Monad "bind" function question - haskell

If I define the "bind" function like this:
(>>=) :: M a -> (a -> M' b) -> M' b
Will this definition help me if I want the result to be of a new Monad type, or I should use same Monad but with b in the same Monad box as before?

As I've mentioned in the comment, I don't think such operation can be safely defined for general monads (e.g. M = IO, M' = Maybe).
However, if the M is safely convertible to M', then this bind can be defined as:
convert :: M1 a -> M2 a
...
(>>=*) :: M1 a -> (a -> M2 b) -> M2 b
x >>=* f = convert x >>= f
And conversely,
convert x = x >>=* return
Some of such safe conversion methods are maybeToList (Maybe → []), listToMaybe ([] → Maybe), stToIO (ST RealWorld → IO), ... note that there isn't a generic convert method for any monads.

Not only will that definition not help, but it will seriously confuse future readers of your code, since it will break all expectations of use for it.
For instance, are both M and M' supposed to be Monads? If so, then how are they defined? Remember: the definition of >>= is part of the definition of Monad, and is used everywhere to define other Monad-using functions - every function besides return and fail themselves.
Also, do you get to choose which M and M' you use, or does the computer? If so, then how do you choose? Does it work for any two Monad instances, or is there some subset of Monad that you want - or does the choice of M determine the choice of M'?
It's possible to make a function like what you've written, but it surely is a lot more complicated than >>=, and it would be misleading, cruel, and potentially disastrous to try to cram your function into >>='s clothes.

This can be a complicated thing to do, but it is doable in some contexts. Basically, if they are monads you can see inside (such as Maybe or a monad you've written) then you can define such an operation.
One thing which is sometimes quite handy (in GHC) is to replace the Monad class with one of your own. If you define return, >>=, fail you'll still be able to use do notation. Here's an example that may be like what you want:
class Compose s t where
type Comp s t
class Monad m where
return :: a -> m s a
fail :: String -> m a
(>>=) :: (Compose s t) => m s a -> (a -> m t b) -> m (Comp s t) b
(>>) :: (Compose s t) => m s a -> m t b -> m (Comp s t) b
m >> m' = m >>= \_ -> m'
You can then control which types can be sequenced using the bind operator based on which instances of Compose you define. Naturally you'll often want Comp s s = s, but you can also use this to define all sorts of crazy things.
For instance, perhaps you have some operations in your monad which absolutely cannot be followed by any other operations. Want to enforce that statically? Define an empty datatype data Terminal and provide no instances of Compose Terminal t.
This approach is not good for transposing from (say) Maybe to IO, but it can be used to carry along some type-level data about what you're doing.
If you really do want to change monads, you can modify the class definitions above into something like
class Compose m n where
type Comp m n
(>>=*) :: m a -> (a -> n b) -> (Compose m n) b
class Monad m where
return :: a -> m a
fail :: String -> m a
(>>=) :: Compose m n => m a -> (a -> n b) -> (Compose m n) b
m >>= f = m >>=* f
(>>) :: Compose m n => m a -> (n b) -> (Compose m n) b
m >> n = m >>=* \_ -> n
I've used the former style to useful ends, though I imagine that this latter idea may also be useful in certain contexts.

You may want to look at this sample from Oleg: http://okmij.org/ftp/Computation/monads.html#param-monad

Related

Lifting a complete monadic action to a transformer (>>= but for Monad Transformers)

