How can you tell a normal person about first program? - programming-languages

How can you tell a normal person (i.e. your mom, grand mom, your little brother) how was the first program was written? They ask this question a lot and I really can't give an answer they can understand.

Easy, send them to Ada Lovelace's wiki page. She wrote a "program" to calculate a set of Bernoulli numbers using Charles Babbage's Analytical Engine in 1843.
During a nine-month period in 1842-43, Lovelace translated Italian mathematician Luigi Menabrea's memoir on Babbage's newest proposed machine, the Analytical Engine. With the article, she appended a set of notes. The notes are longer than the memoir itself and include (Section G), in complete detail, a method for calculating a sequence of Bernoulli numbers with the Engine, which would have run correctly had the Analytical Engine ever been built. Based on this work, Lovelace is now widely credited with being the first computer programmer and her method is recognised as the world's first computer program.

It depends on how you define things. The first computers were programmed largely by rearranging patch-cords. Only (a little) later was memory added to produce stored-memory computers. The first programs for these were written by turning switches on or off to set 0's or 1's for a word, then (when they were all set to the right values) toggling another switch to "push" that word into memory, and setting the "current location" counter to the next memory address.
The same basic idea continued to be used for the initial boot program for quite a while after computers had memory -- e.g., once upon a time I wrote code for a Control Data mainframe that had a set of switches to toggle in the boot program (though in this case, they were on an auxiliary computer called a "PPU"). I also (again, long ago) booted a rather oddball variant of a DEC PDP-8 by toggling the boot code in on front-panel switches (and even though that was decades ago, the computer in question was already obsolete at the time).

Maybe you find you answer in Wikipedia: Bootstrapping. Basically its more about Compilers than on programming languages, as the very first program is written either on other machines or by hand, e.g. using Punch Cards.

Related

How Could I Create This Type of Machine?

So I have a computer. It has programs on it already. If I delete those programs, I would be left with an operating system that is able to run commands. I could create my own programs from that point, but I would be limited to the constraints of the operating system already loaded onto the machine. What I would like to do is remove the operating system from the computer entirely and be left only with a blank screen and a cursor where I could type whatever I want. I want to be able to create my own program without having to run an operating system program behind it. I do not understand how the physical machine would be able to process the strings of characters that I type into it and produce its own response, which would then be displayed on the screen, but obviously someone has done it before, otherwise I would not have the machine that I am typing on right now.
(I apologize for the run on sentences but I do not know how to say what I want to say right now.)
My goal here is to have a computer, kind of like the Apple 2, where the only thing that I could do with it is type into a text line and see characters pop up on the screen. My goal on top of that goal is to develop a program that would hide in the background of the machine, so that there would still only be a cursor on screen, but the program would make it so that when I type any simple question into the screen, such as, "How are you feeling today?", I would receive a response like, "I am doing quite well, thank you. How are you?".
Does anybody have any idea how I would be able to start this project properly?
If you need to ask this question, you need to learn more than one answer on SO can provide.
Operating system is needed even to get the cursor thingy on screen.
If you are serious about the idea - you might want to start with a microcontroller, such as Arduino. They are more powerful than Apple 2 and they will allow you to write programs and boot straight into them. Adding some kind of terminal IO will not be hard - at least comparing to bootstrapping a program on an actual PC.
A good starting point for a project like this is to learn about operating systems in general. It is a vast topic but you don't have to know everything.
When we speak of an operating system we have in mind a large system that provides capabilities like managing memory, reading and writing files to permanent storage and interacting with input and output such as keyboards and displays. We are also usually thinking of a large number of higher level software applications. Think about commands like dir or ls as programs that come along with the operating system. Of course with a GUI based OS we also have windows and buttons and a wide variety of controls to consider.
The good news is that in order to get started you don't need to be an expert on everything and you certainly don't have to start with a full-blown OS.
The other good news is that the topic can be broken down into byte-sized pieces. A great introduction to the fundamentals you will need is Charles Petzold's Code The Hidden Language of Hardware and Software
Petzold begins with discussions of the inventions of Morse code and Braille, adds electricity, number systems, Boolean logic, and the resulting epiphanies required to put them all together economically. With these building blocks he builds circuits, relays, gates, switches, discusses the inventions of the vacuum tube, transistors, and finally the integrated circuit.
The last portion of the book contains a grab bag of subjects such as implementation of floating point math, operating systems, and the various refinements that have occurred in the latter half of the twentieth century.
Once you have a feel for the fundamentals a good next step in learning about operating systems is to study one that provides as few capabilities as possible. Take a look at MINIX
MINIX originally was developed in 1987 by Andrew S. Tanenbaum as a teaching tool for his textbook Operating Systems Design and Implementation. Today, it is a text-oriented operating system with a kernel of less than 6,000 lines of code. MINIX's largest claim to fame is as an example of a microkernel, in which each device driver runs as an isolated user-mode process—a structure that not only increases security but also reliability, because it means a bug in a driver cannot bring down the entire system.
Have fun.

Cobol: science and fiction [closed]

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 12 years ago.
There are a few threads about the relevance of the Cobol programming language on this forum, e.g. this thread links to a collection of them. What I am interested in here is a frequently repeated claim based on a study by Gartner from 1997: that there were around 200 billion lines of code in active use at that time!
I would like to ask some questions to verify or falsify a couple of related points. My goal is to understand if this statement has any truth to it or if it is totally unrealistic.
I apologize in advance for being a little verbose in presenting my line of thought and my own opinion on the things I am not sure about, but I think it might help to put things in context and thus highlight any wrong assumptions and conclusions I have made.
Sometimes, the "200 billion lines" number is accompanied by the added claim that this corresponded to 80% of all programming code in any language in active use. Other times, the 80% merely refer to so-called "business code" (or some other vague phrase hinting that the reader is not to count mainstream software, embedded systems or anything else where Cobol is practically non-existent). In the following I assume that the code does not include double-counting of multiple installations of the same software (since that is cheating!).
In particular in the time prior to the y2k problem, it has been noted that a lot of Cobol code is already 20 to 30 years old. That would mean it was written in the late 60ies and 70ies. At that time, the market leader was IBM with the IBM/370 mainframe. IBM has put up a historical announcement on his website quoting prices, configuration and availability. According to the sheet, prices are about one million dollars for machines with up to half a megabyte of memory.
Question 1: How many mainframes have actually been sold?
I have not found any numbers for those times; the latest numbers are for the year 2000, again by Gartner. :^(
I would guess that the actual number is in the hundreds or the low thousands; if the market size was 50 billion in 2000 and the market has grown exponentially like any other technology, it might have been merely a few billions back in 1970. Since the IBM/370 was sold for twenty years, twenty times a few thousand will result in a couple of ten-thousands of machines (and that is pretty optimistic)!
Question 2: How large were the programs in lines of code?
I don't know how many bytes of machine code result from one line of source code on that architecture. But since the IBM/370 was a 32-bit machine, any address access must have used 4 bytes plus instruction (2, maybe 3 bytes for that?). If you count in operating system and data for the program, how many lines of code would have fit into the main memory of half a megabyte?
Question 3: Was there no standard software?
Did every single machine sold run a unique hand-coded system without any standard software? Seriously, even if every machine was programmed from scratch without any reuse of legacy code (wait ... didn't that violate one of the claims we started from to begin with???) we might have O(50,000 l.o.c./machine) * O(20,000 machines) = O(1,000,000,000 l.o.c.).
That is still far, far, far away from 200 billion! Am I missing something obvious here?
Question 4: How many programmers did we need to write 200 billion lines of code?
I am really not sure about this one, but if we take an average of 10 l.o.c. per day, we would need 55 million man-years to achieve this! In the time-frame of 20 to 30 years this would mean that there must have existed two to three million programmers constantly writing, testing, debugging and documenting code. That would be about as many programmers as we have in China today, wouldn't it?
EDIT: Several people have brought up automatic templating systems/code generators or so. Could somebody elaborate on this? I have two issues with that: a) I need to tell the system what it is supposed to do for me; for that I need to communicate with the computer and the computer will output the code. This is exactly what a compiler of a programming language does. So essentially I am using a different high-level programming language to generate my Cobol code. Shouldn't I work with that other high-level language instead of Cobol? Why the middle-man? b) In the 70s and 80s the most precious commodity was memory. So if I have a programming language output something, it should better be concise. Using my hypothetical meta-language would I really generate verbose and repetitive Cobol code with it rather than bytecode/p-code like other compilers of that time did? END OF EDIT
Question 5: What about the competition?
So far, I have come up with two things here:
1) IBM had their own programming language, PL/I. Above I have assumed that the majority of code has been written exclusively using Cobol. However, all other things being equal I wonder if IBM marketing had really pushed their own development off the market in favor of Cobol on their machines. Was there really no relevant code base of PL/I?
2) Sometimes (also on this board in the thread quoted above) I come across the claim that the "200 billion lines of code" are simply invisible to anybody outside of "governments, banks ..." (and whatnot). Actually, the DoD had funded their own language in order to increase cost effectiveness and reduce the proliferation of programming language. This lead to their use of Ada. Would they really worry about having so many different programming languages if they had predominantly used Cobol? If there was any language running on "government and military" systems outside the perception of mainstream computing, wouldn't that language be Ada?
