Specifying different platform specific package at compile time in Ada (GNAT) - programming-languages

I'm still new to the Ada programming world so forgive me if this question is obvious.
I am looking at developing an application (in Ada, using the features in the 2005 revision) that reads from the serial port and basically performs manipulation of the strings and numbers it receives from an external device.
Now my intention was to likely use Florist and the POSIX terminal interfaces to do all the serial work on Linux first....I'll get to Windows/MacOS/etc... some other time but I want to leave that option open.
I would like to follow Ada best practices in whatever I do with this. So instead of a hack like conditional compilation under C (which I know Ada does not have anyway) I would like to find out how you are suppose to specify a change in package files from the command line (gnatmake for example)?
The only thing I can think of right now is I could name all platform packages exactly the same (i.e. package name Serial.Connector with the same filenames) and place them in different folders in the project archive and then upon compilation specify the directories/Libraries to look in for the files with -I argument and change directory names for different platforms.
This is way I was shown for GCC using C/C++...is this still the best way with Ada using GNAT?.
Thanks,
-Josh

That's a perfectly acceptable way of handling this kind of situation. If at all possible you should have a common package specification (or specifications if more than one is appropriate), with all the platform-specific stuff strictly confined to the corresponding package body variations.
(If you did want to go down the preprocessor path, there's a GNAT preprocessor called gnatprep that can be used, but I don't like conditional compilation either, so I'd recommend staying with the separate subdirectories approach.)

You could use the GNAT Project file package Naming: an extract from a real example, where I wanted to choose between two versions of a package in the same directory, one with debug additions, is
...
type Debug_Code is ("no", "yes");
Debug : Debug_Code := External ("DEBUG", "no");
...
package Naming is
case Debug is
when "yes" =>
for Spec ("BC.Support.Managed_Storage")
use "bc-support-managed_storage.ads-debug";
for Body ("BC.Support.Managed_Storage")
use "bc-support-managed_storage.adb-debug";
when "no" =>
null;
end case;
end Naming;
To select the special naming, either set the environment variable DEBUG to yes or build with gnatmake -XDEBUG=yes.

Yes, the generally accepted way to handle this in Ada is to do it with different files, selected by your build system. Gnu make is about as multiplatform as it gets, and can allow you to build different files (with different names and/or directories and everything) under different configurations.
As a matter of fact, I find this a superior way (over #ifdefs) to do it in C as well.

Related

Using GNU Standard Directory Variables inside executable

Often one needs the location of one of the standard GNU directories inside the executable. Unfortunately GNU autoconf does not provide a standard way to do this but suggests several work around, each having different disadvantages, a common way to access the installed location is this to add preprocess define for the location in CPPFLAGS:
AM_CPPFLAGS = -DDATADIR='"$(datadir)"'
However, the GNU Autoconf manual's section for defining directories contains the following sentence:
Note that all the previous solutions hard wire the absolute name of these directories in the executables, which is not a good property. You may try to compute the names relative to prefix, and try to find prefix at runtime, this way your package is relocatable.
Is there a library or any standard way to compute the GNU directories inside an executable as suggested in the quoted paragraph? Would that have other disadvantages compared to the preprocessor define mentioned above?
I think the docs are rather clear about this: The standard way is to not make any assumptions about the absolute path, and use relative paths instead. Especially you should not make any assumptions about ${prefix}
So if your application needs to access shared data, access it via ../share/foo/foodata.txt rather than using /usr/local/share/foo/foodata.txt; this way you can easily re-locate your application.
Afaik, there is no external library that computes the standard paths for you, based on your calling binary.
This is probably for two reasons:
if the binary indeed uses the standard paths, then it's trivial to calculate those paths yourself (using relative paths). what would a library do better?
if the binary does not use the standard paths (e.g. because the builder used something like the following (admittedly hypothetical) example), then the task of resolving these paths is virtually impossible; so a library won't help you either
ex:
./configure --sbindir=/home/me/sbin --bindir=/opt/foo/bin
make pkglibdir=/usr/lib/goo/
make install libdir=/usr/local/foo/lib/
A helper-library (or your application) might record all those paths into some auxiliary file (for additional lookups if the standard-paths fail), but I think the biggest problem is that there is no defined place where to store that file
libdir or datadir are obviously not good (as the data should help resolve these paths, so cannot rely on them)
putting the data into the same directory as the application binary breaks the assumption of bindir only containing executables.
putting the data into the application binary might require that binary to be modified during make install, which sounds very dirty as well.

