (if m > n
then echo "Too big"
then echo "Too small") >> guess n
The operations of a monad
A Monad is a set of actions which can be composed with the return and >>= operators:
>>= for action composition;
return for producing a value without any (side-)effect.
These two operators are the minimal operators needed to define a Monad.
In Haskell, the >> operator is needed as well but it can in fact be derived from >>=:
(>>): Monad m => m a -> m b -> m b
a >> b = a >>= f
where f x = b
In Haskell, an extra fail operator is need as well but this is really a hack (and it might be removed from Monad in the future).
This is the Haskell definition of a Monad:
class Monad m where
return :: m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b -- can be derived from (>>=)
fail :: String -> m a -- mostly a hack
Actions are first-class
One great thing about monads is that actions are first-class. You can take them in a variable, you can define function which take actions as input and produce some other actions as output. For example, we can define a while operator:
-- while x y : does action y while action x output True
while :: (Monad m) => m Boolean -> m a -> m ()
while x y = x >>= f
where f True = y >> while x y
f False = return ()
Summary
A Monad is a set of actions in some domain. The monad/domain define the kind of "effects" which are possible. The >> and >>= operators represent sequencing of actions and monadic expression may be used to represent any kind of "imperative (sub)program" in your (functional) Haskell program.
The great things are that:
you can design your own Monad which supports the features and effects that you want
see Prompt for an example of a "dialogue only subprogram",
see Rand for an example of "sampling only subprogram";
you can write your own control structures (while, throw, catch or more exotic ones) as functions taking actions and composing them in some way to produce a bigger macro-actions.
MonadRandom
A good way of understanding monads, is the MonadRandom package. The Rand monad is made of actions whose output can be random (the effect is randomness). An action in this monad is some kind of random variable (or more exactly a sampling process):
-- Sample an Int from some distribution
action :: Rand Int
Using Rand to do some sampling/random algorithms is quite interesting because you have random variables as first class values:
-- Estimate mean by sampling nsamples times the random variable x
sampleMean :: Real a => Int -> m a -> m a
sampleMean n x = ...
In this setting, the sequence function from Prelude,
sequence :: Monad m => [m a] -> m [a]
becomes
sequence :: [Rand a] -> Rand [a]
It creates a random variable obtained by sampling independently from a list of random variables.
There are three main observations concerning the IO monad:
1) You can't get values out of it. Other types like Maybe might allow to extract values, but neither the monad class interface itself nor the IO data type allow it.
2) "Inside" IO is not only the real value but also that "RealWorld" thing. This dummy value is used to enforce the chaining of actions by the type system: If you have two independent calculations, the use of >>= makes the second calculation dependent on the first.
3) Assume a non-deterministic thing like random :: () -> Int, which isn't allowed in Haskell. If you change the signature to random :: Blubb -> (Blubb, Int), it is allowed, if you make sure that nobody ever can use a Blubb twice: Because in that case all inputs are "different", it is no problem that the outputs are different as well.
Now we can use the fact 1): Nobody can get something out of IO, so we can use the RealWord dummy hidden in IO to serve as a Blubb. There is only one IOin the whole application (the one we get from main), and it takes care of proper sequentiation, as we have seen in 2). Problem solved.
One thing that often helps me to understand the nature of something is to examine it in the most trivial way possible. That way, I'm not getting distracted by potentially unrelated concepts. With that in mind, I think it may be helpful to understand the nature of the Identity Monad, as it's the most trivial implementation of a Monad possible (I think).
What is interesting about the Identity Monad? I think it is that it allows me to express the idea of evaluating expressions in a context defined by other expressions. And to me, that is the essence of every Monad I've encountered (so far).
If you already had a lot of exposure to 'mainstream' programming languages before learning Haskell (like I did), then this doesn't seem very interesting at all. After all, in a mainstream programming language, statements are executed in sequence, one after the other (excepting control-flow constructs, of course). And naturally, we can assume that every statement is evaluated in the context of all previously executed statements and that those previously executed statements may alter the environment and the behavior of the currently executing statement.