I hope someone can point out any flaws in my assumptions and/or conclusions and shed some light on whether the above claim has any truth to it or not.
On the surface, the numbers Gartner produces are akin to answering the
question: How many angels can dance on the head of a pin?.
Unless you obtain a full copy of their report (costing big bucks) you will never know how they came up
with or justified the 200 billion lines of COBOL claim. Having said that, Gartner is a well
respected information technology research and advisory
firm so I would think they would not have made such a claim without justification or
explanation.
It is amazing how this study has been quoted over the years. A Google search for "200 billion lines of COBOL"
got me about 19,500 hits. I sampled a bunch of them and most attribute the number directly to the 1997 the Gartner report.
Clearly, this figure has captured the attention of many.
The method that you have taken to "debunk" the claim has a few problems:
1) How many mainframes have been sold This is a big question in and of itself, probably just as difficult
as answering the 200 billion lines of code question. But more importantly, I don't see how determining the number of
mainframes could be used in constraing the number of lines of code running on them.
2) How large were the programs in lines of code? COBOL programs tend to be large. A modest program can
run to a few thousand lines, a big one into tens of thousands. One of the jokes COBOL programmers
often make is that only one COBOL program has ever been written, the rest are just modified
copies of it. As with many jokes there is a grain of truth in it. Most shops have a large program inventory
and a lot of those programs were built by cutting and pasting from each other. This really "fluffs" up the
size of your code base.
Your assumption that a program must fit into physical memory in order to run is wrong. The size problem
was solved in several different ways (e.g. program overlays, virtual memory etc.). It was not unusual in the
60's and 70's to run large programs on machines with tiny physical memories.
3) Was there no standard software? A lot of COBOL is written
from scratch or from templates. A number of financial packages were developed by software houses the 70's and 80's.
Most of these
were distributed as source code libraries. The customer then copied and modified the source to
fit their particular business
requirement. More "fluffing" of the code base - particularly given that large segments of that code
was logically unexecutable once the package had been "configured".
4) How many programmers did we need to write 200 billion lines of code Not as many as you might think!
Given that COBOL tends to be verbose and highly replicated, a programmer can have huge "productivity".
Program generating systems were in vogue during the 70's and early 80's.
I once worked with a product (now defunct fortunately) that let me write "business logic" and it
generated all of the "boiler plate" code around it - producing a fully functional COBOL program. The code
it generated was, to be polite, verbose in the extreme. I could produce a 15K line COBOL program from
about 200 lines of input! We are taking serious fluff here!
5) What about the competition? COBOL has never really had much serious competition in the
financial and insurance sectors. PL/1 was a major IBM initiative to produce the one programming language
that met every possible computing need. Like all such initiatives it was too ambitious and
has pretty much collapsed inward. I believe IBM still uses and supports it today. During the 70's
several other languages were predicted to replace COBOL - ALGOL, ADA and C come to mind, but
none have. Today I hear the same said of Java and .Net. I think the major reason COBOL is still with us is that it
does what it is supposed to do very well and
the huge multi billion lines of code legacy make moving to a "better" language both expensive and
risky from a business point of view.
Do I believe the 200 billion lines of code story? I find the number high but not impossibly high given
the number of ways COBOL code tends to "fluff" itself up over time.
I also think that getting too involved in analyzing these numbers quickly degrades into a
"counting angels" exercise - something people can get really wound up over but has no
significance in the real world.
EDIT
Let me address a few of the comments left below...
Never seen a COBOL program used by an investment bank. Quite possible. Depends
which application areas you were working in. Investment banks tend to have
large computing infrastructures and employ a wide range of technologies. The shop
I have been working in
for the past 20 years (although not an investment bank) is one of the largest in
the country and it has a significant
COBOL investment. It also has significant Java, C and C++ investments as
well as pockets of just about every other technology
known to man. I have also met some fairly senior applications developers here that
were completely unaware that COBOL was still in use. I did a
rough line count through our source control system and found around 70 million lines of
production COBOL. Quite a few people that have worked here for years are completely oblivious to it!
I am also aware that COBOL is rapidly declining as a language of choice, but the fact
is, there is still a lot of it around today. In 1997, the period to which this question
relates, I believe COBOL would have been the dominant language in terms of LOC. The
point of the question is: Could there have been 200 billion lines of it in 1997?
Counting mainframes. Even if one were able to obtain the number of mainframes it would
be difficult to assess the "compute" power they represented. Mainframes, like most
other computers, come in a wide range of configurations and processing capacity.
If we could say there were exactly "X" mainframes in use in 1997, you still need to
estimate the processing capacity they represented, then you need to figure out what
percentage of the work load was due to running COBOL programs and a bunch of other
confounding factors. I just don't see how this line of reasoning would ever
yield an answer with an acceptable margin of error.
Multi-counting lines of code. That was exactly my point when
referring to the COBOL "fluff" factor. Counting lines of COBOL can be a very misleading statistic
simply because a significant amount of it was never written by programmers in the
first place. Or if it was, quite a bit of it was done using the cut-paste-tinker
"design pattern".
Your observation that memory was a valuable commodity in 1997 and prior is true. One would think that
this would have lead to using the most efficient coding techniques and languages
available to maximize its use. However, there are other factors: The opportunity cost of having an application
backlog was often perceived to outweigh the cost of bringing in more memory/cpu to deal with less than
optimal code (which could be cranked out quite a bit faster). This thinking was further reinforced by the
observation that Moore's Law leads to ever
declining hardware costs whereas software development costs remain constant. The "logical" conclusion
was to crank out less than optimal code, suffer for a while, then reap the benefits
in the years to come (IMO, a lesson in bad planning and greed, still common today).
The push to deliver applications during the 70's through 90's led to the rise of a host of
code generators (today I see frameworks of various flavours fulfilling this role).
Many of these code generators emitted tons of COBOL code. Why emit COBOL code? Why not emit
assembler or p-code or something much more efficient? I believe the answer is
one of risk mitigation. Most code generators are proprietary pieces of software owned by some
third party who may or may not be in business or supporting their product 10 years from now.
It is a very hard sell if you can't provide an iron-clad guarantee that the generated application can be
supported into the distant future. The solution is to have the "generator" produce something
familiar - COBOL for example! Even if the "generator" dies, the resulting application can
be maintained by your existing staff of COBOL programmers. Problem solved ;) (today we see
open source used as a risk mitigation argument).
Returning to the LOC question. Counting lines of COBOL code is, in my opinion, open to
a wide margin of error or at least misinterpretation. Here are a few statistics from an application
I work on (quoted approximately). This
application was built with and is maintained using Basset Frame Technology (frame-work) so
we don't actually write COBOL but we generate COBOL from it.
Lines of COBOL: 7,000,000
Non-Procedure Division: 3,000,000
Procedure Division: 3,500,000
Comment/blank : 500,000
Non-expanded COPY directives: 40,000
COBOL verbs: 2,000,000
Programmer written procedure Division: 900,000
Application frame generated: 270,000
Corporate infrastructure frame generated: 2,330,000
As you can see, almost half of our COBOL programs are non-procedure Division code (data declaration
and the like). The ratio of LOC to Verbs (statement count) is about 7:2. Using our framework
leverages code production by about a factor of 7:1.
So what should you make of all this? I really don't know - except that there is a lot of room to
fluff up the COBOL line counts.
I have worked with other COBOL program generators in the past. Some of these had absolutely
stupid inflation factors (e.g. the 200 lines to 15K line fluffing mentioned earlier). Given all these
inflationary factors and the counting methodology used in by Gartner, it may very well have
been possible to "fluff" up to 200 billion lines of COBOL in 1997 - but the question
remains: Of what real use is this number? What could it really mean? I have no idea. Now
lets get back to the counting angels problem!
I would never defend those clowns at Gartner, but still:
Your ideas about IBM/370s are wrong. The 370 was an architecture, not a specific machine - it was implemented on everything from water cooled monsters to small, mini-computer sized machine (same size as a VAX). The number sold was thus probably far larger, by orders of magnitude, than you suspect.
Also, COBOL was heavily used on DEC's VAX lineup, and before that on the DEC-10 and DEC-20 lines. In the UK it was used on all ICL mainframes. Lots of other platforms also supported it.
[Usual disclaimer - I work for a COBOL vendor]
It's an interesting question and it's always difficult to get a provable number. On the number of COBOL programmers estimates - the 2 - 3 million number may not be orders of magnitude in error. I think there have been estimates of 1 or 2 million in the past. And each one of those can generate a lot of code in a 20 year career. In India tens of thousands of new COBOL programmers are added to the pool every year (perhaps every month!).
I think the automatically generated code is probably bigger than might be thought. For example PACBASE is a very popular application in the banking industry. A very large global bank I know of uses it extensively and they generate all their code into COBOL and estimate this generated code is 95% of their total code base with the other 5% being hand coded/maintained. I don't think this is uncommon. The maintenance and development of those systems is typically done at the model-level not the generated code as you say.
