How do you monitor another application until it closes? - c#-4.0

Suppose there are two executables. One is mine and the other is some other application. Now if the other app is running, I want my app to run until the other one exits or is stopped.

Writing a separate service seems quite an overkill.
You can first obtain a Process object - say by Process.GetProcessesByName, or better - use the ProcessID of the process you wish to monitor, if you have it. You can then try obtaining a WaitHandle from it, as discussed e.g. here, then call WaitOne on it (or WaitAll, if you're monitoring several instances).

Write a windows service that will continuously monitor the other application executable. If the service finds it running it will start your executable if not running and make sure it keeps running throughout the life cycle of the other application. As soon as the other app terminates, your windows service will also terminate your exe.

Related

Process Service Thread

We know about relation between Process and Thread.
Thread comes under Process, we can say Process is a container and Thread is an element of a container.
But what about Service ?
I can say Process and Thread having same genre.
Can we say the same thing for Services?
I found Window Services and Android Services having similarity, say in Android if we want to play Media then we have to get getSystemService(Context.AUDIO_SERVICE) likewise in Windows (8) if you stop Windows Audio (audiosrv.dll) services from services.msc then Media will not play.
What is Service?
Windows
A service is an application type that runs in the system background without a user interface and is similar to a UNIX daemon process.
Android A service is a component which runs in the background, without direct interaction with the user.
A service runs by default in the same process in the main thread as the application.
Services which run in the process of the application are sometimes called local services.
With above definition we can say apparently that Service is also a Process (i am not sure, please make me correct)
Let me start with the statement - Service is not a process. It is an activity without GUI
If you start a thread, it runs parallel with your main activity thread. But a Service is not guaranteed to always run in a new thread. So, you cannot call a service similar to Thread.
A Service is not a separate process. The Service object itself does not imply it is running in its own process; unless otherwise specified, it runs in the same process as the application it is part of.
A Service is not a thread. It is not a means itself to do work off of the main thread (to avoid Application Not Responding errors).
So When to use of a service in your application ?
If your application tells the system about something it wants to be doing in the background (even when the user is not directly interacting with the application). This corresponds to calls to Context.startService(), which ask the system to schedule work for the service, to be run until the service or someone else explicitly stop it.
Reason - Your application together with all its global variables will not be wiped out as long as there is a Service still running. So if the user is not interacting with your application and some other application in foreground needs more memory and if the OS triggers a low memory warning and your activity is destroyed, still your application is not completely lost as the service is running.
A facility for an application to expose some of its functionality to other applications. This corresponds to calls to Context.bindService(), which allows a long-standing connection to be made to the service in order to interact with it.
How the Application priority is defined based on service ?
If the service is currently executing code in its onCreate(), onStartCommand(), or onDestroy() methods, then the hosting process will be a foreground process to ensure this code can execute without being killed.
If the service has been started, then its hosting process is considered to be less important than any processes that are currently visible to the user on-screen, but more important than any process not visible.
If there are clients bound to the service, then the service's hosting process is never less important than the most important client.
A started service can use the startForeground(int, Notification) API to put the service in a foreground state, where the system considers it to be something the user is actively aware of and thus not a candidate for killing when low on memory.

Consequences of not calling WSACleanup

I'm in the process of designing an application that will run on a headless Windows CE 6.0 device. The idea is to make an application that will be started at startup and run until powered off. (Basically it will look like a service, but an application is easier to debug without the complete hassle to stop/deploy/start/attach to process procedure)
My concern is what will happen during development. If I debug/deploy the application I see no way of closing it in a friendly and easy way. (Feel free to suggest if this can be done in a better/user friendly way) I will just stop the debugger and the result will be WSACleanup is not called.
Now, the question. What is the consequence of not calling WSACleanup? Will I be able to start and run the winsock application again using the debugger? Or will there be a resource leak preventing me to do so?
Thanks in advance,
Jef
I think that Harry Johnston comment is correct.
Even if your application has no UI you can find a way to close it gracefully. I suppose that you have one or more threads in loops, you can add a named manual reset event that is checked (or can be used for waits instead of Sleep()) inside the loop condition and build a small application that opens the event using the same name, sets it and quits. This would force also your service app to close.
It may not be needed for debugging, but it may be useful also if you'll need to update your software and this requires that your main service is not running.