All of that is pretty much a foreign concept in a functional, lazy language like Haskell. The order in which computations are evaluated in Haskell is well-defined, but sometimes hard to predict, and even harder to control. And for many kinds of problems, that's just fine. But other sorts of problems (e.g. IO) are hard to solve without some convenient way to establish an implicit order and context between the computations in your program.
As far as side-effects go, specifically, often they can be transformed (via a Monad) in to simple state-passing, which is perfectly legal in a pure functional language. Some Monads don't seem to be of that nature, however. Monads such as the IO Monad or the ST monad literally perform side-effecting actions. There are many ways to think about this, but one way that I think about it is that just because my computations must exist in a world without side-effects, the Monad may not. As such, the Monad is free to establish a context for my computation to execute that is based on side-effects defined by other computations.
Finally, I must disclaim that I am definitely not a Haskell expert. As such, please understand that everything I've said is pretty much my own thoughts on this subject and I may very well disown them later when I understand Monads more fully.
the point is so there can be clean error handling in a chain of functions, containers, and side effects
More or less.
how exactly is the problem of side-effects solved?
A value in the I/O monad, i.e. one of type IO a, should be interpreted as a program. p >> q on IO values can then be interpreted as the operator that combines two programs into one that first executes p, then q. The other monad operators have similar interpretations. By assigning a program to the name main, you declare to the compiler that that is the program that has to be executed by its output object code.
As for the list monad, it's not really related to the I/O monad except in a very abstract mathematical sense. The IO monad gives deterministic computation with side effects, while the list monad gives non-deterministic (but not random!) backtracking search, somewhat similar to Prolog's modus operandi.
With this concept of containers, the language essentially says anything inside the containers is non-deterministic
No. Haskell is deterministic. If you ask for integer addition 2+2 you will always get 4.
"Nondeterministic" is only a metaphor, a way of thinking. Everything is deterministic under the hood. If you have this code:
do x <- [4,5]
y <- [0,1]
return (x+y)
it is roughly equivalent to Python code
l = []
for x in [4,5]:
for y in [0,1]:
l.append(x+y)
You see nondeterminism here? No, it's deterministic construction of a list. Run it twice, you'll get the same numbers in the same order.
You can describe it this way: Choose arbitrary x from [4,5]. Choose arbitrary y from [0,1]. Return x+y. Collect all possible results.
That way seems to involve nondeterminism, but it's only a nested loop (list comprehension). There is no "real" nondeterminism here, it's simulated by checking all possibilities. Nondeterminism is an illusion. The code only appears to be nondeterministic.
This code using State monad:
do put 0
x <- get
put (x+2)
y <- get
return (y+3)
gives 5 and seems to involve changing state. As with lists it's an illusion. There are no "variables" that change (as in imperative languages). Everything is nonmutable under the hood.
You can describe the code this way: put 0 to a variable. Read the value of a variable to x. Put (x+2) to the variable. Read the variable to y, and return y+3.
That way seems to involve state, but it's only composing functions passing additional parameter. There is no "real" mutability here, it's simulated by composition. Mutability is an illusion. The code only appears to be using it.
Haskell does it this way: you've got functions
a -> s -> (b,s)
This function takes and old value of state and returns new value. It does not involve mutability or change variables. It's a function in mathematical sense.
For example the function "put" takes new value of state, ignores current state and returns new state:
put x _ = ((), x)
Just like you can compose two normal functions
a -> b
b -> c
into
a -> c
using (.) operator you can compose "state" transformers
a -> s -> (b,s)
b -> s -> (c,s)
into a single function
a -> s -> (c,s)
Try writing the composition operator yourself. This is what really happens, there are no "side effects" only passing arguments to functions.
From what I understand, Monad is just another typeclass that declares ways to interact with data [...]
...providing an interface common to all those types which have an instance. This can then be used to provide generic definitions which work across all monadic types.
It seems clever and clean to implement these 3 things with one concept [...]
...the only three things that are implemented are the instances for those three types (list, Maybe and IO) - the types themselves are defined independently elsewhere.
[...] but really, the point is so there can be clean error handling in a chain of functions, containers, and side effects.
Not just error handling e.g. consider ST - without the monadic interface, you would have to pass the encapsulated-state directly and correctly...a tiresome task.