There is a group of applications that were missing from the original question - COBOL isn't only a mainframe language. The early years of Micro Focus were almost entirely spent in the OEM marketplace - we used to have something like 200 different OEMs (lots of long-gone names like DEC, Stratus, Bull, ...). Every OEM had to have a COBOL compiler on their box alongside C and Assembler. A lot of big applications were built at that time and are still going strong - think about the largest HR ERP systems, the largest mobile phone billing systems etc. My point is that there is a lot of COBOL code that was never on an IBM mainframe and is often overlooked.
And finally, the size of the code base may be larger in COBOL shops than the "average". That's not just because COBOL is verbose (or was - that's not been the case for a long time) but the systems are just bigger - they're in large organizations, doing a large number of disparate tasks. It's very common for sites to have 10's of millions of LoC.
I don't have figures, but my first "real" job was on IBM 370s.
First: Number sold. In 1974, a large railway ran on three 370s. These were big 370s, though, and you could get a small one for a whole lot less. (For perspective, at that time whether to get another megabyte was a decision on the VP level.)
Second: COBOL code is what you might call "fluffy", since a typical sentence (COBOLese for line) might be "ADD 1 TO MAIN-ACCOUNT OF CUSTOMER." There would be relatively few machine instructions per line. (This is especially true on the IBM 360 and onwards, which had machine instructions designed around executing COBOL.) BTW, addresses were 16 bits, four to designate a register (using the bottom 24 bits as a base address) and 12 as an offset. This meant that something under 64K could be addressed at a time, since not all of the 16 registers could be used as base registers for various reasons. Don't underestimate the ability of people to fit programs into small memory.
Also, don't underestimate the number of programs. The program library would be on disk and tape, and was essentially only limited by cost and volume. (Earlier on, they'd be on punch cards, which had serious problems as data and program storage.)
Third: Yes, most software was hand-written for the business at that time. Machines were far more expensive then, and people were cheaper. Programs were written to automate the existing business processes, and the idea that you could get outside software and change your business practices was almost heresy. This changed over time, of course.
Fourth: Programmers could go much faster than today, in lines of code per person-year, since these were largely big dumb programs for big dumb problems. In my experience, the DATA DIVISION was a large part of each COBOL program, and that would frequently take large descriptions of file layouts and repeat them in each program in the series.
I have limited experience with program generators, but it was very common at the time to use it to generate an application and then modify the output. This was partly just bad practice, and partly because a program generator couldn't do everything needed.
Fifth: PL/I was not heavily used, despite IBM's efforts. It ran into early bad press, although as far as I know the only real major problem that couldn't be fixed was figuring out the precision system. The Defense Department used Ada and COBOL for entirely different things. You are omitting assembly language as a competitor, and lots of small shops used BAL (also called ASM) instead of COBOL. After all, programmers were cheap, compilers were expensive, and there were a whole lot of things COBOL couldn't do. It was actually a very nice assembly language, and I liked it a lot.
Well, you're asking in the wrong place here. This forum is dominated by .net programmers, with a significant java minority and such a age build-up that only a very small minority has any cobol experience.
The CASE tool market consisted for a large part of cobol code generators. Most tools were write-only, not two-way. That ensures there are a lot of lines of code. This market was somewhat newer than the 70s, so the volume of cobol code grew fast in the 80s and 90s.
A lot of cobol development is done by people having no significant internet access and therefore visibility. There is no need for it. Cobol prorammers are used to having in-house programming courses and paper documentation (lots of it).
[edit] Generating cobol source made a lot of sense. Cobol is very verbose and low level. The various cobol implementations are all slightly different, so configuring the code generator eliminates a lot of potential errors.
With regards to #4: how much of that could have been machine-generated code? I don't know if template-based code was used a lot with Cobol, but I see a lot of it used now for all sorts of things. If my application has thousands of LOC that were machine generated, that doesn't mean much. The last code-generating script I wrote took 20 minutes to write, 10 minutes to format the input, 2 minutes to run, then an hour to execute a suite of automatic tests to verify it actually worked, but the code it generated would have taken several days to do by hand (or the time between the morning meeting and lunch, doin' it my way ;) ). Ok I admit it's not always that easy and there is often manual tweaking involved, but I still don't think the LOC metric has much meaning if code-generators are in heavy use.
Maybe that's how they generated so much code in so little time.

What is the worst programming language you ever worked with? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 13 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
If you have an interesting story to
share, please post an answer, but
do not abuse this question for bashing
a language.
We are programmers, and our primary tool is the programming language we use.
While there is a lot of discussion about the best one, I'd like to hear your stories about
the worst programming languages you ever worked with and I'd like to know exactly what annoyed you.
I'd like to collect this stories partly to avoid common pitfalls while designing a language (especially a DSL) and partly to avoid quirky languages in the future in general.
This question is not subjective. If a language supports only single character identifiers (see my own answer) this is bad in a non-debatable way.
EDIT
Some people have raised concerns that this question attracts trolls.
Wading through all your answers made one thing clear.
The large majority of answers is appropriate, useful and well written.
UPDATE 2009-07-01 19:15 GMT
The language overview is now complete, covering 103 different languages from 102 answers.
I decided to be lax about what counts as a programming language and included
anything reasonable. Thank you David for your comments on this.
Here are all programming languages covered so far
(alphabetical order, linked with answer, new entries in bold):
ABAP,
all 20th century languages,
all drag and drop languages,
all proprietary languages,
APF,
APL
(1),
AS400,
Authorware,
Autohotkey,
BancaStar,
BASIC,
Bourne Shell,
Brainfuck,
C++,
Centura Team Developer,
Cobol
(1),
Cold Fusion,
Coldfusion,
CRM114,
Crystal Syntax,
CSS,
Dataflex 2.3,
DB/c DX,
dbase II,
DCL,
Delphi IDE,
Doors DXL,
DOS batch
(1),
Excel Macro language,
FileMaker,
FOCUS,
Forth,
FORTRAN,
FORTRAN 77,
HTML,
Illustra web blade,
Informix 4th Generation Language,
Informix Universal Server web blade,
INTERCAL,
Java,
JavaScript
(1),
JCL
(1),
karol,
LabTalk,
Labview,
Lingo,
LISP,
Logo,
LOLCODE,
LotusScript,
m4,
Magic II,
Makefiles,
MapBasic,
MaxScript,
Meditech Magic,
MEL,
mIRC Script,
MS Access,
MUMPS,
Oberon,
object extensions to C,
Objective-C,
OPS5,
Oz,
Perl
(1),
PHP,
PL/SQL,
PowerDynamo,
PROGRESS 4GL,
prova,
PS-FOCUS,
Python,
Regular Expressions,
RPG,
RPG II,
Scheme,
ScriptMaker,
sendmail.conf,
Smalltalk,
Smalltalk ,
SNOBOL,
SpeedScript,
Sybase PowerBuilder,
Symbian C++,
System RPL,
TCL,
TECO,
The Visual Software Environment,
Tiny praat,
TransCAD,
troff,
uBasic,
VB6
(1),
VBScript
(1),
VDF4,
Vimscript,
Visual Basic
(1),
Visual C++,
Visual Foxpro,
VSE,
Webspeed,
XSLT
The answers covering 80386 assembler, VB6 and VBScript have been removed.
PHP (In no particular order)
Inconsistent function names and argument orders
Because there are a zillion functions, each one of which seems to use a different naming convention and argument order. "Lets see... is it foo_bar or foobar or fooBar... and is it needle, haystack or haystack, needle?" The PHP string functions are a perfect example of this. Half of them use str_foo and the other half use strfoo.
Non-standard date format characters
Take j for example
In UNIX (which, by the way, is what everyone else uses as a guide for date string formats) %j returns the day of the year with leading zeros.
In PHP's date function j returns the day of the month without leading zeros.
Still No Support for Apache 2.0 MPM
It's not recommended.
Why isn't this supported? "When you make the underlying framework more complex by not having completely separate execution threads, completely separate memory segments and a strong sandbox for each request to play in, feet of clay are introduced into PHP's system." Link So... it's not supported 'cause it makes things harder? 'Cause only the things that are easy are worth doing right? (To be fair, as Emil H pointed out, this is generally attributed to bad 3rd-party libs not being thread-safe, whereas the core of PHP is.)
No native Unicode support
Native Unicode support is slated for PHP6
I'm sure glad that we haven't lived in a global environment where we might have need to speak to people in other languages for the past, oh 18 years. Oh wait. (To be fair, the fact that everything doesn't use Unicode in this day and age really annoys me. My point is I shouldn't have to do any extra work to make Unicode happen. This isn't only a PHP problem.)
I have other beefs with the language. These are just some.
Jeff Atwood has an old post about why PHP sucks. He also says it doesn't matter. I don't agree but there we are.
XSLT.
XSLT is baffling, to begin with. The metaphor is completely different from anything else I know.
The thing was designed by a committee so deep in angle brackets that it comes off as a bizarre frankenstein.
The weird incantations required to specify the output format.
The built-in, invisible rules.
The odd bolt-on stuff, like scripts.
The dependency on XPath.
The tools support has been pretty slim, until lately. Debugging XSLT in the early days was an exercise in navigating in complete darkness. The tools change that but, still XSLT tops my list.
XSLT is weird enough that most people just ignore it. If you must use it, you need an XSLT Shaman to give you the magic incantations to make things go.
DOS Batch files. Not sure if this qualifies as programming language at all.