I looked hard to see if this may be a duplicate question but couldn't find anything that addressed specifically this. My apologies if there actually is something.
So, I get how lift works, it lifts a monadic action (fully defined) from the outer-most transformer into the transformed monad. Cool.
But what if I want to apply a (>>=) from one level under the transformer into the transformer? I'll explain with an example.
Say MyTrans is a MonadTrans, and there is also an instance Monad m => Monad (MyTrans m). Now, the (>>=) from this instance will have this signature:
instance Monad m => Monad (MyTrans m) where
(>>=) :: MyTrans m a -> (a -> MyTrans m b) -> MyTrans m b
but what I need is something like this:
(>>=!) :: Monad m => MyTrans m a -> (m a -> MyTrans m b) -> MyTrans m b
In general:
(>>=!) :: (MonadTrans t, Monad m) => t m a -> (m a -> t m b) -> t m b
It looks like a combination of the original (>>=) and lift, except it really isn't. lift can only be used on covariant arguments of type m a to transform them into a t m a, not the other way around. In other words, the following has the wrong type:
(>>=!?) :: Monad m => MyTrans m a -> (a -> m b) -> MyTrans m b
x >>=!? f = x >>= (lift . f)
Of course a general colift :: (MonadTrans t, Monad m) => t m a -> m a makes absolutely zero sense, because surely the transformer is doing something that we cannot just throw away like that in all cases.
But just like (>>=) introduces contravariant arguments into the monad by ensuring that they will always "come back", I thought something along the lines of the (>>=!) function would make sense: Yes, it in some way makes an m a from a t m a, but only because it does all of this within t, just like (>>=) makes an a from an m a in some way.
I've thought about it and I don't think (>>=!) can be in general defined from the available tools. In some sense it is more than what MonadTrans gives. I haven't found any related type classes that offer this either. MFunctor is related but it is a different thing, for changing the inner monad, but not for chaining exclusively transformer-related actions.
By the way, here is an example of why you would want to do this:
EDIT: I tried to present a simple example but I realized that that one could be solved with the regular (>>=) from the transformer. My real example (I think) cannot be solved with this. If you think every case can be solved with the usual (>>=), please do explain how.
Should I just define my own type class for this and give some basic implementations? (I'm interested in StateT, and I'm almost certain it can be implemented for it) Am I doing something in a twisted way? Is there something I overlooked?
Thanks.
EDIT: The answer provided by Fyodor matches the types, but does not do what I want, since by using pure, it is ignoring the monadic effects of the m monad. Here is an example of it giving the wrong answer:
Take t = StateT Int and m = [].
x1 :: StateT Int [] Int
x1 = StateT (\s -> [(1,s),(2,s),(3,s)])
x2 :: StateT Int [] Int
x2 = StateT (\s -> [(1,s),(2,s),(3,s),(4,s))])
f :: [Int] -> StateT Int [] Int
f l = StateT (\s -> if (even s) then [] else (if (even (length l)) then (fmap (\z -> (z,z+s)) l) else [(123,123)]))
runStateT (x1 >>= (\a -> f (pure a))) 1 returns [(123,123),(123,123),(123,123)] as expected, since both 1 is odd and the list in x1 has odd length.
But runStateT (x2 >>= (\a -> f (pure a))) 1 returns [(123,123),(123,123),(123,123),(123,123)], whereas I would have expected it to return [(1,2),(2,3),(3,4),(4,5)], since the 1 is odd and the length of the list is even. Instead, the evaluation of f is happening on the lists [(1,1)], [(2,1)], [(3,1)] and [(4,1)] independently, due to the pure call.
This can be very trivially implemented via bind + pure. Consider the signature:
(>>=!) :: (Monad m, MonadTrans t) => t m a -> (m a -> t m a) -> t m a
If you use bind on the first argument, you get yourself a naked a, and since m is a Monad, you can trivially turn that naked a into an m a via pure. Therefore, the straightforward implementation would be:
(>>=!) x f = x >>= \a -> f (pure a)
And because of this, bind is always strictly more powerful than your proposed new operation (>>=!), which is probably the reason it doesn't exist in the standard libraries.