How exactly is the problem of side-effects solved?
Short answer: Haskell solves manages them by using types to indicate their presence.
Can someone explain how, intuitively, Haskell gets away with changing state with inputs and output?
"Intuitively"...like what's available over here? Let's try a simple direct comparison instead:
From How to Declare an Imperative by Philip Wadler:
(* page 26 *)
type 'a io = unit -> 'a
infix >>=
val >>= : 'a io * ('a -> 'b io) -> 'b io
fun m >>= k = fn () => let
val x = m ()
val y = k x ()
in
y
end
val return : 'a -> 'a io
fun return x = fn () => x
val putc : char -> unit io
fun putc c = fn () => putcML c
val getc : char io
val getc = fn () => getcML ()
fun getcML () =
valOf(TextIO.input1(TextIO.stdIn))
(* page 25 *)
fun putcML c =
TextIO.output1(TextIO.stdOut,c)
Based on these two answers of mine, this is my Haskell translation:
type IO a = OI -> a
(>>=) :: IO a -> (a -> IO b) -> IO b
m >>= k = \ u -> let !(u1, u2) = part u in
let !x = m u1 in
let !y = k x u2 in
y
return :: a -> IO a
return x = \ u -> let !_ = part u in x
putc :: Char -> IO ()
putc c = \ u -> putcOI c u
getc :: IO Char
getc = \ u -> getcOI u
-- primitives
data OI
partOI :: OI -> (OI, OI)
putcOI :: Char -> OI -> ()
getcOI :: OI -> Char
Now remember that short answer about side-effects?
Haskell manages them by using types to indicate their presence.
Data.Char.chr :: Int -> Char -- no side effects
getChar :: IO Char -- side effects at
{- :: OI -> Char -} -- work: beware!

Why are side-effects modeled as monads in Haskell?

Could anyone give some pointers on why the impure computations in Haskell are modelled as monads?
I mean monad is just an interface with 4 operations, so what was the reasoning to modelling side-effects in it?
Suppose a function has side effects. If we take all the effects it produces as the input and output parameters, then the function is pure to the outside world.
So, for an impure function
f' :: Int -> Int
we add the RealWorld to the consideration
f :: Int -> RealWorld -> (Int, RealWorld)
-- input some states of the whole world,
-- modify the whole world because of the side effects,
-- then return the new world.
then f is pure again. We define a parametrized data type type IO a = RealWorld -> (a, RealWorld), so we don't need to type RealWorld so many times, and can just write
f :: Int -> IO Int
To the programmer, handling a RealWorld directly is too dangerous—in particular, if a programmer gets their hands on a value of type RealWorld, they might try to copy it, which is basically impossible. (Think of trying to copy the entire filesystem, for example. Where would you put it?) Therefore, our definition of IO encapsulates the states of the whole world as well.
Composition of "impure" functions
These impure functions are useless if we can't chain them together. Consider
getLine :: IO String ~ RealWorld -> (String, RealWorld)
getContents :: String -> IO String ~ String -> RealWorld -> (String, RealWorld)
putStrLn :: String -> IO () ~ String -> RealWorld -> ((), RealWorld)
We want to
get a filename from the console,
read that file, and
print that file's contents to the console.
How would we do it if we could access the real world states?
printFile :: RealWorld -> ((), RealWorld)
printFile world0 = let (filename, world1) = getLine world0
(contents, world2) = (getContents filename) world1
in (putStrLn contents) world2 -- results in ((), world3)
We see a pattern here. The functions are called like this:
...
(<result-of-f>, worldY) = f worldX
(<result-of-g>, worldZ) = g <result-of-f> worldY
...
So we could define an operator ~~~ to bind them:
(~~~) :: (IO b) -> (b -> IO c) -> IO c
(~~~) :: (RealWorld -> (b, RealWorld))
-> (b -> RealWorld -> (c, RealWorld))
-> (RealWorld -> (c, RealWorld))
(f ~~~ g) worldX = let (resF, worldY) = f worldX
in g resF worldY
then we could simply write
printFile = getLine ~~~ getContents ~~~ putStrLn
without touching the real world.