It's not that you can't solve your problems, but if you are used to bash...
Just my two cents.
Not sure if its a true language, but I hate Makefiles.
Makefiles have meaningful differences between space and TAB, so even if two lines appear identical, they do not run the same.
Make also relies on a complex set of implicit rules for many languages, which are difficult to learn, but then are frequently overridden by the make file.
A Makefile system is typically spread over many, many files, across many directories.
With virtually no scoping or abstraction, a change to a make file several directories away can prevent my source from building. Yet the error message is invariably a compliation error, not a meaningful error about make, or the makefiles.
Any environment I've worked in that uses makefiles successfully has a full-time Make expert. And all this to shave a few minutes off compilation??
The worse language I've ever seen come from the tool praat, which is a good audio analysis tool. It does a pretty good job until you use the script language. sigh bad memories.
Tiny praat script tutorial for beginners
Function call
We've listed at least 3 different function calling syntax :
The regular one
string = selected("Strings")
Nothing special here, you assign to the variable string the result of the selected function. Not really scary... yet.
The "I'm invoking some GUI command with parameters"
Create Strings as file list... liste 'path$'/'type$'
As you can see, the function name start at "Create" and finish with the "...". The command "Create Strings as file list" is the text displayed on a button or a menu (I'm to scared to check) on praat. This command take 2 parameters liste and an expression. I'm going to look deeper in the expression 'path$'/'type$'
Hmm. Yep. No spaces. If spaces were introduced, it would be separate arguments. As you can imagine, parenthesis don't work. At this point of the description I would like to point out the suffix of the variable names. I won't develop it in this paragraph, I'm just teasing.
The "Oh, but I want to get the result of the GUI command in my variable"
noliftt = Get number of strings
Yes we can see a pattern here, long and weird function name, it must be a GUI calling. But there's no '...' so no parameters. I don't want to see what the parser looks like.
The incredible type system (AKA Haskell and OCaml, praat is coming to you)
Simple natives types
windowname$ = left$(line$,length(line$)-4)
So, what's going on there?
It's now time to look at the convention and types of expression, so here we got :
left$ :: (String, Int) -> String
lenght :: (String) -> Int
windowname$ :: String
line$ :: String
As you can see, variable name and function names are suffixed with their type or return type. If their suffix is a '$', then it return a string or is a string. If there is nothing it's a number. I can see the point of prefixing the type to a variable to ease implementation, but to suffix, no sorry, I can't
Array type
To show the array type, let me introduce a 'tiny' loop :
for i from 1 to 4
Select... time time
bandwidth'i'$ = Get bandwidth... i
forhertz'i'$ = Get formant... i
endfor
We got i which is a number and... (no it's not a function)
bandwidth'i'$
What it does is create string variables : bandwidth1$, bandwidth2$, bandwidth3$, bandwidth4$ and give them values. As you can expect, you can't create two dimensional array this way, you must do something like that :
band2D__'i'__'j'$
The special string invocation
outline$ = "'time'#F'i':'forhertznum'Hz,'bandnum'Hz, 'spec''newline$'"
outline$ >> 'outfile$'
Strings are weirdly (at least) handled in the language. the '' is used to call the value of a variable inside the global "" string. This is _weird_. It goes against all the convention built into many languages from bash to PHP passing by the powershell. And look, it even got redirection. Don't be fooled, it doesn't work like in your beloved shell. No you have to get the variable value with the ''
Da Wonderderderfulful execution model
I'm going to put the final touch to this wonderderderfulful presentation by talking to you about the execution model. So as in every procedural languages you got instruction executed from top to bottom, there is the variables and the praat GUI. That is you code everything on the praat gui, you invoke commands written on menu/buttons.
The main window of praat contain a list of items which can be :
files
list of files (created by a function with a wonderderfulful long long name)
Spectrogramm
Strings (don't ask)
So if you want to perform operation on a given file, you must select the file in the list programmatically and then push the different buttons to take some actions. If you wanted to pass parameters to a GUI action, you have to follow the GUI layout of the form for your arguments, for example "To Spectrogram... 0.005 5000 0.002 20 Gaussian
" is like that because it follows this layout:
Needless to say, my nightmares are filled with praat scripts dancing around me and shouting "DEBUG MEEEE!!".
More information at the praat site, under the well-named section "easy programmable scripting language"
Well since this question refuses to die and since the OP did prod me into answering...
I humbly proffer for your consideration Authorware (AW) as the worst language it is possible to create. (n.b. I'm going off recollection here, it's been ~6 years since I used AW, which of course means there's a number of awful things I can't even remember)
the horror, the horror http://img.brothersoft.com/screenshots/softimage/a/adobe_authorware-67096-1.jpeg
Let's start with the fact that it's a Macromedia product (-10 points), a proprietary language (-50 more) primarily intended for creating e-learning software and moreover software that could be created by non-programmers and programmers alike implemented as an iconic language AND a text language (-100).
Now if that last statement didn't scare you then you haven't had to fix WYSIWYG generated code before (hello Dreamweaver and Frontpage devs!), but the salient point is that AW had a library of about 12 or so elements which could be dragged into a flow. Like "Page" elements, Animations, IFELSE, and GOTO (-100). Of course removing objects from the flow created any number of broken connections and artifacts which the IDE had variable levels of success coping with. Naturally the built in wizards (-10) were a major source of these.
Fortunately you could always step into a code view, and eventually you'd have to because with a limited set of iconic elements some things just weren't possible otherwise. The language itself was based on TUTOR (-50) - a candidate for worst language itself if only it had the ambition and scope to reach the depths AW would strive for - about which wikipedia says:
...the TUTOR language was not easy to
learn. In fact, it was even suggested
that several years of experience with
the language would be required before
programmers could build programs worth
keeping.
An excellent foundation then, which was built upon in the years before the rise of the internet with exactly nothing. Absolutely no form of data structure beyond an array (-100), certainly no sugar (real men don't use switch statements?) (-10), and a large splash of syntactic vinegar ("--" was the comment indicator so no decrement operator for you!) (-10). Language reference documentation was provided in paper or zip file formats (-100), but at least you had the support of the developer run usegroup and could quickly establish the solution to your problem was to use the DLL or SWF importing features of AW to enable you to do the actual coding in a real language.
AW was driven by a flow (with necessary PAUSE commands) and therefore has all the attendant problems of a linear rather than event based system (-50), and despite the outright marketing lies of the documentation it was not object oriented (-50) either. All code reuse was achieved through GOTO. No scope, lots of globals (-50).
It's not the language's fault directly, but obviously no source control integration was possible, and certainly no TDD, documentation generation or any other add-on tool you might like.
Of course Macromedia met the challenge of the internet head on with a stubborn refusal to engage for years, eventually producing the buggy, hard to use, security nightmare which is Shockwave (-100) to essentially serialise desktop versions of the software through a required plugin (-10). AS HTML rose so did AW stagnate, still persisting with it's shockwave delivery even in the face of IEEE SCORM javascript standards.
Ultimately after years of begging and promises Macromedia announced a radical new version of AW in development to address these issues, and a few years later offshored the development and then cancelled the project. Although of course Macromedia are still selling it (EVIL BONUS -500).
If anything else needs to be said, this is the language which allows spaces in variable names (-10000).
If you ever want to experience true pain, try reading somebody else's uncommented hungarian notation in a language which isn't case sensitive and allows variable name spaces.
Total Annakata Arbitrary Score (AAS): -11300
Adjusted for personal experience: OutOfRangeException
(apologies for length, but it was cathartic)
Seriously: Perl.
It's just a pain in the ass to code with for beginners and even for semi-professionals which work with perl on a daily basis. I can constantly see my colleagues struggle with the language, building the worst scripts, like 2000 lines with no regard of any well accepted coding standard. It's the worst mess i've ever seen in programming.
Now, you can always say, that those people are bad in coding (despite the fact that some of them have used perl for a lot of years, now), but the language just encourages all that freaking shit that makes me scream when i have to read a script by some other guy.
MS Access Visual Basic for Applications (VBA) was also pretty bad. Access was bad altogether in that it forced you down a weak paradigm and was deceptively simple to get started, but a nightmare to finish.
No answer about Cobol yet? :O
Old-skool BASICs with line numbers would be my choice. When you had no space between line numbers to add new lines, you had to run a renumber utility, which caused you to lose any mental anchors you had to what was where.
As a result, you ended up squeezing in too many statements on a single line (separated by colons), or you did a goto or gosub somewhere else to do the work you couldn't cram in.
MUMPS
I worked in it for a couple years, but have done a complete brain dump since then. All I can really remember was no documentation (at my location) and cryptic commands.
It was horrible. Horrible! HORRIBLE!!!
There are just two kinds of languages: the ones everybody complains about and the ones nobody uses.
Bjarne Stroustrup
I haven't yet worked with many languages and deal mostly with scripting languages; out of these VBScript is the one I like least. Although it has some handy features, some things really piss me off:
Object assignments are made using the Set keyword:
Set foo = Nothing
Omitting Set is one of the most common causes of run-time errors.
No such thing as structured exception handling. Error checking is like this:
On Error Resume Next
' Do something
If Err.Number <> 0
' Handle error
Err.Clear
End If
' And so on
Enclosing the procedure call parameters in parentheses requires using the Call keyword:
Call Foo (a, b)
Its English-like syntax is way too verbose. (I'm a fan of curly braces.)