I think it may be possible to propose more clever interpretations of (>>=!) for some specific transformers or specific underlying monads. For example, if m ~ [], one might imagine passing the whole list as m a instead of its elements one by one, as my generic implementation above would do. But this sort of thing seems too specific to be implemented in general.
If you have a very specific example of what you're after, and you can show that my above general implementation doesn't work, then perhaps I can provide a better answer.
Ok, to address your actual problem from the comments:
I have a function f :: m a -> m b -> m c that I want to transform into a function ff :: StateT s m a -> StateT s m b -> StateT s m c
I think looking at this example may illustrate the difficulty better. Consider the required signature:
liftish :: Monad m => (m a -> m b -> m c) -> StateT m a -> StateT m b -> StateT m c
Presumably, you'd want to keep the effects of m that are already "imprinted" within the StateT m a and StateT m b parameters (because if you don't - my simple solution above will work). To do this, you can "unwrap" the StateT via runStateT, which will get you m a and m b respectively, which you can then use to obtain m c:
liftish f sa sb = do
s <- get
let ma = fst <$> runStateT sa s
mb = fst <$> runStateT sb s
lift $ f ma mb
But here's the trouble: see those fst <$> in there? They are throwing away the resulting state. The call to runStateT sa s results not only in the m a value, but also in the new, modified state. And same goes for runStateT sb s. And presumably you'd want to get the state that resulted from runStateT sa and pass it to runStateT sb, right? Otherwise you're effectively dropping some state mutations.
But you can't get to the resulting state of runStateT sa, because it's "wrapped" inside m. Because runStateT returns m (a, s) instead of (m a, s). If you knew how to "unwrap" m, you'd be fine, but you don't. So the only way to get that intermediate state is to run the effects of m:
liftish f sa sb = do
s <- get
(c, s'') <- lift $ do
let ma = runStateT sa s
(_, s') <- ma
let mb = runStateT sb s'
(_, s'') <- mb
c <- f (fst <$> ma) (fst <$> mb)
pure (c, s'')
put s''
pure c
But now see what happens: I'm using ma and mb twice: once to get the new states out of them, and second time by passing them to f. This may lead to double-running effects or worse.
This problem of "double execution" will, I think, show up for any monad transformer, simply because the transformer's effects are always wrapped inside the underlying monad, so you have a choice: either drop the transformer's effects or execute the underlying monad's effects twice.
I think what you "really want" is
(>>>==) :: MyTrans m a -> (forall b. m b -> MyTrans n b) -> MyTrans n a
-- (=<<) = flip (>>=) is nicer to think about, because it shows that it's a form of function application
-- so let's think about
(==<<<) :: (forall a. m b -> MyTrans n b) -> (forall a. MyTrans m a -> MyTrans n a)
-- hmm...
type (~>) a b = forall x. a x -> b x
(==<<<) :: (m ~> MyTrans n) -> MyTrans m ~> MyTrans n
-- look familiar?
That is, you are describing monads on the category of monads.
class MonadTrans t => MonadMonad t where
-- returnM :: m ~> t m
-- but that's just lift, therefore the MonadTrans t superclass
-- note: input must be a monad homomorphism or else all bets are off
-- output is also a monad homomorphism
(==<<<) :: (Monad m, Monad n) => (m ~> t n) -> t m ~> t n
instance MonadMonad (StateT s) where
-- fairly sure this is lawful
-- EDIT: probably not
f ==<<< StateT x = do
(x, s) <- f <$> x <$> get
x <$ put s
However, making your example work is just not going to happen. It is too unnatural. StateT Int [] is the monad for programs that nondeterministically evolve the state. It is an important property of that monad that each "parallel universe" receives no communication from the others. The specific operation you are performing will probably not be provided by any useful typeclass. You can only do part of it:
f :: [] ~> StateT Int []
f l = StateT \s -> if odd s && even (length l) then fmap (\x -> (x, s)) l else []
f ==<<< x1 = []
f ==<<< x2 = [(1,1),(2,1),(3,1),(4,1)]