Loading Linux libraries at runtime

I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
Here is my specific problem: I want to publish a Linux program in ELF binary form that should run on as many distributions as possible so my mandatory dependencies are as low as it gets: The only libraries required under any circumstances are libpthread, libX11, librt and libm (and glibc of course). I'm linking dynamically against these libraries when I build my program using gcc.
Optionally, however, my program should also support ALSA (sound interface), the Xcursor, Xfixes, and Xxf86vm extensions as well as GTK. But these should only be used if they are available on the user's system, otherwise my program should still run but with limited functionality. For example, if GTK isn't there, my program will fall back to terminal mode. Because my program should still be able to run without ALSA, Xcursor, Xfixes, etc. I cannot link dynamically against these libraries because then the program won't start at all if one of the libraries isn't there.
So I need to manually check if the libraries are present and then open them one by one using dlopen() and import the necessary function symbols using dlsym(). This, however, leads to all kinds of problems:
1) Library naming conventions:
Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000". These extensions seem to differ from system to system. So which one should I choose when calling dlopen()? Using a hardcoded name here seems like a very bad idea because the names differ from system to system. So the only workaround that comes to my mind is to scan the whole library path and look for filenames starting with a "libXcursor.so" prefix and then do some custom version matching. But how do I know that they are really compatible?
2) Library search paths: Where should I look for the *.so files after all? This is also different from system to system. There are some default paths like /usr/lib and /lib but *.so files could also be in lots of other paths. So I'd have to open /etc/ld.so.conf and parse this to find out all library search paths. That's not a trivial thing to do because /etc/ld.so.conf files can also use some kind of include directive which means that I have to parse even more .conf files, do some checks against possible infinite loops caused by circular include directives etc. Is there really no easier way to find out the search paths for *.so?
So, my actual question is this: Isn't there a more convenient, less hackish way of achieving what I want to do? Is it really so complicated to create a Linux program that has some optional dependencies like ALSA, GTK, libXcursor... but should also work without it! Is there some kind of standard for doing what I want to do? Or am I doomed to do it the hackish way?
Thanks for your comments/solutions!
I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
This isn't a design flaw as far as creators of the system are concerned; it's an advantage -- it encourages you to distribute programs in source form. Oh, you wanted to sell your software? Sorry, that's not the use case Linux is optimized for.
Library naming conventions: Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000".
Yes, this is called external library versioning. Read about it here. As should be clear from that description, if you compiled your binaries using headers on a system that would normally give you libXcursor.so.1 as a runtime reference, then the only shared library you are compatible with is libXcursor.so.1, and trying to dlopen libXcursor.so.0.2000 will lead to unpredictable crashes.
Any system that provides libXcursor.so but not libXcursor.so.1 is either a broken installation, or is also incompatible with your binaries.
Library search paths: Where should I look for the *.so files after all?
You shouldn't be trying to dlopen any of these libraries using their full path. Just call dlopen("libXcursor.so.1", RTLD_GLOBAL);, and the runtime loader will search for the library in system-appropriate locations.