Logical operators are long-circuit. If you need to test a compound condition where the subsequent condition relies on the success of the previous one, you need to put conditions into separate If statements.
Lack of parameterized class constructors.
To wrap a statement into several lines, you have to use an underscore:
str = "Hello, " & _
"world!"
Lack of multiline comments.
Edit: found this article: The Flangy Guide to Hating VBScript. The author sums up his complaints as "VBS isn't Python" :)
Objective-C.
The annotations are confusing, using brackets to call methods still does not compute in my brain, and what is worse is that all of the library functions from C are called using the standard operators in C, -> and ., and it seems like the only company that is driving this language is Apple.
I admit I have only used the language when programming for the iPhone (and looking into programming for OS X), but it feels as if C++ were merely forked, adding in annotations and forcing the implementation and the header files to be separate would make much more sense.
PROGRESS 4GL (apparently now known as "OpenEdge Advanced Business Language").
PROGRESS is both a language and a database system. The whole language is designed to make it easy to write crappy green-screen data-entry screens. (So start by imagining how well this translates to Windows.) Anything fancier than that, whether pretty screens, program logic, or batch processing... not so much.
I last used version 7, back in the late '90s, so it's vaguely possible that some of this is out-of-date, but I wouldn't bet on it.
It was originally designed for text-mode data-entry screens, so on Windows, all screen coordinates are in "character" units, which are some weird number of pixels wide and a different number of pixels high. But of course they default to a proportional font, so the number of "character units" doesn't correspond to the actual number of characters that will fit in a given space.
No classes or objects.
No language support for arrays or dynamic memory allocation. If you want something resembling an array, you create a temporary in-memory database table, define its schema, and then get a cursor on it. (I saw a bit of code from a later version, where they actually built and shipped a primitive object-oriented system on top of these in-memory tables. Scary.)
ISAM database access is built in. (But not SQL. Who needs it?) If you want to increment the Counter field in the current record in the State table, you just say State.Counter = State.Counter + 1. Which isn't so bad, except...
When you use a table directly in code, then behind the scenes, they create something resembling an invisible, magic local variable to hold the current cursor position in that table. They guess at which containing block this cursor will be scoped to. If you're not careful, your cursor will vanish when you exit a block, and reset itself later, with no warning. Or you'll start working with a table and find that you're not starting at the first record, because you're reusing the cursor from some other block (or even your own, because your scope was expanded when you didn't expect it).
Transactions operate on these wild-guess scopes. Are we having fun yet?
Everything can be abbreviated. For some of the offensively long keywords, this might not seem so bad at first. But if you have a variable named Index, you can refer to it as Index or as Ind or even as I. (Typos can have very interesting results.) And if you want to access a database field, not only can you abbreviate the field name, but you don't even have to qualify it with the table name; they'll guess the table too. For truly frightening results, combine this with:
Unless otherwise specified, they assume everything is a database access. If you access a variable you haven't declared yet (or, more likely, if you mistype the variable name), there's no compiler error: instead, it goes looking for a database field with that name... or a field that abbreviates to that name.
The guessing is the worst. Between the abbreviations and the field-by-default, you could get some nasty stuff if you weren't careful. (Forgot to declare I as a local variable before using it as a loop variable? No problem, we'll just randomly pick a table, grab its current record, and completely trash an arbitrarily-chosen field whose name starts with I!)
Then add in the fact that an accidental field-by-default access could change the scope it guessed for your tables, thus breaking some completely unrelated piece of code. Fun, yes?
They also have a reporting system built into the language, but I have apparently repressed all memories of it.
When I got another job working with Netscape LiveWire (an ill-fated attempt at server-side JavaScript) and classic ASP (VBScript), I was in heaven.
The worst language? BancStar, hands down.
3,000 predefined variables, all numbered, all global. No variable declaration, no initialization. Half of them, scattered over the range, reserved for system use, but you can use them at your peril. A hundred or so are automatically filled in as a result of various operations, and no list of which ones those are. They all fit in 38k bytes, and there is no protection whatsoever for buffer overflow. The system will cheerfully let users put 20 bytes in a ten byte field if you declared the length of an input field incorrectly. The effects are unpredictable, to say the least.
This is a language that will let you declare a calculated gosub or goto; due to its limitations, this is frequently necessary. Conditionals can be declared forward or reverse. Picture an "If" statement that terminates 20 lines before it begins.
The return stack is very shallow, (20 Gosubs or so) and since a user's press of any function key kicks off a different subroutine, you can overrun the stack easily. The designers thoughtfully included a "Clear Gosubs" command to nuke the stack completely in order to fix that problem and to make sure you would never know exactly what the program would do next.
There is much more. Tens of thousands of lines of this Lovecraftian horror.
The .bat files scripting language on DOS/Windows. God only knows how un-powerful is this one, specially if you compare it to the Unix shell languages (that aren't so powerful either, but way better nonetheless).
Just try to concatenate two strings or make a for loop. Nah.
VSE, The Visual Software Environment.
This is a language that a prof of mine (Dr. Henry Ledgard) tried to sell us on back in undergrad/grad school. (I don't feel bad about giving his name because, as far as I can tell, he's still a big proponent and would welcome the chance to convince some folks it's the best thing since sliced bread). When describing it to people, my best analogy is that it's sort of a bastard child of FORTRAN and COBOL, with some extra bad thrown in. From the only really accessible folder I've found with this material (there's lots more in there that I'm not going to link specifically here):
VSE Overview (pdf)
Chapter 3: The VSE Language (pdf) (Not really an overview of the language at all)
Appendix: On Strings and Characters (pdf)
The Software Survivors (pdf) (Fevered ramblings attempting to justify this turd)
VSE is built around what they call "The Separation Principle". The idea is that Data and Behavior must be completely segregated. Imagine C's requirement that all variables/data must be declared at the beginning of the function, except now move that declaration into a separate file that other functions can use as well. When other functions use it, they're using the same data, not a local copy of data with the same layout.
Why do things this way? We learn that from The Software Survivors that Variable Scope Rules Are Hard. I'd include a quote but, like most fools, it takes these guys forever to say anything. Search that PDF for "Quagmire Of Scope" and you'll discover some true enlightenment.
They go on to claim that this somehow makes it more suitable for multi-proc environments because it more closely models the underlying hardware implementation. Riiiight.
Another choice theme that comes up frequently:
INCREMENT DAY COUNT BY 7 (or DAY COUNT = DAY COUNT + 7)
DECREMENT TOTAL LOSS BY GROUND_LOSS
ADD 100.3 TO TOTAL LOSS(LINK_POINTER)
SET AIRCRAFT STATE TO ON_THE_GROUND
PERCENT BUSY = (TOTAL BUSY CALLS * 100)/TOTAL CALLS
Although not earthshaking, the style
of arithmetic reflects ordinary usage,
i.e., anyone can read and understand
it - without knowing a programming
language. In fact, VisiSoft arithmetic
is virtually identical to FORTRAN,
including embedded complex arithmetic.
This puts programmers concerned with
their professional status and
corresponding job security ill at
ease.
Ummm, not that concerned at all, really. One of the key selling points that Bill Cave uses to try to sell VSE is the democratization of programming so that business people don't need to indenture themselves to programmers who use crazy, arcane tools for the sole purpose of job security. He leverages this irrational fear to sell his tool. (And it works-- the federal gov't is his biggest customer). I counted 17 uses of the phrase "job security" in the document. Examples:
... and fit only for those desiring artificial job security.
More false job security?
Is job security dependent upon ensuring the other guy can't figure out what was done?
Is job security dependent upon complex code...?
One of the strongest forces affecting the acceptance of new technology is the perception of one's job security.
He uses this paranoia to drive wedge between the managers holding the purse strings and the technical people who have the knowledge to recognize VSE for the turd that it is. This is how he squeezes it into companies-- "Your technical people are only saying it sucks because they're afraid it will make them obsolete!"
A few additional choice quotes from the overview documentation:
Another consequence of this approach
is that data is mapped into memory
on a "What You See Is What You Get"
basis, and maintained throughout.
This allows users to move a complete
structure as a string of characters
into a template that descrives each
individual field. Multiple templates
can be redefined for a given storage
area. Unlike C and other languages,
substructures can be moved without the problems of misalignment due to
word boundary alignment standards.
Now, I don't know about you, but I know that a WYSIWYG approach to memory layout is at the top of my priority list when it comes to language choice! Basically, they ignore alignment issues because only old languages that were designed in the '60's and '70's care about word alignment. Or something like that. The reasoning is bogus. It made so little sense to me that I proceeded to forget it almost immediately.
There are no user-defined types in VSE. This is a far-reaching
decision that greatly simplifies the
language. The gain from a practical
point of view is also great. VSE
allows the designer and programmer to
organize a program along the same
lines as a physical system being
modeled. VSE allows structures to be
built in an easy-to-read, logical
attribute hierarchy.