Advice on writing monadic signatures

Consider the following example functions which both add a random value to the pure input:
addRand1 :: (MonadRandom m) => m (Int -> Int)
addRand2 :: (MonadRandom m) => Int -> m Int -- *can* be written as m (Int -> Int)
It is easy to convert addRand1 into a function with the same signature as addRand2, but not vice versa.
To me, this provides strong evidence that I should write addRand1 over addRand2. In this example, addRand1 has the more truthful/general type, which typically captures important abstractions in Haskell.
While having the "right" signature seems a crucial aspect of functional programming, I also have a lot of practical reasons why addRand2 might be a better signature, even if it could be written with addRand1s signature.
With interfaces:
class FakeMonadRandom m where
getRandom :: (Random a, Num a) => m a
getRandomR1 :: (Random a, Num a) => (a,a) -> m a
getRandomR2 :: (Random a, Num a) => m ((a,a) -> a)
Suddenly getRandomR1 seems "more general" in the sense that it permits more instances (that repeatedly call getRandom until the result is in the range, for example) compared to getRandomR2, which seems to require some sort of reduction technique.
addRand2 is easier to write/read:
addRand1 :: (MonadRandom m) => m (Int -> Int)
addRand1 = do
x <- getRandom
return (+x) -- in general requires `return $ \a -> ...`
addRand2 :: (MonadRandom m) => Int -> m Int
addRand2 a = (a+) <$> getRandom
addRand2 is easier to use:
foo :: (MonadRandom m) => m Int
foo = do
x <- addRand1 <*> (pure 3) -- ugly syntax
f <- addRand1 -- or a two step process: sequence the function, then apply it
x' <- addRand2 3 -- easy!
return $ (f 3) + x + x'
addRand2 is harder to misuse: consider getRandomR :: (MonadRandom m, Random a) => (a,a) -> m a. For a given range, we can sample repeatedly and get different results, which is probably what we intend. However, if we instead have getRandomR :: (MonadRandom m, Random a) => m ((a,a) -> a), we might be tempted to write
do
f <- getRandomR
return $ replicate 20 $ f (-10,10)
but will be very surprised by the result!
I'm feeling very conflicted about how to write monadic code. The "version 2" seems better in many cases, but I recently came across an example where the "version 1" signature was required.*
What sort of factors should influence my design decisions w.r.t. monadic signatures? Is there some way to reconcile apparently conflicting goals of "general signatures" and "natural, clean, easy-to-use, hard-to-misuse syntax"?
*: I wrote a function foo :: a -> m b, which worked just fine for (literally) many years. When I tried to incorporate this into a new application (DSL with HOAS), I discovered I was unable to, until I realized that foo could be rewritten to have the signature m (a -> b). Suddenly my new application was possible.
This depends on multiple factors:
What signatures are actually possible (here both).
What signatures are convenient to use.
Or more generally, if you want to have the most general interface or dually the most general implementations.
The key for understanding the difference between Int -> m Int and m (Int -> Int) is that in the former case, the effect (m ...) can depend on the input argument. For example, if m is IO, you could have a function that launches n missiles, where n is the function argument. On the other hand, the effect in m (Int -> Int) doesn't depend on anything - the effect doesn't "see" the argument of the function it returns.
Coming back you your case: You take a pure input, generate a random number and add it to the input. We can see that the effect (generating the random number) doesn't depend on the input. This is why we can have signature m (Int -> Int). If the task were instead to generate n random numbers, for example, signature Int -> m [Int] would work, but m (Int -> [Int]) wouldn't.
Regarding usability, Int -> m Int is more common in the monadic context, because most monadic combinators expect signatures of the form a -> b -> ... -> m r. For example, you'd normally write
getRandom >>= addRand2
or
addRand2 =<< getRandom
to add a random number to another random number.
Signatures like m (Int -> Int) are less common for monads, but often used with applicative functors (each monad is also an applicative functor), where effects can't depend on parameters. In particular, operator <*> would work nicely here:
addRand1 <*> getRandom
Regarding generality, the signature influences how difficult is to use or to implement it. As you observed, addRand1 is more general from the caller's perspective - it can always convert it to addRand2 if needed. On the other hand, addRand2 is less general, therefore easier to implement. In your case it doesn't really apply, but in some cases it might happen that it's possible to implement signature like m (Int -> Int), but not Int -> m Int. This is reflected in the type hierarchy - monads are more specific then applicative functors, which means they give more power to their user, but are "harder" to implement - every monad is an applicative, but not every applicative can be made into a monad.
It is easy to convert addRand1 into a function with the same signature as addRand2, but not vice versa.
Ahem.
-- | Adds a random value to its input
addRand2 :: MonadRandom m => Int -> m Int
addRand2 x = fmap (+x) getRand
-- | Returns a function which adds a (randomly chosen) fixed value to its input
addRand1 :: MonadRandom m => m (Int -> Int)
addRand1 = fmap (+) (addRand2 0)
How come this works? Well, addRand1's job is to come up with a randomly chosen value and partially apply + to it. Adding a random number to a dummy value is a perfectly good way of coming up with a random number!
I think you might be confused about the quantifiers in #chi's statement. He didn't say
For all monads m and types a and b, you can't convert a -> m b to m (a -> b)
∀ m a b. ¬ ∃ f. f :: Monad m => (a -> m b) -> m (a -> b)
He said
You can't convert a -> m b to m (a -> b) for all monads m and types a and b.
¬ ∃ f. f :: ∀ m a b. Monad m => (a -> m b) -> m (a -> b)
Nothing stops you from writing (a -> m b) -> m (a -> b) for a particular monad m and pair of types a and b.
Or, in English: why not both? It is rare that both signatures are possible, but when they are, each version can be useful in different contexts.
It is easy to convert addRand1 into a function with the same signature as addRand2, but not vice versa.
This is true, but don't forget that this "conversion" does not have to preserve the intended semantics.
I mean, if we have foo :: IO (Int -> ()) we can write
bogusPrint :: Int -> IO ()
bogusPrint x = ($ x) <$> foo
but this will perform the same IO action for all x! Hardly useful.
Your argument seems to be "I can define an object x :: A or another y :: B. Well, I also know I can write f :: A->B, so x :: A is more general since y can let y = f x :: B". Personally, I think this is a great approach to reason about your code! However, one must check that the y obtained as f x is the intended one. Just because types match, it doesn't imply that the value is correct.
So, in the general case, I think it depends on the monad at hand. I'd write both x and y (as Daniel Wagner suggests), and then check whether one is really more general than the other -- not just because the type is more general, but because the value y can be (efficiently) recovered from x.

