Monitoring pthread context switching - linux

I would like to monitor the the context switching behavior in a multi-threaded pthread application.
In other RTOSes(Micro C OS) I have been able to register a context switch callback for each thread in the application, and then log (or toggle a gpio) and watch the thread context switching in real time. This was a valuable tool for debugging the real time behavior and interaction of the multiple threads.
My current environment is embedded linux utilizing the pthread api. Is there a way to monitor each of the context switches?

Not in the way you describe, however there are various profiling tools for Linux, like oprofile, SystemTap and perf events, I'm not sure how well they'd fit into embedded development though.
EDIT: perf is probably best (if you are running a recent enough kernel to use it) since it's in the mainline so you just have to turn it on, and it's really basic.
EDIT: if none of those work for you you can always modify the kernel context switch code...
EDIT: I missed one of the tracing frameworks, there is also LTTng
If you're using busybox and can compile your own kernel perf is probably the most minimal way to go, it's consists of turning on perf events in the kernel and compiling the perf tool that comes with the kernel source (it's in tools/perf)

Related

Difference between ftrace and strace in Linux

both strace and ftrace seem to be used for tracing function calls in Linux. What's the difference?
strace is a utility which allows you to trace the system calls that an application makes. When an application makes a system call, it is basically asking the kernel to do something, eg file access. Use the command man strace to get strace documentation and man syscalls to get information on system calls.
ftrace is a tool used during kernel development and allows the developer to see what functions are being called within the kernel. The documentation is here and states:
Ftrace is an internal tracer designed to help out developers and
designers of systems to find what is going on inside the kernel.
It can be used for debugging or analyzing latencies and
performance issues that take place outside of user-space.

Linux and RTOS using SoC (ARM, Xilinx)

I am facing a design "issue". I have a board with Xilinx Zynq Soc including dual-core ARM9 and I need to develop an application to support real-time property control application (time deadlines to response time) and also application to do heavy processing (image etc.) and some basic communications between them, but most importantly I will need to be able to control the Linux part (at least e.g. to somehow suspend it, "pause it" in best case to have possibility to shut it down and then run it again). So I was wondering how to combine it.
One of the option, could be RTLinux, which at least to description, what I found offers possibility to run realtime kernel and linux kernel next to it as a thread but it seems that it is now proprieatary by WindRiver..
Then I stepped up over MicroBlaze, where it could be possible to "create" soft processor on Programmable logic, but I am not sure if I can run RTOS on ARM and Linux there?
There are two things that seem to be known as rtlinux. The one you mention, a Wind River revival of the MERT system is a product of that company. Another one, seemingly “RT Linux”, is a real time patch to the mainline kernel which provides deterministic scheduling and fine grained kernel pre-emption.
I think it is the latter one that you want. 10s of google indicates that there is a kconfig target for this SoC, so all the pieces you need should be there.
Do remember there is more to a real time system than just the ability to be real time; the subsystems also have to be well behaved.
Given your description, you have (at least) the following design options:
Dual kernel approach: this means patching the Linux kernel with a (quite invasive) patch that runs a tiny real-time kernel alongside the standard kernel. This approach allows reaching good real-time performance (even in the order of us) at the cost of complexity. It was implemented by the RTLinux project (acquired and then discontinued by Windriver), then by RTAI (mostly focusing on x86) and Xenomai.
If you go along this path, you can see if Xenomai supports your specific SoC; then patch, configure and rebuild the kernel; and finally write the real-time code following Xenomai's API.
Improving the responsiveness of the Linux standard kernel: this is what the PREEMPT_RT project aims at. The real-time performance is lower with respect to the previous approach, but you don't have to write real-time specific code. With this approach, you can patch and build the kernel, then see if the real-time performance is sufficient for your needs.
Synthesizing a Microblaze soft-core on the FPGA, then run Linux on the ARM cores and the real-time code ((either bare-metal or with an RTOS) on the Microblaze.
Unfortunately, your specific SoC does not support ARM's virtualization extensions. Otherwise there would be the additional option of Multi-OS approach: running the Linux OS on one ARM core and the real-time code (either bare-metal or with an RTOS like ERIKA Enterprise) on the other ARM core, through a hypervisor like Jailhouse or Xen.

Can LTTng analyze multithreading problems by tracing the Linux kernel?

I am looking for a method to analyze the multithreading problems in Linux user programs without affecting the program's own behaviour. I'm wondering whether it is possible to analyze the multithreading problem of user programs from the kernel event tracer or not?
Yes, LTTng works very well for that use-case, you can start by enabling the scheduling events (sched*), the statedump events (lttng_statedump_*) and the system calls events and you should have quickly a good idea of your program behavior. You can look at the trace in TraceCompass to inspect it visually, or with the lttng-analyses scripts to extract usage and latency metrics from your trace.