Awesome! User-defined types are lame. Why would I want something like an InputMessage object when I can have:
LINKS_IN_USE INTEGER
INPUT_MESSAGE
1 ORIGIN INTEGER
1 DESTINATION INTEGER
1 MESSAGE
2 MESSAGE_HEADER CHAR 10
2 MESSAGE_BODY CHAR 24
2 MESSAGE_TRAILER CHAR 10
1 ARRIVAL_TIME INTEGER
1 DURATION INTEGER
1 TYPE CHAR 5
OUTPUT_MESSAGE CHARACTER 50
You might look at that and think, "Oh, that's pretty nicely formatted, if a bit old-school." Old-school is right. Whitespace is significant-- very significant. And redundant! The 1's must be in column 3. The 1 indicates that it's at the first level of the hierarchy. The Symbol name must be in column 5. You hierarchies are limited to a depth of 9.
Well, ok, but is that so awful? Just wait:
It is well known that for reading
text, use of conventional upper/lower
case is more readable. VSE uses all
upper case (except for comments). Why?
The literature in psychology is based
on prose. Programs, simply, are not
prose. Programs are more like math,
accounting, tables. Program fonts
(usually Courier) are almost
universally fixed-pitch, and for good
reason – vertical alignment among
related lines of code. Programs in
upper case are nicely readable, and,
after a time, much better in our
opinion
Nothing like enforcing your opinion at the language level! That's right, you cannot use any lower case in VSE unless it's in a comment. Just keep your CAPSLOCK on, it's gonna be stuck there for a while.
VSE subprocedures are called processes. This code sample contains three processes:
PROCESS_MUSIC
EXECUTE INITIALIZE_THE_SCENE
EXECUTE PROCESS_PANEL_WIDGET
INITIALIZE_THE_SCENE
SET TEST_BUTTON PANEL_BUTTON_STATUS TO ON
MOVE ' ' TO TEST_INPUT PANEL_INPUT_TEXT
DISPLAY PANEL PANEL_MUSIC
PROCESS_PANEL_WIDGET
ACCEPT PANEL PANEL_MUSIC
*** CHECK FOR BUTTON CLICK
IF RTG_PANEL_WIDGET_NAME IS EQUAL TO 'TEST_BUTTON'
MOVE 'I LIKE THE BEATLES!' TO TEST_INPUT PANEL_INPUT_TEXT.
DISPLAY PANEL PANEL_MUSIC
All caps as expected. After all, that's easier to read. Note the whitespace. It's significant again. All process names must start in column 0. The initial level of instructions must start on column 4. Deeper levels must be indented exactly 3 spaces. This isn't a big deal, though, because you aren't allowed to do things like nest conditionals. You want a nested conditional? Well just make another process and call it. And note the delicious COBOL-esque syntax!
You want loops? Easy:
EXECUTE NEXT_CALL
EXECUTE NEXT_CALL 5 TIMES
EXECUTE NEXT_CALL TOTAL CALL TIMES
EXECUTE NEXT_CALL UNTIL NO LINES ARE AVAILABLE
EXECUTE NEXT_CALL UNTIL CALLS_ANSWERED ARE EQUAL TO CALLS_WAITING
EXECUTE READ_MESSAGE UNTIL LEAD_CHARACTER IS A DELIMITER
Ugh.
Here is the contribution to my own question:
Origin LabTalk
My all-time favourite in this regard is Origin LabTalk.
In LabTalk the maximum length of a string variable identifier is one character.
That is, there are only 26 string variables at all. Even worse, some of them are used by Origin itself, and it is not clear which ones.
From the manual:
LabTalk uses the % notation to define
a string variable. A legal string
variable name must be a % character
followed by a single alphabetic
character (a letter from A to Z).
String variable names are
caseinsensitive. Of all the 26 string
variables that exist, Origin itself
uses 14.
Doors DXL
For me the second worst in my opinion is Doors DXL.
Programming languages can be divided into two groups:
Those with manual memory management (e.g. delete, free) and those with a garbage collector.
Some languages offer both, but DXL is probably the only language in the world that
supports neither. OK, to be honest this is only true for strings, but hey, strings aren't exactly
the most rarely used data type in requirements engineering software.
The consequence is that memory used by a string can never be reclaimed and
DOORS DXL leaks like sieve.
There are countless other quirks in DXL, just to name a few:
DXL function syntax
DXL arrays
Cold Fusion
I guess it's good for designers but as a programmer I always felt like one hand was tied behind my back.
The worst two languages I've worked with were APL, which is relatively well known for languages of its age, and TECO, the language in which the original Emacs was written. Both are notable for their terse, inscrutable syntax.
APL is an array processing language; it's extremely powerful, but nearly impossible to read, since every character is an operator, and many don't appear on standard keyboards.
TECO had a similar look, and for a similar reason. Most characters are operators, and this special purpose language was devoted to editing text files. It was a little better, since it used the standard character set. And it did have the ability to define functions, which was what gave life to emacs--people wrote macros, and only invoked those after a while. But figuring out what a program did or writing a new one was quite a challenge.
LOLCODE:
HAI
CAN HAS STDIO?
VISIBLE "HAI WORLD!"
KTHXBYE
Seriously, the worst programming language ever is that of Makefiles. Totally incomprehensible, tabs have a syntactic meaning and not even a debugger to find out what's going on.
I'm not sure if you meant to include scripting languages, but I've seen TCL (which is also annoying), but... the mIRC scripting language annoys me to no end.
Because of some oversight in the parsing, it's whitespace significant when it's not supposed to be. Conditional statements will sometimes be executed when they're supposed to be skipped because of this. Opening a block statement cannot be done on a separate line, etc.
Other than that it's just full of messy, inconsistent syntax that was probably designed that way to make very basic stuff easy, but at the same time makes anything a little more complex barely readable.
I lost most of my mIRC scripts, or I could have probably found some good examples of what a horrible mess it forces you to create :(
Regular expressions
It's a write only language, and it's hard to verify if it works correctly for the right inputs.
Visual Foxpro
I can't belive nobody has said this one:
LotusScript
I thinks is far worst than php at least.
Is not about the language itself which follows a syntax similar to Visual Basic, is the fact that it seem to have a lot of functions for extremely unuseful things that you will never (or one in a million times) use, but lack support for things you will use everyday.
I don't remember any concrete example but they were like:
"Ok, I have an event to check whether the mouse pointer is in the upper corner of the form and I don't have an double click event for the Form!!?? WTF??"
Twice I've had to work in 'languages' where you drag-n-dropped modules onto the page and linked them together with lines to show data flow. (One claimed to be a RDBMs, and the other a general purpose data acquisition and number crunching language.)
Just thinking of it makes me what to throttle someone. Or puke. Or both.
Worse, neither exposed a text language that you could hack directly.
I find myself avoid having to use VBScript/Visual Basic 6 the most.
I use primarily C++, javascript, Java for most tasks and dabble in ruby, scala, erlang, python, assembler, perl when the need arises.
I, like most other reasonably minded polyglots/programmers, strongly feel that you have to use the right tool for the job - this requires you to understand your domain and to understand your tools.
My issue with VBscript and VB6 is when I use them to script windows or office applications (the right domain for them) - i find myself struggling with the language (they fall short of being the right tool).
VBScript's lack of easy to use native data structures (such as associative containers/maps) and other quirks (such as set for assignment to objects) is a needless and frustrating annoyance, especially for a scripting language. Contrast it with Javascript (which i now use to program wscript/cscript windows and do activex automation scripts) which is far more expressive. While there are certain things that work better with vbscript (such as passing arrays back and forth from COM objects is slightly easier, although it is easier to pass event handlers into COM components with jscript), I am still surprised by the amount of coders that still use vbscript to script windows - I bet if they wrote the same program in both languages they would find that jscript works with you much more than vbscript, because of jscript's native hash data types and closures.
Vb6/VBA, though a little better than vbscript in general, still has many similar issues where (for their domain) they require much more boiler plate to do simple tasks than what I would like and have seen in other scripting languages.
In 25+ years of computer programming, by far the worst thing I've ever experienced was a derivative of MUMPS called Meditech Magic. It's much more evil than PHP could ever hope to be.
It doesn't even use '=' for assignment! 100^b assigns a value of 100 to b and is read as "100 goes to b". Basically, this language invented its own syntax from top to bottom. So no matter how many programming languages you know, Magic will be a complete mystery to you.
Here is 100 bottles of beer on the wall written in this abomination of a language:
BEERv1.1,
100^b,T("")^#,DO{b'<1 NN(b,"bottle"_IF{b=1 " ";"s "}_"of beer on the wall")^#,
N(b,"bottle"_IF{b=1 " ";"s "}_"of beer!")^#,
N("You take one down, pass it around,")^#,b-1^b,
N(b,"bottle"_IF{b=1 " ";"s "}_"of beer on the wall!")^#},
END;
TCL. It only compiles code right before it executes, so it's possible that if your code never went down branch A while testing, and one day, in the field it goes down branch A, it could have a SYNTAX ERROR!

What became of 'The last one'? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 6 years ago.
Improve this question
From Wikipedia:
The Last One was a unique software
program in 1981 which
took input from a user and generated a
program in BASIC which could then be
run. It is an example of a program
generator.