Finding the shared library name to use with dlload

In my open-source project Artha I use libnotify for showing passive desktop notifications to the user.
Instead of statically linking libnotify, a lookup at runtime is made for the shared object (.so) file via dlload, if available on the target machine, Artha exposes the notification feature in it's GUI. On app. start, a call to dlload with filename param as libnotify.so.1 is made and if it returns a non-null pointer, then the feature is exposed.
A recurring problem with this model is that every time the version number of the library is bumped, Artha's code needs to be updated, currently libnotify.so.4 is the latest to entail such an occurance.
Is there a linux system call (irrespective of the distro the app. is running on), which can tell me if a particular library's shared object is available at runtime? I know that there exists the bruteforce option of enumerating the library by going from 1 to say 10, I find the solution ugly and inelegant.
Also, if this can be addressed via autoconf, then that solution is welcome too I.e. at build time, based on the target machine, the configure.h generated should've the right .so name that can be passed to dlload.
P.S.: I think good distros follow the style of creating links to libnotify.so.x so that a programmer can just do dlload("libnotify.so", RTLD_LAZY) and the right version numbered .so is loaded; unfortunately not all distros follow this, including Ubuntu.
The answer is: you don't.
dlopen() is not designed to deal with things like that, and trying to load whichever soversion you find on the system just because it happens to have the symbols you need is not a good way to do it.
Different sonames have different ABIs, and different ABIs means that you may be calling the same exact symbol name that is expecting a different set (or different size) of parameters, which will cause crashes or misbehaviour that are extremely difficult do debug.
You should have a read on how shared object versions work and what an ABI is.
The libfoo.so link is there for the link editor (ld) and is usually installed with the -devel packages for that reason; it might also very well not be a link but rather a text file with a linker script, often times on purpose to avoid exactly what you're trying to do.

Recommended FHS compliant application test/install workflow under Linux?

I'm in the process of switching to Linux for development, and I'm puzzled about how to maintain a good FHS compliancy in my programs.
For example, under Windows, I know that all the resources (Bitmaps, audio data, etc.) that my program will need can be found with relative paths from the executable, so its the same if I'm running the program from my development directory, or from an installation (Under "Program Files" for example), the program will be able to locate all its files.
Now, under Linux, I see that usually the executable goes under /usr/local/bin and its resources on /usr/local/share. (And the truth is that I'm not even sure of this)
For convenience reasons (such as version control) I'd like to have all the files pertaining to the project under a same path, say, for example, project/src for the source and project/data for resource files.
Is there any standard or recommended way to let me just rebuild the binary for testing and use the files on the project/data directory, while also being able to locate the files when they are under /usr/local/share?
I thought for example of setting a symlink under /usr/local/share pointing to my resources dir, and then just hardcode that path inside my program, but I feel its quite hackish and not very portable.
Also, I thought of running an install script that copies all the resources to /usr/local/share everytime I change, or add resources, but I also feel its not a good way to do it.
Could anyone tell me or point me to where it tells how this issue is usually resolved?
Thanks!
For convenience reasons (such as version control) I'd like to have all the files pertaining to the project under a same path, say, for example, project/src for the source and project/data for resource files.
You can organize your source tree as you wish — it need not bear any resemblance to the FHS layout desired of installed software.
I see that usually the executable goes under /usr/local/bin and its resources on /usr/local/share. (And the truth is that I'm not even sure of this)
The standard prefix is /usr. /usr/local is for, well, "local installations" as the FHS spec reiterates.
Is there any standard or recommended way to let me just rebuild the binary for testing and use the files on the project/data directory
Definitely. Run ./configure --datadir=$PWD/share for example is the way to point your build to the data files form the source tree (substitute by proper path) and use something like -DDATADIR="'${datadir}'" in AM_CFLAGS to make the value known to the (presumably C) code. (All of that, provided you are using autoconf/automake. Similar options may be available in other build systems.)
This sort of hardcoding is what is used in practice, and it suffices. For a development build within your own working copy, having a hardcoded path should not be a problem, and final builds (those done by a packager) will simply use the standard FHS paths.
You could just test a few locations. For example, first check if you have a data directory within the directory you're currently running the program from. If so, just go ahead and use it. If not, try /usr/local/share/yourproject/data, and so on.
For developing/testing, you can use the data directory within your project folder, and for deploying, use the stuff in /usr/local/share/. Of course, you can test for even more locations (e.g. /usr/share).
Basically the requirement for this method is that you have a function that builds the correct paths for all filesystem accesses. Instead of fopen("data/blabla.conf", "w") use something like fopen(path("blabla.conf"), "w"). path() will construct the correct path from the path determined using the directory tests when the program started. E.g. if the path was /usr/local/share/yourproject/data/, the string returned by path("blabla.conf") would be "/usr/local/share/yourproject/data/blabla.conf" - and there is your nice absolute path.
That's how I'd do it. HTH.
My preferred solution in cases like this is to use a configuration file, along with a command-line option that overrides its location.
For example, a configuration file for a fully deployed application named myapp could reside in /etc/myapp/settings.conf and a part of it could look like this:
...
confdir=/etc/myapp/
bindir=/usr/bin/
datadir=/usr/share/myapp/
docdir=/usr/share/doc/myapp/
...
Your application (or a launcher script) can parse this file to determine where to find the rest of the needed files.
I believe that you can reasonably assume in your code that the location of the configuration file is fixed under /etc/myapp - or any other location specified at compile time. Then you provide a command line option to allow that location to be overridden:
myapp --configfile=/opt/myapp/etc/settings.conf ...
It might also make sense to have options for some of the directory paths as well, so that the user can easily override any of the configuration file settings. This approach has a couple of advantages:
Your users can relocate the application very easily - just by moving the files, modifying the paths in the configuration file and then using e.g. a wrapper script to call the main application with the proper --configfile option.
You can easily support FHS, as well as any other scheme you need to.
While developing, you can have your testsuite use a specially crafted configuration file with the paths being wherever you need them to be.
Some people advocate probing the system at runtime to resolve issues like this. I usually suggest avoiding such solutions for at least the following reasons:
It makes your program non-deterministic. You can never tell at a first glance which configuration file it picks up - especially if you have multiple versions of the application on your system.
At any installation mix-up, the application will remain fat and happy - and so will the user. In my opinion, the application should look at one specific and well-documented location and abort with an informative message if it cannot find what it is looking for.
It's highly unlikely that you will always get everything right. There will always be unexpected rare environments or corner cases that the application will not handle.
Such behaviour is against the Unix philosophy. Even comamnd shells probe multiple locations because all locations can hold a file that should be parsed.
EDIT:
This method is not mandated by any formal standard that I know of, but it is the prevalent solution in the Unix world. Most major daemons (e.g. BIND, sendmail, postfix, INN, Apache) will look for a configuration file at a certain location, but will allow you to override that location and - through the file - any other path.
This is mostly to allow the system administrator to implement whetever scheme they want or to setup multiple concurrent installations, but it does help during testing as well. This flexibility is what makes it a Best Practice if not a proper standard.