"Impurification"
Now suppose we want to make the file content uppercase as well. Uppercasing is a pure function
upperCase :: String -> String
But to make it into the real world, it has to return an IO String. It is easy to lift such a function:
impureUpperCase :: String -> RealWorld -> (String, RealWorld)
impureUpperCase str world = (upperCase str, world)
This can be generalized:
impurify :: a -> IO a
impurify :: a -> RealWorld -> (a, RealWorld)
impurify a world = (a, world)
so that impureUpperCase = impurify . upperCase, and we can write
printUpperCaseFile =
getLine ~~~ getContents ~~~ (impurify . upperCase) ~~~ putStrLn
(Note: Normally we write getLine ~~~ getContents ~~~ (putStrLn . upperCase))
We were working with monads all along
Now let's see what we've done:
We defined an operator (~~~) :: IO b -> (b -> IO c) -> IO c which chains two impure functions together
We defined a function impurify :: a -> IO a which converts a pure value to impure.
Now we make the identification (>>=) = (~~~) and return = impurify, and see? We've got a monad.
Technical note
To ensure it's really a monad, there's still a few axioms which need to be checked too:
return a >>= f = f a
impurify a = (\world -> (a, world))
(impurify a ~~~ f) worldX = let (resF, worldY) = (\world -> (a, world )) worldX
in f resF worldY
= let (resF, worldY) = (a, worldX)
in f resF worldY
= f a worldX
f >>= return = f
(f ~~~ impurify) worldX = let (resF, worldY) = f worldX
in impurify resF worldY
= let (resF, worldY) = f worldX
in (resF, worldY)
= f worldX
f >>= (\x -> g x >>= h) = (f >>= g) >>= h
Left as exercise.
Could anyone give some pointers on why the unpure computations in Haskell are modeled as monads?
This question contains a widespread misunderstanding.
Impurity and Monad are independent notions.
Impurity is not modeled by Monad.
Rather, there are a few data types, such as IO, that represent imperative computation.
And for some of those types, a tiny fraction of their interface corresponds to the interface pattern called "Monad".
Moreover, there is no known pure/functional/denotative explanation of IO (and there is unlikely to be one, considering the "sin bin" purpose of IO), though there is the commonly told story about World -> (a, World) being the meaning of IO a.
That story cannot truthfully describe IO, because IO supports concurrency and nondeterminism.
The story doesn't even work when for deterministic computations that allow mid-computation interaction with the world.
For more explanation, see this answer.
Edit: On re-reading the question, I don't think my answer is quite on track.
Models of imperative computation do often turn out to be monads, just as the question said.
The asker might not really assume that monadness in any way enables the modeling of imperative computation.
As I understand it, someone called Eugenio Moggi first noticed that a previously obscure mathematical construct called a "monad" could be used to model side effects in computer languages, and hence specify their semantics using Lambda calculus. When Haskell was being developed there were various ways in which impure computations were modelled (see Simon Peyton Jones' "hair shirt" paper for more details), but when Phil Wadler introduced monads it rapidly became obvious that this was The Answer. And the rest is history.
Could anyone give some pointers on why the unpure computations in Haskell are modeled as monads?
Well, because Haskell is pure. You need a mathematical concept to distinguish between unpure computations and pure ones on type-level and to model programm flows in respectively.
This means you'll have to end up with some type IO a that models an unpure computation. Then you need to know ways of combining these computations of which apply in sequence (>>=) and lift a value (return) are the most obvious and basic ones.
With these two, you've already defined a monad (without even thinking of it);)
In addition, monads provide very general and powerful abstractions, so many kinds of control flow can be conveniently generalized in monadic functions like sequence, liftM or special syntax, making unpureness not such a special case.
See monads in functional programming and uniqueness typing (the only alternative I know) for more information.
As you say, Monad is a very simple structure. One half of the answer is: Monad is the simplest structure that we could possibly give to side-effecting functions and be able to use them. With Monad we can do two things: we can treat a pure value as a side-effecting value (return), and we can apply a side-effecting function to a side-effecting value to get a new side-effecting value (>>=). Losing the ability to do either of these things would be crippling, so our side-effecting type needs to be "at least" Monad, and it turns out Monad is enough to implement everything we've needed to so far.