Monad more powerful than Applicative?

I looked at past discussion but could not see why any of the answers are actually correct.
Applicative
<*> :: f (a -> b) -> f a -> f b
Monad
(>>=) :: m a -> (a -> m b) -> m b
So if I get it right, the claim is that >>= cannot be written by only assuming the existence of <*>
Well, let's assume I have <*>.
And I want to create >>=.
So I have f a.
I have f (a -> b).
Now when you look at it, f (a -> b) can be written as (a -> b) (if something is a function of x, y , z - then it's also a function of x, y).
So from the existence of <*> we get (a -> b) -> f a -> f b which again can be written as ((a -> b) -> f a) -> f b, which can be written as (a -> f b).
So we have f a, we have (a -> f b), and we know that <*> results in f b, so we get:
f a -> (a -> f b) -> f b
which is a monad.
Actually, in a more intuitive language: when implementing <*>, I extract (a -> b) out of f(a -> b), I extract a out of f a, and then I apply (a -> b) on a and get b which I wrap with f to finally get f b.
So I do almost the same to create >>=. After applying (a -> b) on a and getting b, do one more step and wrap it with f, so I return f b, hence I know I have a function (a -> f b).
Now when you look at it, f(a -> b) can be written as (a -> b)
No. It can't. Your intuition is (dangerously) far off at this point. That's like saying a hammer is perfect for driving screws in, since it already works for a nail*. You can't simply drop f here, it's part of the type**.
Instead, let's get the facts straight. An Applicative has three associated functions, counting Functor's fmap:
fmap :: Functor f => (a -> b) -> f a -> f b
pure :: Applicative f => a -> f a
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
Here's another fact: you can define bind ((>>=)) in terms of join and vice versa:
join :: Monad m => m (m a) -> m a
join k = k >>= id
(>>=) :: Monad m => m a -> (a -> m b) -> m b
k >>= f = join (fmap f k)
are the implementations of join and bind you provided here part of the Monad definition, or are only join and bind signatures part of the Monad definition? [...] So now I ask myself why would they bother.
Those aren't the official definitions of course, since they would never terminate. You have to define (>>=) for your type if you want to make it a a monad:
instance Monad YourType where
k >>= f = ...
Also, your join definition uses id which is not in the Monad interface, why is it mathematically legitimate?
First of all, id :: a -> a is defined for any type. Second, the mathematical definition of a monad is actually via join. So it's "more"*** legitimate. But most important of all, we can define the monad laws in terms of join (exercise).
If we created join via Applicative, we could also create bind. If we cannot create join via Applicative methods, neither can we derive bind. And join's type actually makes it obvious that we cannot derive it from Applicative:
join :: Monad m => m (m a) -> m a
-- ^ ^ ^
Join is able to drop one of the m layers. Let's check whether it's possible to do the same in the other methods:
fmap :: Functor f => (a -> b) -> f a -> f b
^ ^
0 here 1 here
pure :: Applicative f => a -> f a
^ | ^
0 here | 1 here
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
^ ^
1 here 1 here
The answer is no: none of the tools we're given by Applicative enables us collapse multiple m's into a single one. And that's also what is written in the Typeclassopedia right after the cited paragraph in the other question:
To see the increased power of Monad from a different point of view, let’s see what happens if we try to implement (>>=) in terms of fmap, pure, and (<*>). We are given a value x of type m a, and a function k of type a -> m b, so the only thing we can do is apply k to x. We can’t apply it directly, of course; we have to use fmap to lift it over the m. But what is the type of fmap k? Well, it’s m a -> m (m b). So after we apply it to x, we are left with something of type m (m b)—but now we are stuck; what we really want is an m b, but there’s no way to get there from here. We can add m’s using pure, but we have no way to collapse multiple m’s into one.
Note that join doesn't make it possible to get rid of m completely, that would be a total extraction, and—depending on some other functions—a feature of a comonad. Either way, make sure that you don't let your intuition go astray; trust and use the types.
* That comparison is a little bit bad, because you could actually try to dive a screw in with a hammer into a piece of wood. So think of a plastic screw, a rubber hammer and a carbon steel plate you want to drive the nail in. Good luck.
** Well, you can drop it, but then the type changes drastically.
*** Given that (>>=) and join are equivalent of power and any (>>=) using formula can be transformed to one only using join, they are of course both mathematical sound.
Now when you look at it, f (a -> b) can be written as (a -> b)
Everyone has already contributed explaining that this is not a fact. Let me prove it to you.
If we genuinely had what you state then we should be able to write a function
expose :: f (a -> b) -> (a -> b)
Moreover, for any concrete data type we like, call it F, we ought to be able to write
expose_F :: F (a -> b) -> (a -> b)
expose_F = expose
Let's worry only about writing expose_F since if we can show that expose_F cannot be written for some F then we have surely shown that expose cannot be written.
Let me provide us a test F. It will certainly be non-intuitive feeling as I'm intending to use it to break intuition, but I'm happy to confirm all day long that there is nothing funny at all about
data F a = F
Indeed, it is a Functor
instance Functor F where
fmap _ F = F
and an Applicative for that matter
instance Applicative F where
pure _ = F
F <*> F = F
even a Monad
instance Monad F where
return _ = F
F >>= _ = F
You can verify yourself that all of these typecheck. There's nothing wrong at all about F.
So what's just right about, F? Why did I choose it? Well F is interesting in that values of F a fail to contain anything related at all to a within them. Often people like to talk about data types (or Functors) as "containers" or "boxes". F forces us to remember that in a certain sense a box that's 0 inches deep is still a box. [0]
So surely we cannot write
expose_F :: F (a -> b) -> (a -> b)
There are a number of ways of proving this. The easiest is to appeal to my supposition that you, for instance, believe that there is no coerce function. But, if we had expose_F there would be!
coerce :: a -> b
coerce = expose_F F
More specifically, let me introduce another pathological type (which I again assure you is totally fine)
data Void
There are zero constructors of Void and we like to say therefore that Void has no members. It cannot be made to exist. But we can make one with expose_F.
void :: Void
void = expose_F F ()
In Haskell we're not technically sound enough to execute the above proofs. If you dislike the way I talk about impossibility then you can conjure up whatever types you like with a convenient infinite loop, casual call to
error "Madness rides the star-wind... claws and teeth sharpened on centuries of corpses... dripping death astride a bacchanale of bats from nigh-black ruins of buried temples of Belial..."
or perhaps an unassuming undefined. But these are all on the path of madness.
There is no expose_F and therefore there is no expose.
[0] And to be completely clear, thinking of data types as boxes at all is often flawed. Instances of Functor tend to be "box-like", but here's another interesting data type which is difficult to think of as a box
data Unbox a = Unbox (a -> Bool)
unless perhaps you consider Unbox a to be a box containing a Bool and a negative a or something like that. Perhaps an IOU a.

why can't a function take monadic value and return another monadic value?