The software was not a programming
language, since unlike most
programming languages, programs were
generated by the user selecting
options from menus that would form the
basis of the generated code. This was
done in a logical sequence that would
eventually cause a program to be
generated in BASIC. At any time, the
user could elect to view a flow chart
showing the current progress of the
program's design. 2
But Wikipedia didn't say what became of this program. How popular/unpopular was it, and how many people use it? How and when did it meet its demise, or is it still available?
More information available here.
Here's the current story AFAICT: this article mentions that the consulting firm they formed way back then to put TLO into play was named DJ `AI' Systems and is now tloconsultants.com (tlo == The Last One). Cha-ching :-)
My guess (after a 2min site scan) is that they grew their business by continually expanding what appears to be business-oriented expert system "modules" that the generated code ran against (and also perhaps even assisted in or guided some of the code generation, most likely for the code that targeted its own routines) and then incorporate the knowledge of how to use the new modules back into TLO. Very impressive, especially for 1981 and with the engine that knew when it didn't know enough -- ScHrIaTp! I wish my manager had 1/10th that functionality.
And you gotta love that it took five minutes to generate 100 bug-free lines of BASIC code.
I'm curious as to whether they ever "closed the loop" (my term) because I didn't see it mentioned (as I didn't fully read it due to that dang corporate job and its fake-time-based insanity) as to whether they actually reached the point where its own representation was manipulated within it in order to generate the next version of TLO itself. The name "The Last One" suggests to me that David James fully understood the meaning of manifesting a piece of software capable of presenting its own representation to the user (== programmer) for modification with the end purpose being to generate its own subsequent version.
All such self-repping-and-editing programs (live processes are IMO far more difficult while being also tantalizingly more interesting) are actually, from my perspective, equivalent in the sense that they are all 'functions that transform functions that transform functions' (how about 'FtTFtTF's -- appropriately absurd and lovely, IMO :-)
Trying to wrap one's head around how to implement such a beautiful piece of software in the face of its myriad possibilities is the kind of programming puzzle that brings home why MDD is both the current brightest idea while simultaneously being rarely used in real-world projects. Your brain better be firing on ALL cyllinders to go treading that path. How long has it taken Simonyi and his billions?
I am also curious as to whether there are infinite variations of FtTFtTFs or just lots and lots of lots of them.
Enjoy!
"Lasting Peace and Happiness for all Human Beings!"
Well, I found a blog article by a person who did a major interview with the creator of "The Last One". At the time of the writing of the article (2007), he was still working with one of the creators of "The Last One". You can probably ask him what became of it.
TRUE STORY!!!
I was the director when TLO it first came to America from England. The company spent so much time trying to find the right marketing avenue that the bubble past them by. We all did 180 seminars with crowds of 50 to 100 each in as many days. There was Scot Norton, Gil Savage, Rodger David and Richard Housand and me, Michael Bartolucci. We had an exclusive for the US which I cry about every time I think about it. We decided to right an accounts receivable and give it away with the program. Then in a week it changed to General Ledger, then AP and so on. Had we took one idea (AR)and ran with it, I think we could of had our dream come true. It wad a viable program. We took a voice generator that was present it the 1981 Computer Conference and teamed up with them. I wrote a BASIC program while in front of 50 press members (mostly from Europe).It was error free and took about 20 minutes that created a simple database to create and it would add, change, and delete members of the database from a central menu. We did this on the third day of the Conference in Houston TX. Wen our marketing failed so did the company. I understand the original company took it into receivership and decided not to pursue it further.
That was my second job in as many years. I continued on for another 38 more very successful years in the computer field.
The next step of evolution were 4GL languages and CASE tools. After that, we have UML and today, MDD.
All of those come with more or less amount of tool support to generate code from some abstract "input". All of them more of less failed for the general case since the general case isn't abstract enough to map it to some formal and simple input.
Today, MDD is a solution for highly repetitive tasks and other programming tasks that can be easily abstracted. Think "copy data out of XML" (highly abstract, good tool support) vs. "calculating the gravity field of a black hole" (very specific, no reuse, little tool support).
[EDIT] As for the history of "The Last One", probably no one adopted it. Code generators always were a bit neglected. My guess is that this is because of the many pitfalls: If you need a million lines of code that look all the same, then a code generator is really cool. But you never need that. You need a million lines of code that are somewhat similar, where "somewhat" is often different from line to line.
But if no one here can answer what happened to the old program, I suggest to ask this question on the respective Wikipedia discussion page (see "discussion" at the top of the wiki page). People who wrote the article might know.
The Last One (TLO) was written by a bloke called David James, who was funded by "Scotty" Banbury, at the time a businessman whose main interest was a company called "Hilltop Tyres", based near Axminster in Devon.
It started life as a simple program generator on 6502 based machines, particularly the Commodore Pet and the Apple II. After a while, David dropped out and Scotty morphed into the principal author. He recoded the product as a meta generator, creating a new language which could, in theory, be retargeted at other languages. He spent a lot of time on C as a target but I don't know if he got that going, as I lost contact with Scotty and the product in the early 'nineties.
These language generators were popular at that time, another being Sycero/DB which could generate both Clipper/DBase code and quite clean ANSI C.
When first put on the market, both TLO and Sycero were useful tools for the bottom end of the market and their output was used even by quite large companies. The problem was that they generally used canned modules and simple substitution to create the target programs, although I think Scotty was experimenting with something that looked a bit like a bi-directional parser, able to translate BASIC into TLO as well as the other way around.

How do emulators work and how are they written? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Closed 9 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
How do emulators work? When I see NES/SNES or C64 emulators, it astounds me.
Do you have to emulate the processor of those machines by interpreting its particular assembly instructions? What else goes into it? How are they typically designed?
Can you give any advice for someone interested in writing an emulator (particularly a game system)?
Emulation is a multi-faceted area. Here are the basic ideas and functional components. I'm going to break it into pieces and then fill in the details via edits. Many of the things I'm going to describe will require knowledge of the inner workings of processors -- assembly knowledge is necessary. If I'm a bit too vague on certain things, please ask questions so I can continue to improve this answer.
Basic idea:
Emulation works by handling the behavior of the processor and the individual components. You build each individual piece of the system and then connect the pieces much like wires do in hardware.
Processor emulation:
There are three ways of handling processor emulation:
Interpretation
Dynamic recompilation
Static recompilation
With all of these paths, you have the same overall goal: execute a piece of code to modify processor state and interact with 'hardware'. Processor state is a conglomeration of the processor registers, interrupt handlers, etc for a given processor target. For the 6502, you'd have a number of 8-bit integers representing registers: A, X, Y, P, and S; you'd also have a 16-bit PC register.
With interpretation, you start at the IP (instruction pointer -- also called PC, program counter) and read the instruction from memory. Your code parses this instruction and uses this information to alter processor state as specified by your processor. The core problem with interpretation is that it's very slow; each time you handle a given instruction, you have to decode it and perform the requisite operation.
With dynamic recompilation, you iterate over the code much like interpretation, but instead of just executing opcodes, you build up a list of operations. Once you reach a branch instruction, you compile this list of operations to machine code for your host platform, then you cache this compiled code and execute it. Then when you hit a given instruction group again, you only have to execute the code from the cache. (BTW, most people don't actually make a list of instructions but compile them to machine code on the fly -- this makes it more difficult to optimize, but that's out of the scope of this answer, unless enough people are interested)
With static recompilation, you do the same as in dynamic recompilation, but you follow branches. You end up building a chunk of code that represents all of the code in the program, which can then be executed with no further interference. This would be a great mechanism if it weren't for the following problems:
Code that isn't in the program to begin with (e.g. compressed, encrypted, generated/modified at runtime, etc) won't be recompiled, so it won't run
It's been proven that finding all the code in a given binary is equivalent to the Halting problem
These combine to make static recompilation completely infeasible in 99% of cases. For more information, Michael Steil has done some great research into static recompilation -- the best I've seen.
The other side to processor emulation is the way in which you interact with hardware. This really has two sides:
Processor timing
Interrupt handling
Processor timing:
Certain platforms -- especially older consoles like the NES, SNES, etc -- require your emulator to have strict timing to be completely compatible. With the NES, you have the PPU (pixel processing unit) which requires that the CPU put pixels into its memory at precise moments. If you use interpretation, you can easily count cycles and emulate proper timing; with dynamic/static recompilation, things are a /lot/ more complex.
Interrupt handling:
Interrupts are the primary mechanism that the CPU communicates with hardware. Generally, your hardware components will tell the CPU what interrupts it cares about. This is pretty straightforward -- when your code throws a given interrupt, you look at the interrupt handler table and call the proper callback.
Hardware emulation:
There are two sides to emulating a given hardware device:
Emulating the functionality of the device
Emulating the actual device interfaces
Take the case of a hard-drive. The functionality is emulated by creating the backing storage, read/write/format routines, etc. This part is generally very straightforward.
The actual interface of the device is a bit more complex. This is generally some combination of memory mapped registers (e.g. parts of memory that the device watches for changes to do signaling) and interrupts. For a hard-drive, you may have a memory mapped area where you place read commands, writes, etc, then read this data back.
I'd go into more detail, but there are a million ways you can go with it. If you have any specific questions here, feel free to ask and I'll add the info.
Resources:
I think I've given a pretty good intro here, but there are a ton of additional areas. I'm more than happy to help with any questions; I've been very vague in most of this simply due to the immense complexity.
