Why use Monte-Carlo method? - montecarlo

When should the Monte-Carlo method be used?
For example, why did Joel decide to use the Monte-Carlo method for Evidence Based Scheduling instead of methodically processing all user data for the past year?

Monte Carlo methods are commonly used when the dimensionality of the problem is too high for traditional schemes. A great introductory paper on the subject is Persi Diaconis' The Markov Chain Monte Carlo Revolution.

Suppose that you want to estimate some quantity of interest. In the Joel's example 'ship date' is what you want to estimate. In most such situations, there are random factors that impact our estimates.
When you have a random quantity, you typically wants to know its mean and the standard deviation so that you can take appropriate actions. In simple situations, you can model the quantity as a standard distribution (e.g., normal distribution) for which analytical formulas exist for the mean and the standard deviation. However, there exist many situations where analytical formulas do not exist. In such situations, instead of an analytic solution for the mean and the standard deviation, we resort to simulation. The idea is:
Step 1: Generate factors that impact the quantity of interest using appropriate distributions
Step 2: Compute quantity of interest
Repeat steps 1 and 2 many times and compute the empirical average and standard deviation for what you want to know.
The above is by far the typical application of monte carlo application. See the wikipedia link provided by Jarrod for several such applications and some examples of interesting applications where there is no inherent randomness (e.g., estimation of pi).

Wikipedia has a good article on monte carlo simulation methods. I've used monte carlo on a few occasions - in a nutshell MC methods tend to give accurate-ish answers when trying to project results using sample sets that are pretty much random and somebody would typically use intuition to try and guess at a trend. Unfortunately trying to explain MC methods is pretty tough so check out the article.

Sometimes checking all the options is simply prohibitive.

Because the estimates are usually pretty widely distributed when scheduling programming tasks it makes more sense to treat them statistically.
If we take a project which takes 100's of tasks the errors on the estimates will even out and you end up with a distribution which shows the likelihood of project completion as a range.
It also circumvents some serious issues like task buffering and student syndrome skewing the results even further.

Related

Can we apply multi-criteria decision making algorithms in incomplete data?

I am currently working on a project where a multi criteria decision making algorithm is needed in order to evaluate several alternatives for a given goal. After long research, I decided to use the AHP method for my case study. The problem is that the alternatives taken into account for the given goal contain incomplete data.
For example, I am interested in buying a house and I have three alternatives to consider. One criterion for comparing them is the size of the house. Let’s assume that I know the sizes of some of the rooms of these houses, but I do not have information about the actual sizes of the entire houses.
My questions are:
Can we apply AHP (or any MCDM method) when we are dealing with
incomplete data?
What are the consequences?
And, how can we minimize the presence of missing data in MCDM?
I would really appreciate some advice or help! Thanks!
If you still looking for answers, please let me answer your questions.
Before the detail explain, I coludn't answer with a technical approach in programming language.
First, we can use uncertinal data for MCDM, AHP with statical method.
As reducing lost of data, you can use deep learning concepts like entropy.
The result of it will be get reliability by accuracy of probabilistic approach.
The example that you talked, you could find the data of entire extent in other houses has same extent of criteria. Accuracy will depend on number of criteria, reliability of inference.
To get the perfect answer in your problem, you might need to know optimization, linear algebra, calculus, statistics above intermediate level
I'm student in management major, and I would help you as I can. I hope you get what you want

Are transformer-based language models overfitting on the paraphrase identification task? What tools overcome this?