Let's say that we have two monadic functions:
f :: a -> m b
g :: b -> m c
h :: a -> m c
The bind function is defined as
(>>=) :: m a -> (a -> m b) -> m b
My question is why can not we do something like below. Declare a function which would take a monadic value and returns another monadic value?
f :: a -> m b
g :: m b -> m c
h :: a -> m c
The bind function is defined as
(>>=) :: m a -> (ma -> m b) -> m b
What is in the haskell that restricts a function from taking a monadic value as it's argument?
EDIT: I think I did not make my question clear. The point is, when you are composing functions using bind operator, why is that the second argument for bind operator is a function which takes non-monadic value (b)? Why can't it take a monadic value (mb) and give back mc . Is it that, when you are dealing with monads and the function you would compose will always have the following type.
f :: a -> m b
g :: b -> m c
h :: a -> m c
and h = f 'compose' g
I am trying to learn monads and this is something I am not able to understand.
A key ability of Monad is to "look inside" the m a type and see an a; but a key restriction of Monad is that it must be possible for monads to be "inescapable," i.e., the Monad typeclass operations should not be sufficient to write a function of type Monad m => m a -> a. (>>=) :: Monad m => m a -> (a -> m b) -> m b gives you exactly this ability.
But there's more than one way to achieve that. The Monad class could be defined like this:
class Functor f where
fmap :: (a -> b) -> f a -> f b
class Functor f => Monad m where
return :: a -> m a
join :: m (m a) -> m a
You ask why could we not have a Monad m => m a -> (m a -> m b) -> m b function. Well, given f :: a -> b, fmap f :: ma -> mb is basically that. But fmap by itself doesn't give you the ability to "look inside" a Monad m => m a yet not be able to escape from it. However join and fmap together give you that ability. (>>=) can be written generically with fmap and join:
(>>=) :: Monad m => m a -> (a -> m b) -> m b
ma >>= f = join (fmap f ma)
In fact this is a common trick for defining a Monad instance when you're having trouble coming up with a definition for (>>=)—write the join function for your would-be monad, then use the generic definition of (>>=).
Well, that answers the "does it have to be the way it is" part of the question with a "no." But, why is it the way it is?
I can't speak for the designers of Haskell, but I like to think of it this way: in Haskell monadic programming, the basic building blocks are actions like these:
getLine :: IO String
putStrLn :: String -> IO ()
More generally, these basic building blocks have types that look like Monad m => m a, Monad m => a -> m b, Monad m => a -> b -> m c, ..., Monad m => a -> b -> ... -> m z. People informally call these actions. Monad m => m a is a no-argument action, Monad m => a -> m b is a one-argument action, and so on.
Well, (>>=) :: Monad m => m a -> (a -> m b) -> m b is basically the simplest function that "connects" two actions. getLine >>= putStrLn is the action that first executes getLine, and then executes putStrLn passing it the result that was obtained from executing getLine. If you had fmap and join and not >>= you'd have to write this:
join (fmap putStrLn getLine)
Even more generally, (>>=) embodies a notion much like a "pipeline" of actions, and as such is the more useful operator for using monads as a kind of programming language.
Final thing: make sure you are aware of the Control.Monad module. While return and (>>=) are the basic functions for monads, there's endless other more high-level functions that you can define using those two, and that module gathers a few dozen of the more common ones. Your code should not be forced into a straitjacket by (>>=); it's a crucial building block that's useful both on its own and as a component for larger building blocks.
why can not we do something like below. Declare a function which would take a monadic value and returns another monadic value?
f :: a -> m b
g :: m b -> m c
h :: a -> m c
Am I to understand that you wish to write the following?
compose :: (a -> m b) -> (m b -> m c) -> (a -> m c)
compose f g = h where
h = ???
It turns out that this is just regular function composition, but with the arguments in the opposite order
(.) :: (y -> z) -> (x -> y) -> (x -> z)
(g . f) = \x -> g (f x)
Let's choose to specialize (.) with the types x = a, y = m b, and z = m c
(.) :: (m b -> m c) -> (a -> m b) -> (a -> m c)
Now flip the order of the inputs, and you get the desired compose function
compose :: (a -> m b) -> (m b -> m c) -> (a -> m c)
compose = flip (.)
Notice that we haven't even mentioned monads anywhere here. This works perfectly well for any type constructor m, whether it is a monad or not.
Now let's consider your other question. Suppose we want to write the following:
composeM :: (a -> m b) -> (b -> m c) -> (a -> m c)
Stop. Hoogle time. Hoogling for that type signature, we find there is an exact match! It is >=> from Control.Monad, but notice that for this function, m must be a monad.
Now the question is why. What makes this composition different from the other one such that this one requires m to be a Monad, while the other does not? Well, the answer to that question lies at the heart of understanding what the Monad abstraction is all about, so I'll leave a more detailed answer to the various internet resources that speak about the subject. Suffice it to say that there is no way to write composeM without knowing something about m. Go ahead, try it. You just can't write it without some additional knowledge about what m is, and the additional knowledge necessary to write this function just happens to be that m has the structure of a Monad.
Let me paraphrase your question a little bit:
why can't don't we use functions of type g :: m a -> m b with Monads?
The answer is, we do already, with Functors. There's nothing especially "monadic" about fmap f :: Functor m => m a -> m b where f :: a -> b. Monads are Functors; we get such functions just by using good old fmap:
class Functor f a where
fmap :: (a -> b) -> f a -> f b