How they do debugging Linux Kernel Core

Now a days debugging become so advanced that even 'core kernel source code' can be debugged using Virtual environment.
But after reading couple of blog related to Kernel Core development it was not clear whether they are debugging using Virtual environment.
They have mentioned that they rely on 'Printing message' rather than using debugging tool, at-least for core component.
So, I Request from 'Linux Kernel Experts' to let me know what is good practice followed while debugging Kernel?
I've tried multiple approaches when trying to debug the kernel.
Sometimes, the easiest way is to just add a few printk statements based on my own conditional values, monitor the serial log and see what's going on. Its especially useful when the function in question is invoked quite often, but you are interested only in a subset of those.
QEMU GDB debugging. I have a buildroot filesystem setup. This means the kernel is lean and it boots up real fast. I start qemu with the -s -S flags, and attach gdb as target remote :1234. Additionally, there aren't very many userspace processes in this setup so its easier to debug the kernel.
VMWare stub. Assuming you are running an Ubuntu VM, it is possible that you can attach gdb to a VMware stub and debug the kernel. Personally, I never have had to pursue this route, but I look forward to trying it out someday.
If you have a kernel for a device that gets stuck in a bootloop and it does not print out any debug information out onto serial, it still might be helpful to try and boot it up using QEMU. Sure, the booting up will probably fail as the kernel tries to load up drivers, but you should be able to attach gdb, get a stack trace and see what the root cause is(perhaps a recursive call).

what tool for debugging a linux kernel?

I am new to linux kernel.
wandering how to browse the complete flow, right from the power up of CPU.
Basic idea on BIOS/ROM code.
can I have some tool to debug the complete kernel ?
or
raw code browsing is preferable ?
The following tools may help you to debug Linux kernel
Dynamic Probes is one of the popular debugging tool for Linux which developed by IBM. This tool allows the placement of a “probe” at almost any place in the system, in both user and kernel space. The probe consists of some code (written in a specialized, stack-oriented language) that is executed when control hits the given point. Resources regarding dprobes / kprobes listed below
http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaax/dprobesltt.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6212&rep=rep1&type=pdf
https://www.redhat.com/magazine/005mar05/features/kprobes/
https://sourceware.org/systemtap/kprobes/
http://www.ibm.com/developerworks/library/l-kprobes/index.html
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.kprobes.html
Linux Trace Toolkit is a kernel patch and a set of related utilities that allow the tracing of events in the kernel. The trace includes timing information and can create a reasonably complete picture of what happened over a given period of time. Resources of LTT, LTT Viewer and LTT Next Generation
http://elinux.org/Linux_Trace_Toolkit
http://www.linuxjournal.com/article/3829
http://multivax.blogspot.com/2010/11/introduction-to-linux-tracing-toolkit.html
MEMWATCH is an open source memory error detection tool. It works by defining MEMWATCH in gcc statement and by adding a header file to our code. Through this we can track memory leaks and memory corruptions. Resources regarding MEMWATCH
http://www.linuxjournal.com/article/6059
ftrace is a good tracing framework for Linux kernel. ftrace traces internal operations of the kernel. This tool included in the Linux kernel in 2.6.27. With its various tracer plugins, ftrace can be targeted at different static tracepoints, such as scheduling events, interrupts, memory-mapped I/O, CPU power state transitions, and operations related to file systems and virtualization. Also, dynamic tracking of kernel function calls is available, optionally restrictable to a subset of functions by using globs, and with the possibility to generate call graphs and provide stack usage. You can find a good tutorial of ftrace at https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon_jp2010_rostedt.pdf
ltrace is a debugging utility in Linux, used to display the calls a user space application makes to shared libraries. This tool can be used to trace any dynamic library function call. It intercepts and records the dynamic library calls which are called by the executed process and the signals which are received by that process. It can also intercept and print the system calls executed by the program.
http://www.ellexus.com/getting-started-with-ltrace-how-does-it-do-that/?doing_wp_cron=1425295977.1327838897705078125000
http://developerblog.redhat.com/2014/07/10/ltrace-for-rhel-6-and-7/
KDB is the in-kernel debugger of the Linux kernel. KDB follows simplistic shell-style interface. We can use it to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop in a certain location. Through KDB we can set breakpoints and execute some basic kernel run control (Although KDB is not source level debugger). Several handy resources regarding KDB
http://www.drdobbs.com/open-source/linux-kernel-debugging/184406318
http://elinux.org/KDB
http://dev.man-online.org/man1/kdb/
https://www.kernel.org/pub/linux/kernel/people/jwessel/kdb/usingKDB.html
KGDB is intended to be used as a source level debugger for the Linux kernel. It is used along with gdb to debug a Linux kernel. Two machines are required for using kgdb. One of these machines is a development machine and the other is the target machine. The kernel to be debugged runs on the target machine. The expectation is that gdb can be used to "break in" to the kernel to inspect memory, variables and look through call stack information similar to the way an application developer would use gdb to debug an application. It is possible to place breakpoints in kernel code and perform some limited execution stepping. Several handy resources regarding KGDB
http://landley.net/kdocs/Documentation/DocBook/xhtml-nochunks/kgdb.html
First, see related question Linux kernel live debugging, how it's done and what tools are used?. Try to use KDB or Ftrace.
If your intention is understanding whole flow of Linux kernel, running Linux kernel on QEMU can be easy way to learn how Linux works. Esp. you can emulate many CPU types without real H/W. or how about user mode Linux?
This document can be helpful to debug kernel on QEMU.
Just adding, the Linux kernel is not very suitable for debugging. Linus Torvalds once stated that he's againts supportng kernel debugging in Linux because it leads to badly written code.
I used kdbg, however I didn't find it very useful, what I suggest is to debug the kernel the oldschool way, using printk.

Resources