I've been working on a sentence transformation task that involves paraphrase identification as a critical step: if we are confident enough that the state of the program (a sentence repeatedly modified) has become a paraphrase of a target sentence, stop transforming. The overall goal is actually to study potential reasoning in predictive models that can generate language prior to a target sentence. The approach is just one specific way of reaching that goal. Nevertheless, I've become interested in the paraphrase identification task itself, as it's received some boost from language models recently.
The problem I run into is when I manipulate sentences from examples or datasets. For example, in this HuggingFace example, if I negate either sequence or change the subject to Bloomberg, I still get a majority "is paraphrase" prediction. I started going through many examples in the MSRPC training set and negating one sentence in a positive example or making one sentence in a negative example a paraphrase of the other, especially when doing so would be a few word edit. I found to my surprise that various language models, like bert-base-cased-finetuned-mrpc and textattack/roberta-base-MRPC, don't change their confidences much on these sorts of changes. It's surprising as these models claim an f1 score of 0.918+. The dataset is clearly missing a focus on negative examples and small perturbative examples.
My question is, are there datasets, techniques, or models that deal well when given small edits? I know that this is an extremely generic question, much more than is typically asked on StackOverflow, but my concern is in finding practical tools. If there is a theoretical technique, then it might not be suitable as I'm in the category of "available tools define your approach" rather than vice-versa. So I hope that the community would have a recommendation on this.
Short answer to the question: yes, they are overfitting. Most of the important NLP data sets are not actually well-crafted enough to test what they claim to test, and instead test the ability of the model to find subtle (and not-so-subtle) patterns in the data.
The best tool I know for creating data sets that help deal with this is Checklist. The corresponding paper, "Beyond Accuracy: Behavioral Testing of NLP models with CheckList" is very readable and goes into depth on this type of issue. They have a very relevant table... but need some terms:
We prompt users to evaluate each capability with
three different test types (when possible): Minimum Functionality tests, Invariance, and Directional Expectation tests... A Minimum Functionality test (MFT), is a collection of simple examples (and labels) to check a
behavior within a capability. MFTs are similar to
creating small and focused testing datasets, and are
particularly useful for detecting when models use
shortcuts to handle complex inputs without actually
mastering the capability.
...An Invariance test (INV) is when we apply
label-preserving perturbations to inputs and expect
the model prediction to remain the same.
A Directional Expectation test (DIR) is similar,
except that the label is expected to change in a certain way. For example, we expect that sentiment
will not become more positive if we add “You are
lame.” to the end of tweets directed at an airline
(Figure 1C).
I haven't been actively involved in NLG for long, so this answer will be a bit more anecdotal than SO's algorithms would like. Starting with the fact that in my corner of Europe, the general sentiment toward peer review requirements for any kind of NLG project are higher by several orders of magnitude compared to other sciences - and likely not without reason or tensor thereof.
This makes funding a bigger challenge, so wherever you are, I wish you luck on that front. I'm not sure of how big of a deal this site is in the niche, but [Ehud Reiter's Blog][1] is where I would start looking into your tooling ideas.
Maybe even reach out to them/him personally, because I can't think of another source that has an academic background and a strong propensity for practical applications of NLG, at least based on the kind of content they've been putting out over the years.
Your background, environment/funding, and seniority level/control you have over the project will eventually compose your vector decision for you. I's just how it goes on the bleeding edge of anything. What I will add, though, is not to limit yourself to a single language or technology in this phase because of those precise reasons you've mentioned. I'd recommend the same in terms of potential open source involvement but if your profile information is accurate, that probably won't happen, no matter what you do and accomplish.
But yeah, in the grand scheme of things, your question is far from too broad, in my view. It identifies a rather unmistakable problem pattern that not all branches of science are as lackadaisical to approach as NLG-adjacent fields seem to be right now. In that regard, it's not broad enough and will need to be promulgated far and wide before community-driven tooling will give you serious options on a micro level.
Blasphemy, sure, but the performance is already stacked against you As for the question potentially being too broad, I'd posit it is not broad enough, so long as we collectively remain in a "oh, I was waiting for you to start doing something about it" phase.
P.S. I'd eliminate any Rust and ECMAScript alternatives prior to looking into Python, blapshemous as this might sound to a 2021 data scientist
. Some might ARight nowccounting forr the ridicule this would receive xou sltrsfx hsbr s fszs drz zhsz s mrnzsl rcrtvidr, sz lrsdz
due to performance easons.
[1]: https://ehudreiter.com/2016/12/18/nlg-vs-templates/

Finding probabilities of patterns in asset price movements based on multiple variables