Create setup for Linux C project

I want to create a setup for my project so that it can be installed on any pc without installing the header files.
How can I do that?
There are two general ways to distribute programs:
Source Distribution (source code to be built). The most common way is to use GNU autotools to generate a configure script so that your project can be installed by doing ./configure && make install
Binary Distribution (prebuilt). Instead of shipping source, you ship binaries. There are a couple of competing standards although the two main ones are RPM and DEB file.
You just changed your question (appreciated, it was kind of vage), so my answer no longer applies ..
make sure you have a C compiler
I'd be surprised if you didn't, Linux normally has one
find an editor you are comfortable with
vi and emacs are the classics
write your first program and compile
learn about makefiles
learn about sub projects and libraries
In many respects, your question is too vague to be answerable. You will need to describe more what you have in mind. All else apart, if you are using an integrated development environment (IDE), then what you do should be coloured strongly by what the IDE encourages you to do. (Fighting your IDE is counter-productive; I've just never found an IDE that doesn't make me want to fight it.)
However, for a typical project on Linux, you will create a directory to hold the materials. For a small project (up to a few thousand lines of code in a few - say 5-20 - files), you might not need any more structure than a single directory. For bigger projects, you will segregate sub-sections of the project into separate sub-directories under the main project directory.
Depending on your build mechanisms, you may have a single makefile at the top of the project hierarchy (or the only directory in the 'hierarchy'). This goes in line with the 'Recursive Make Considered Harmful' paper (P Miller). Alternatively, you can create a separate makefile for each sub-directory and the top-level makefile simply coordinates builds across directories.
You should also consider which version control system (VCS) you will use.

Resources