The other half is: what's the most detailed structure we could give to "possible side effects"? We can certainly think about the space of all possible side effects as a set (the only operation that requires is membership). We can combine two side effects by doing them one after another, and this will give rise to a different side effect (or possibly the same one - if the first was "shutdown computer" and the second was "write file", then the result of composing these is just "shutdown computer").
Ok, so what can we say about this operation? It's associative; that is, if we combine three side effects, it doesn't matter which order we do the combining in. If we do (write file then read socket) then shutdown computer, it's the same as doing write file then (read socket then shutdown computer). But it's not commutative: ("write file" then "delete file") is a different side effect from ("delete file" then "write file"). And we have an identity: the special side effect "no side effects" works ("no side effects" then "delete file" is the same side effect as just "delete file") At this point any mathematician is thinking "Group!" But groups have inverses, and there's no way to invert a side effect in general; "delete file" is irreversible. So the structure we have left is that of a monoid, which means our side-effecting functions should be monads.
Is there a more complex structure? Sure! We could divide possible side effects into filesystem-based effects, network-based effects and more, and we could come up with more elaborate rules of composition that preserved these details. But again it comes down to: Monad is very simple, and yet powerful enough to express most of the properties we care about. (In particular, associativity and the other axioms let us test our application in small pieces, with confidence that the side effects of the combined application will be the same as the combination of the side effects of the pieces).
It's actually quite a clean way to think of I/O in a functional way.
In most programming languages, you do input/output operations. In Haskell, imagine writing code not to do the operations, but to generate a list of the operations that you would like to do.
Monads are just pretty syntax for exactly that.
If you want to know why monads as opposed to something else, I guess the answer is that they're the best functional way to represent I/O that people could think of when they were making Haskell.
AFAIK, the reason is to be able to include side effects checks in the type system. If you want to know more, listen to those SE-Radio episodes:
Episode 108: Simon Peyton Jones on Functional Programming and Haskell
Episode 72: Erik Meijer on LINQ
Above there are very good detailed answers with theoretical background. But I want to give my view on IO monad. I am not experienced haskell programmer, so May be it is quite naive or even wrong. But i helped me to deal with IO monad to some extent (note, that it do not relates to other monads).
First I want to say, that example with "real world" is not too clear for me as we cannot access its (real world) previous states. May be it do not relates to monad computations at all but it is desired in the sense of referential transparency, which is generally presents in haskell code.
So we want our language (haskell) to be pure. But we need input/output operations as without them our program cannot be useful. And those operations cannot be pure by their nature. So the only way to deal with this we have to separate impure operations from the rest of code.
Here monad comes. Actually, I am not sure, that there cannot exist other construct with similar needed properties, but the point is that monad have these properties, so it can be used (and it is used successfully). The main property is that we cannot escape from it. Monad interface do not have operations to get rid of the monad around our value. Other (not IO) monads provide such operations and allow pattern matching (e.g. Maybe), but those operations are not in monad interface. Another required property is ability to chain operations.
If we think about what we need in terms of type system, we come to the fact that we need type with constructor, which can be wrapped around any vale. Constructor must be private, as we prohibit escaping from it(i.e. pattern matching). But we need function to put value into this constructor (here return comes to mind). And we need the way to chain operations. If we think about it for some time, we will come to the fact, that chaining operation must have type as >>= has. So, we come to something very similar to monad. I think, if we now analyze possible contradictory situations with this construct, we will come to monad axioms.
Note, that developed construct do not have anything in common with impurity. It only have properties, which we wished to have to be able to deal with impure operations, namely, no-escaping, chaining, and a way to get in.
Now some set of impure operations is predefined by the language within this selected monad IO. We can combine those operations to create new unpure operations. And all those operations will have to have IO in their type. Note however, that presence of IO in type of some function do not make this function impure. But as I understand, it is bad idea to write pure functions with IO in their type, as it was initially our idea to separate pure and impure functions.
Finally, I want to say, that monad do not turn impure operations into pure ones. It only allows to separate them effectively. (I repeat, that it is only my understanding)

Resources