If you have two functions f :: m a -> m b and a monadic value x :: m a, you can simply apply f x. You don't need any special monadic operator for that, just function application. But a function such as f can never "see" a value of type a.
Monadic composition of functions is much stronger concept and functions of type a -> m b are the core of monadic computations. If you have a monadic value x :: m a, you cannot "get into it" to retrieve some value of type a. But, if you have a function f :: a -> m b that operates on values of type a, you can compose the value with the function using >>= to get x >>= f :: m b. The point is, f "sees" a value of type a and can work with it (but it cannot return it, it can only return another monadic value). This is the benefit of >>= and each monad is required to provide its proper implementation.
To compare the two concepts:
If you have g :: m a -> m b, you can compose it with return to get g . return :: a -> m b (and then work with >>=), but
not vice versa. In general there is no way of creating a function of type m a -> m b from a function of type a -> m b.
So composing functions of types like a -> m b is a strictly stronger concept than composing functions of types like m a -> m b.
For example: The list monad represents computations that can give a variable number of answers, including 0 answers (you can view it as non-deterministic computations). The key elements of computing within list monad are functions of type a -> [b]. They take some input and produce a variable number of answers. Composition of these functions takes the results from the first one, applies the second function to each of the results, and merges it into a single list of all possible answers.
Functions of type [a] -> [b] would be different: They'd represent computations that take multiple inputs and produce multiple answers. They can be combined too, but we get something less strong than the original concept.
Perhaps even more distinctive example is the IO monad. If you call getChar :: IO Char and used only functions of type IO a -> IO b, you'd never be able to work with the character that was read. But >>= allows you to combine such a value with a function of type a -> IO b that can "see" the character and do something with it.
As others have pointed out, there is nothing that restricts a function to take a monadic value as argument. The bind function itself takes one, but not the function that is given to bind.
I think you can make this understandable to yourself with the "Monad is a Container" metaphor. A good example for this is Maybe. While we know how to unwrap a value from the Maybe conatiner, we do not know it for every monad, and in some monads (like IO) it is entirely impossible.
The idea is now that the Monad does this behind the scenes in a way you don't have to know about. For example, you indeed need to work with a value that was returned in the IO monad, but you cannot unwrap it, hence the function that does this needs to be in the IO monad itself.
I like to think of a monad as a recipe for constructing a program with a specific context. The power that a monad provides is the ability to, at any stage within your constructed program, branch depending upon the previous value. The usual >>= function was chosen as being the most generally useful interface to this branching ability.
As an example, the Maybe monad provides a program that may fail at some stage (the context is the failure state). Consider this psuedo-Haskell example:
-- take a computation that produces an Int. If the current Int is even, add 1.
incrIfEven :: Monad m => m Int -> m Int
incrIfEven anInt =
let ourInt = currentStateOf anInt
in if even ourInt then return (ourInt+1) else return ourInt
In order to branch based on the current result of a computation, we need to be able to access that current result. The above psuedo-code would work if we had access to currentStateOf :: m a -> a, but that isn't generally possible with monads. Instead we write our decision to branch as a function of type a -> m b. Since the a isn't in a monad in this function, we can treat it like a regular value, which is much easier to work with.
incrIfEvenReal :: Monad m => m Int -> m Int
incrIfEvenReal anInt = anInt >>= branch
where branch ourInt = if even ourInt then return (ourInt+1) else return ourInt
So the type of >>= is really for ease of programming, but there are a few alternatives that are sometimes more useful. Notably the function Control.Monad.join, which when combined with fmap gives exactly the same power as >>= (either can be defined in terms of the other).
The reason (>>=)'s second argument does not take a monad as input is because there is no need to bind such a function at all. Just apply it:
m :: m a
f :: a -> m b
g :: m b -> m c
h :: c -> m b
(g (m >>= f)) >>= h
You don't need (>>=) for g at all.
The function can take a monadic value if it wants. But it is not forced to do so.
Consider the following contrived definitions, using the list monad and functions from Data.Char:
m :: [[Int]]
m = [[71,72,73], [107,106,105,104]]
f :: [Int] -> [Char]
f mx = do
g <- [toUpper, id, toLower]
x <- mx
return (g $ chr x)
You can certainly run m >>= f; the result will have type [Char].
(It's important here that m :: [[Int]] and not m :: [Int]. >>= always "strips off" one monadic layer from its first argument. If you don't want that to happen, do f m instead of m >>= f.)
As others have mentioned, nothing restricts such functions from being written.
There is, in fact, a large family of functions of type :: m a -> (m a -> m b) -> m b:
f :: Monad m => Int -> m a -> (m a -> m b) -> m b
f n m mf = replicateM_ n m >>= mf m
where
f 0 m mf = mf m
f 1 m mf = m >> mf m
f 2 m mf = m >> m >> mf m
... etc. ...
(Note the base case: when n is 0, it's simply normal functional application.)
But what does this function do? It performs a monadic action multiple times, finally throwing away all the results, and returning the application of mf to m.
Useful sometimes, but hardly generally useful, especially compared to >>=.
A quick Hoogle search doesn't turn up any results; perhaps a telling result.