Obligatory Wikipedia links:
Emulator
Dynamic recompilation
General emulation resources:
Zophar -- This is where I got my start with emulation, first downloading emulators and eventually plundering their immense archives of documentation. This is the absolute best resource you can possibly have.
NGEmu -- Not many direct resources, but their forums are unbeatable.
RomHacking.net -- The documents section contains resources regarding machine architecture for popular consoles
Emulator projects to reference:
IronBabel -- This is an emulation platform for .NET, written in Nemerle and recompiles code to C# on the fly. Disclaimer: This is my project, so pardon the shameless plug.
BSnes -- An awesome SNES emulator with the goal of cycle-perfect accuracy.
MAME -- The arcade emulator. Great reference.
6502asm.com -- This is a JavaScript 6502 emulator with a cool little forum.
dynarec'd 6502asm -- This is a little hack I did over a day or two. I took the existing emulator from 6502asm.com and changed it to dynamically recompile the code to JavaScript for massive speed increases.
Processor recompilation references:
The research into static recompilation done by Michael Steil (referenced above) culminated in this paper and you can find source and such here.
Addendum:
It's been well over a year since this answer was submitted and with all the attention it's been getting, I figured it's time to update some things.
Perhaps the most exciting thing in emulation right now is libcpu, started by the aforementioned Michael Steil. It's a library intended to support a large number of CPU cores, which use LLVM for recompilation (static and dynamic!). It's got huge potential, and I think it'll do great things for emulation.
emu-docs has also been brought to my attention, which houses a great repository of system documentation, which is very useful for emulation purposes. I haven't spent much time there, but it looks like they have a lot of great resources.
I'm glad this post has been helpful, and I'm hoping I can get off my arse and finish up my book on the subject by the end of the year/early next year.
A guy named Victor Moya del Barrio wrote his thesis on this topic. A lot of good information on 152 pages. You can download the PDF here.
If you don't want to register with scribd, you can google for the PDF title, "Study of the techniques for emulation programming". There are a couple of different sources for the PDF.
Emulation may seem daunting but is actually quite easier than simulating.
Any processor typically has a well-written specification that describes states, interactions, etc.
If you did not care about performance at all, then you could easily emulate most older processors using very elegant object oriented programs. For example, an X86 processor would need something to maintain the state of registers (easy), something to maintain the state of memory (easy), and something that would take each incoming command and apply it to the current state of the machine. If you really wanted accuracy, you would also emulate memory translations, caching, etc., but that is doable.
In fact, many microchip and CPU manufacturers test programs against an emulator of the chip and then against the chip itself, which helps them find out if there are issues in the specifications of the chip, or in the actual implementation of the chip in hardware. For example, it is possible to write a chip specification that would result in deadlocks, and when a deadline occurs in the hardware it's important to see if it could be reproduced in the specification since that indicates a greater problem than something in the chip implementation.
Of course, emulators for video games usually care about performance so they don't use naive implementations, and they also include code that interfaces with the host system's OS, for example to use drawing and sound.
Considering the very slow performance of old video games (NES/SNES, etc.), emulation is quite easy on modern systems. In fact, it's even more amazing that you could just download a set of every SNES game ever or any Atari 2600 game ever, considering that when these systems were popular having free access to every cartridge would have been a dream come true.
I know that this question is a bit old, but I would like to add something to the discussion. Most of the answers here center around emulators interpreting the machine instructions of the systems they emulate.
However, there is a very well-known exception to this called "UltraHLE" (WIKIpedia article). UltraHLE, one of the most famous emulators ever created, emulated commercial Nintendo 64 games (with decent performance on home computers) at a time when it was widely considered impossible to do so. As a matter of fact, Nintendo was still producing new titles for the Nintendo 64 when UltraHLE was created!
For the first time, I saw articles about emulators in print magazines where before, I had only seen them discussed on the web.
The concept of UltraHLE was to make possible the impossible by emulating C library calls instead of machine level calls.
Something worth taking a look at is Imran Nazar's attempt at writing a Gameboy emulator in JavaScript.
Having created my own emulator of the BBC Microcomputer of the 80s (type VBeeb into Google), there are a number of things to know.
You're not emulating the real thing as such, that would be a replica. Instead, you're emulating State. A good example is a calculator, the real thing has buttons, screen, case etc. But to emulate a calculator you only need to emulate whether buttons are up or down, which segments of LCD are on, etc. Basically, a set of numbers representing all the possible combinations of things that can change in a calculator.
You only need the interface of the emulator to appear and behave like the real thing. The more convincing this is the closer the emulation is. What goes on behind the scenes can be anything you like. But, for ease of writing an emulator, there is a mental mapping that happens between the real system, i.e. chips, displays, keyboards, circuit boards, and the abstract computer code.
To emulate a computer system, it's easiest to break it up into smaller chunks and emulate those chunks individually. Then string the whole lot together for the finished product. Much like a set of black boxes with inputs and outputs, which lends itself beautifully to object oriented programming. You can further subdivide these chunks to make life easier.
Practically speaking, you're generally looking to write for speed and fidelity of emulation. This is because software on the target system will (may) run more slowly than the original hardware on the source system. That may constrain the choice of programming language, compilers, target system etc.
Further to that you have to circumscribe what you're prepared to emulate, for example its not necessary to emulate the voltage state of transistors in a microprocessor, but its probably necessary to emulate the state of the register set of the microprocessor.
Generally speaking the smaller the level of detail of emulation, the more fidelity you'll get to the original system.
Finally, information for older systems may be incomplete or non-existent. So getting hold of original equipment is essential, or at least prising apart another good emulator that someone else has written!
Yes, you have to interpret the whole binary machine code mess "by hand". Not only that, most of the time you also have to simulate some exotic hardware that doesn't have an equivalent on the target machine.
The simple approach is to interpret the instructions one-by-one. That works well, but it's slow. A faster approach is recompilation - translating the source machine code to target machine code. This is more complicated, as most instructions will not map one-to-one. Instead you will have to make elaborate work-arounds that involve additional code. But in the end it's much faster. Most modern emulators do this.
When you develop an emulator you are interpreting the processor assembly that the system is working on (Z80, 8080, PS CPU, etc.).
You also need to emulate all peripherals that the system has (video output, controller).
You should start writing emulators for the simpe systems like the good old Game Boy (that use a Z80 processor, am I not not mistaking) OR for C64.
Emulator are very hard to create since there are many hacks (as in unusual
effects), timing issues, etc that you need to simulate.
For an example of this, see http://queue.acm.org/detail.cfm?id=1755886.
That will also show you why you ‘need’ a multi-GHz CPU for emulating a 1MHz one.
Also check out Darek Mihocka's Emulators.com for great advice on instruction-level optimization for JITs, and many other goodies on building efficient emulators.
I've never done anything so fancy as to emulate a game console but I did take a course once where the assignment was to write an emulator for the machine described in Andrew Tanenbaums Structured Computer Organization. That was fun an gave me a lot of aha moments. You might want to pick that book up before diving in to writing a real emulator.
Advice on emulating a real system or your own thing?
I can say that emulators work by emulating the ENTIRE hardware. Maybe not down to the circuit (as moving bits around like the HW would do. Moving the byte is the end result so copying the byte is fine). Emulator are very hard to create since there are many hacks (as in unusual effects), timing issues, etc that you need to simulate. If one (input) piece is wrong the entire system can do down or at best have a bug/glitch.
The Shared Source Device Emulator contains buildable source code to a PocketPC/Smartphone emulator (Requires Visual Studio, runs on Windows). I worked on V1 and V2 of the binary release.
It tackles many emulation issues:
- efficient address translation from guest virtual to guest physical to host virtual
- JIT compilation of guest code
- simulation of peripheral devices such as network adapters, touchscreen and audio
- UI integration, for host keyboard and mouse
- save/restore of state, for simulation of resume from low-power mode
To add the answer provided by #Cody Brocious
In the context of virtualization where you are emulating a new system(CPU , I/O etc ) to a virtual machine we can see the following categories of emulators.
Interpretation: bochs is an example of interpreter , it is a x86 PC emulator,it takes each instruction from guest system translates it in another set of instruction( of the host ISA) to produce the intended effect.Yes it is very slow , it doesn't cache anything so every instruction goes through the same cycle.
Dynamic emalator: Qemu is a dynamic emulator. It does on the fly translation of guest instruction also caches results.The best part is that executes as many instructions as possible directly on the host system so that emulation is faster. Also as mentioned by Cody, it divides the code into blocks ( 1 single flow of execution).
Static emulator: As far I know there are no static emulator that can be helpful in virtualization.
How I would start emulation.
1.Get books based around low level programming, you'll need it for the "pretend" operating system of the Nintendo...game boy...
2.Get books on emulation specifically, and maybe os development. (you won't be making an os, but the closest to it.
3.look at some open source emulators, especially ones of the system you want to make an emulator for.
4.copy snippets of the more complex code into your IDE/compliler. This will save you writing out long code. This is what I do for os development, use a district of linux
I wrote an article about emulating the Chip-8 system in JavaScript.
It's a great place to start as the system isn't very complicated, but you still learn how opcodes, the stack, registers, etc work.
I will be writing a longer guide soon for the NES.

Resources