JXcore, How external process monitoring works?

I am a newbie and trying to figure out how process monitoring works with JXcore. I saw the documentation but need few steps in order to make my server application starting multithreaded and monitored properly.
Thanks in advance!
I'll try to explain it to you. There is no shame to be a newbie! :)
JXcore offers you two types of application monitoring.
1) One of them is Process Monitor and this is a process, which runs as separate instance. Your applications may subscribe to it for being monitored. Monitor verifies them in regular intervals, and if it finds that your application is gone it tries to relaunch it. For example, if your application servers http and should be online all the time - Process Monitor will ensure, that it is really running.
The fastest way to start to monitor your application is to:
launch the monitor: > jx monitor start
launch your application with automatic subscription to the monitor: > jx monitor run app.js
After that, when your application crashes, Process Monitor will restart it. You can test it by just killing your application's process.
Process monitor also gives you information about currently monitored processes. You can browse to see the list of them:
http://127.0.0.1:17777/json
2) Second type of a monitoring feature is process and thread recovery. With Process Recovery you can achieve the same as with the Process Monitoring, so there is no reason to use them both at the same time.
Another scenario could be:
Let's say you have a multithreaded application and only to recovering it's threads is enough.
Your application is launched with a command:
jx mt-keep:3 app.js
which means, that you run it with 3 threads.
To enable Thread Recovery is enough to subscribe to process.on('restart') event like this:
process.on('restart', function (cb) {
process.release();
cb();
});
Remember, to call cb() callback. As you probably saw it in the docs, the thread will not restart until you invoke this callback. Before restart, you may back-up things etc.
Basically that's it. Feel free to play with it!

Executing process on Linux from WSGI based web application

I have a dashboard and I want a process to run when the user clicks on a button. That process might take a long time to complete.
My options so far:
using popen or something similar to execute the process
having a daemon monitor a directory. When this directory is changed (a file created) the daemon will do the job and then delete the file before idling again.
using cron, running every 5 seconds and also monitoring some directory.
Which one is more Linux-friendly? Is there any I have not considered?
This is what task queueing systems like Celery and Redis Queue are for.
Another option is to have a daemon (as in your 2nd option) that listen on some socket. Then, your WSGI application could just connect & send a command. There are many possibilities for how the communication over the socket would take place, choosing the right one depends a lot on the actual case.
This have the advantage that you can eventually have the two application (WSGI and the daemon) run on different computers or VMs at some point.

Debugging utilities for Linux process hang issues?

I have a daemon process which does the configuration management. all the other processes should interact with this daemon for their functioning. But when I execute a large action, after few hours the daemon process is unresponsive for 2 to 3 hours. And After 2- 3 hours it is working normally.
Debugging utilities for Linux process hang issues?
How to get at what point the linux process hangs?
strace can show the last system calls and their result
lsof can show open files
the system log can be very effective when log messages are written to track progress. Allows to box the problem in smaller areas. Also correlate log messages to other messages from other systems, this often turns up interesting results
wireshark if the apps use sockets to make the wire chatter visible.
ps ax + top can show if your app is in a busy loop, i.e. running all the time, sleeping or blocked in IO, consuming CPU, using memory.
Each of these may give a little bit of information which together build up a picture of the issue.
When using gdb, it might be useful to trigger a core dump when the app is blocked. Then you have a static snapshot which you can analyze using post mortem debugging at your leisure. You can have these triggered by a script. The you quickly build up a set of snapshots which can be used to test your theories.
One option is to use gdb and use the attach command in order to attach to a running process. You will need to load a file containing the symbols of the executable in question (using the file command)
There are a number of different ways to do:
Listening on a UNIX domain socket, to handle status requests. An external application can then inquire as to whether the application is still ok. If it gets no response within some timeout period, then it can be assumed that the application being queried has deadlocked or is dead.
Periodically touching a file with a preselected path. An external application can look a the timestamp for the file, and if it is stale, then it can assume that the appliation is dead or deadlocked.
You can use the alarm syscall repeatedly, having the signal terminate the process (use sigaction accordingly). As long as you keep calling alarm (i.e. as long as your program is running) it will keep running. Once you don't, the signal will fire.
You can seamlessly restart your process as it dies with fork and waitpid as described in this answer. It does not cost any significant resources, since the OS will share the memory pages.

Resources