Does a function like this already exist? (Or, what's a better name for this function?)

I've written code with the following pattern several times recently, and was wondering if there was a shorter way to write it.
foo :: IO String
foo = do
x <- getLine
putStrLn x >> return x
To make things a little cleaner, I wrote this function (though I'm not sure it's an appropriate name):
constM :: (Monad m) => (a -> m b) -> a -> m a
constM f a = f a >> return a
I can then make foo like this:
foo = getLine >>= constM putStrLn
Does a function/idiom like this already exist? And if not, what's a better name for my constM?
Well, let's consider the ways that something like this could be simplified. A non-monadic version would I guess look something like const' f a = const a (f a), which is clearly equivalent to flip const with a more specific type. With the monadic version, however, the result of f a can do arbitrary things to the non-parametric structure of the functor (i.e., what are often called "side effects"), including things that depend on the value of a. What this tells us is that, despite pretending like we're discarding the result of f a, we're actually doing nothing of the sort. Returning a unchanged as the parametric part of the functor is far less essential, and we could replace return with something else and still have a conceptually similar function.
So the first thing we can conclude is that it can be seen as a special case of a function like the following:
doBoth :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
doBoth f g a = f a >> g a
From here, there are two different ways to look for an underlying structure of some sort.
One perspective is to recognize the pattern of splitting a single argument among multiple functions, then recombining the results. This is the concept embodied by the Applicative/Monad instances for functions, like so:
doBoth :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
doBoth f g = (>>) <$> f <*> g
...or, if you prefer:
doBoth :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
doBoth = liftA2 (>>)
Of course, liftA2 is equivalent to liftM2 so you might wonder if lifting an operation on monads into another monad has something to do with monad transformers; in general the relationship there is awkward, but in this case it works easily, giving something like this:
doBoth :: (Monad m) => ReaderT a m b -> ReaderT a m c -> ReaderT a m c
doBoth = (>>)
...modulo appropriate wrapping and such, of course. To specialize back to your original version, the original use of return now needs to be something with type ReaderT a m a, which shouldn't be too hard to recognize as the ask function for reader monads.
The other perspective is to recognize that functions with types like (Monad m) => a -> m b can be composed directly, much like pure functions. The function (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c) gives a direct equivalent to function composition (.) :: (b -> c) -> (a -> b) -> (a -> c), or you can instead make use of Control.Category and the newtype wrapper Kleisli to work with the same thing in a generic way.
We still need to split the argument, however, so what we really need here is a "branching" composition, which Category alone doesn't have; by using Control.Arrow as well we get (&&&), letting us rewrite the function as follows:
doBoth :: (Monad m) => Kleisli m a b -> Kleisli m a c -> Kleisli m a (b, c)
doBoth f g = f &&& g
Since we don't care about the result of the first Kleisli arrow, only its side effects, we can discard that half of the tuple in the obvious way:
doBoth :: (Monad m) => Kleisli m a b -> Kleisli m a c -> Kleisli m a c
doBoth f g = f &&& g >>> arr snd
Which gets us back to the generic form. Specializing to your original, the return now becomes simply id:
constKleisli :: (Monad m) => Kleisli m a b -> Kleisli m a a
constKleisli f = f &&& id >>> arr snd
Since regular functions are also Arrows, the definition above works there as well if you generalize the type signature. However, it may be enlightening to expand the definition that results for pure functions and simplify as follows:
\f x -> (f &&& id >>> arr snd) x
\f x -> (snd . (\y -> (f y, id y))) x
\f x -> (\y -> snd (f y, y)) x
\f x -> (\y -> y) x
\f x -> x.
So we're back to flip const, as expected!
In short, your function is some variation on either (>>) or flip const, but in a way that relies on the differences--the former using both a ReaderT environment and the (>>) of the underlying monad, the latter using the implicit side-effects of the specific Arrow and the expectation that Arrow side effects happen in a particular order. Because of these details, there's not likely to be any generalization or simplification available. In some sense, the definition you're using is exactly as simple as it needs to be, which is why the alternate definitions I gave are longer and/or involve some amount of wrapping and unwrapping.
A function like this would be a natural addition to a "monad utility library" of some sort. While Control.Monad provides some combinators along those lines, it's far from exhaustive, and I could neither find nor recall any variation on this function in the standard libraries. I would not be at all surprised to find it in one or more utility libraries on hackage, however.
Having mostly dispensed with the question of existence, I can't really offer much guidance on naming beyond what you can take from the discussion above about related concepts.
As a final aside, note also that your function has no control flow choices based on the result of a monadic expression, since executing the expressions no matter what is the main goal. Having a computational structure independent of the parametric content (i.e., the stuff of type a in Monad m => m a) is usually a sign that you don't actually need a full Monad, and could get by with the more general notion of Applicative.
Hmm, I don't think constM is appropriate here.
map :: (a -> b) -> [a] -> [b]
mapM :: (Monad m) => (a -> m b) -> [a] -> m b
const :: b -> a -> b
So perhaps:
constM :: (Monad m) => b -> m a -> m b
constM b m = m >> return b
The function you are M-ing seems to be:
f :: (a -> b) -> a -> a
Which has no choice but to ignore its first argument. So this function does not have much to say purely.
I see it as a way to, hmm, observe a value with a side effect. observe, effect, sideEffect may be decent names. observe is my favorite, but maybe just because it is catchy, not because it is clear.
I don't really have a clue this exactly allready exists, but you see this a lot in parser-generators only with different names (for example to get the thing inside brackets) - there it's normaly some kind of operator (>>. and .>> in fparsec for example) for this. To really give a name I would maybe call it ignore?
There's interact:
http://hackage.haskell.org/packages/archive/haskell98/latest/doc/html/Prelude.html#v:interact
It's not quite what you're asking for, but it's similar.

Resources