I am seeking a method to allow me to analyse/search for patterns in asset price movements using 5 variables that move and change with price (from historical data).
I'd like to be able to assign a probability to a forecasted price move when for example, var1 and var2 do this and var3..5 do this, then price should do this with x amount of certainty.
Q1: Could someone point me in the right direction as to what framework / technique can help me achieve this?
Q2: Would this be a multivariate continuous random series analysis?
Q3: A Hidden Markov modelling?
Q4: Or perhaps is it a data-mining problem?
I'm looking for what rather then how.
One may opt to use Machine-Learning tools to build a learner to either
both classify of what kind the said "asset price movement" will beand serve also statistical probability measures for such a Classifier prediction
both regress a real target value, to which the asset price will moveandserve also statistical probability measures for such a Regressor prediction
A1: ( while StackOverflow strongly discourages users to ask about an opinion about a tool or a particular framework ) there would be not much damages or extra time to be spent, if one performs academia papers research and there would be quite a remarkable list of repeatedly used tools, used for ML in the context of academic R&D. For a reason, there would not be a surprise to meet scikit-learn ML-classes a lot, some other papers may work with R-based quantitative finance / statistical libraries. The tools, however, with all due respect, are not the core to answer all the doubts and inital confusion present in a mix of your questions. The subject confusion is.
A2: No, it would not. Well, unless you beat all the advanced quantitative research and happen to prove that the Market exhibits a random behaviour ( which it is not and for which it would be waste of time to re-cite remarkable research published about why it is not indeed a random process ).
A3: Do not try to jump on any wagon just because of it's attractive Tag or "contemporary popularity" in marketing minded texts. With all due respect, understanding HMM is outside of your sight while you now appear to move just to the nearest horizons to first understand what to look for.
A4: This is a nice proof of a missed target. Your question shows in this particular point better than in others, how small amount of own research efforts were put into covering the problem-domain and acquiring at least some elementary knowledge before typing the last two questions.
StackOverflow encourages users to ask high quality questions, so do not hesitate to re-edit your post to add some polishing efforts to this subject.
If in a need for an inspiration, try to review a nice and a powerful approach for a fast Machine Learning process, where both Classification and Regression tasks obtain also probability estimates for each predicted target value.
To have some idea about highly performant ML-predictors, these typically operate on much more than a set of 5 variables ( called in the ML-domain "features" ) . ( Think rather about some large hundreds to small thousands features, typically heavily non-linear transformations from the original TimeSeries' data ).
There you go, if indeed willing to master ML for algorithmic trading.
May like to read about a state-of-art research in this direction:
[1] Mondrian Forests: Efficient Online Random Forests
>>> arXiv:1406.2673v2 [stat.ML] 16 Feb 2015
[2] Mondrian Forests for Large-Scale Regression when Uncertainty Matters
>>> arXiv:1506.03805v4 [stat.ML] 27 May 2016 >>>
May also enjoy other posts on subject: >>> StackOverflow Algorithmic-Trading >>>

Feature Selection / Attribute Selection - Good overall performers

In the context of a large-scale data mining benchmarking study, I am comparing 15 algorithms over 9 data sets, leading to an overall 135 algorithm/dataset combinations. The study is done using WEKA.
My last analysis is concerned with the influence of feature selection. I am aware, that there is no such thing as the perfect feature selection algorithm but the optimal choice rather depends on both algorithm to be deployed and the data set to which it will be applied.
Although the problem is to large to find the optimal feature selection algorithm for each combination, I am looking for ones that are considered to show a good performance in general, 'allrounder' so to say.
So far I have found recommendation for CFS (Correlation-based feature selection), ReliefF and Consistency-based subset evaluation (Hall / Holmes 2002) as a generally good choice as well as the note from a survey, that methods as simple as Rankers (e.g. Correlation coefficient) proved quiet effective (Guyon / Ellissef 2003).
Is there a good benchmark study some other research indicating which methods to use or which ones to use in practice?
From a Text Classification point of view, there is one article by Yang etal. comparing different feature selection algorithms (chi square, document frequency and Information Gain).
Although it is focus on text (i.e., the document frequency won't apply to you at all) the others might, depending on the nature of your features (i.e., binary or not, always present, ...)
I hope this helps.

Learning Optimal Parameters to Maximize a Reward

I have a set of examples, which are each annotated with feature data. The examples and features describe the settings of an experiment in an arbitrary domain (e.g. number-of-switches, number-of-days-performed, number-of-participants, etc.). Certain features are fixed (i.e. static), while others I can manually set (i.e. variable) in future experiments. Each example also has a "reward" feature, which is a continuous number bounded between 0 and 1, indicating the success of the experiment as determined by an expert.
Based on this example set, and given a set of static features for a future experiment, how would I determine the optimal value to use for a specific variable so as to maximise the reward?
Also, does this process have a formal name? I've done some research, and this sounds similar to regression analysis, but I'm still not sure if it's the same thing.
The process is called "design of experiments." There are various techniques that can be used depending on the number of parameters, and whether you are able to do computations between trials or if you have to pick all your treatments in advance.
full factorial - try each combination, the brute force method
fractional factorial - eliminate some of the combinations in a pattern and use regression to fill in the missing data
Plackett-Burman, response surface - more sophisticated methods, trading off statistical effort for experimental effort
...and many others. This is an active area of statistical research.
Once you've built a regression model from the data in your experiments, you can find an optimum by applying the usual numerical optimization techniques.

Resources