What does this bash syntax mean? (Featuring: case, exec) - linux

What is the purpose of this bash script? (It is a portion of a larger script.)
if [ $# -gt 0 ]
then
case $1 in
-*) ;;
*) exec $* ;;
esac
fi
A related question:
https://stackoverflow.com/questions/2046762/problem-with-metamap-inappropriate-ioctl-for-device

In English, line-by-line:
if the number of arguments is greater than 0
then
if the first argument...
starts with '-', do nothing
else, "exec" the arguments (run the entire set of arguments as a command replacing this process, not as a child process)
(end of case)
(end of if)

Not knowing any bash scripting I'd say this
looks for whether the number of arguments is larger than 0
if it is, it looks at the first argument
If it starts with - it does nothing
Otherwise it executes all arguments as a single command line

The case ... esac part is a switch statement. If $1 matches against -* (that is if it starts with -) the first case will be executed - and will do nothing. Otherwise (if $1 matches *, which depending on shell setting might exclude things starting with .) exec $* will be run.
Around that there is an if statement making sure that the switch is only executed if there actually are any parameters to be checked against (the parameter count is greater than zero).

It takes the first argument passed in and executes it with the remaining arguments I.E.:
./script.sh ls dir1 dir2
would act as if you had typed
ls dir1 dir2

If the first parameter placed on the command-line for this script is a file, not an option, then try to run it as an executable file or script.

Related

how to pass asterisk into ls command inside bash script

Hi… Need a little help here…
I tried to emulate the DOS' dir command in Linux using bash script. Basically it's just a wrapped ls command with some parameters plus summary info. Here's the script:
#!/bin/bash
# default to current folder
if [ -z "$1" ]; then var=.;
else var="$1"; fi
# check file existence
if [ -a "$var" ]; then
# list contents with color, folder first
CMD="ls -lgG $var --color --group-directories-first"; $CMD;
# sum all files size
size=$(ls -lgGp "$var" | grep -v / | awk '{ sum += $3 }; END { print sum }')
if [ "$size" == "" ]; then size="0"; fi
# create summary
if [ -d "$var" ]; then
folder=$(find $var/* -maxdepth 0 -type d | wc -l)
file=$(find $var/* -maxdepth 0 -type f | wc -l)
echo "Found: $folder folders "
echo " $file files $size bytes"
fi
# error message
else
echo "dir: Error \"$var\": No such file or directory"
fi
The problem is when the argument contains an asterisk (*), the ls within the script acts differently compare to the direct ls command given at the prompt. Instead of return the whole files list, the script only returns the first file. See the video below to see the comparation in action. I don't know why it behaves like that.
Anyone knows how to fix it? Thank you.
Video: problem in action
UPDATE:
The problem has been solved. Thank you all for the answers. Now my script works as expected. See the video here: http://i.giphy.com/3o8dp1YLz4fIyCbOAU.gif
The asterisk * is expanded by the shell when it parses the command line. In other words, your script doesn't get a parameter containing an asterisk, it gets a list of files as arguments. Your script only works with $1, the first argument. It should work with "$#" instead.
This is because when you retrieve $1 you assume the shell does NOT expand *.
In fact, when * (or other glob) matches, it is expanded, and broken into segments by $IFS, and then passed as $1, $2, etc.
You're lucky if you simply retrieved the first file. When your first file's path contains spaces, you'll get an error because you only get the first segment before the space.
Seriously, read this and especially this. Really.
And please don't do things like
CMD=whatever you get from user input; $CMD;
You are begging for trouble. Don't execute arbitrary string from the user.
Both above answers already answered your question. So, i'm going a bit more verbose.
In your terminal is running the bash interpreter (probably). This is the program which parses your input line(s) and doing "things" based on your input.
When you enter some line the bash start doing the following workflow:
parsing and lexical analysis
expansion
brace expansion
tidle expansion
variable expansion
artithmetic and other substitutions
command substitution
word splitting
filename generation (globbing)
removing quotes
Only after all above the bash
will execute some external commands, like ls or dir.sh... etc.,
or will do so some "internal" actions for the known keywords and builtins like echo, for, if etc...
As you can see, the second last is the filename generation (globbing). So, in your case - if the test* matches some files, your bash expands the willcard characters (aka does the globbing).
So,
when you enter dir.sh test*,
and the test* matches some files
the bash does the expansion first
and after will execute the command dir.sh with already expanded filenames
e.g. the script get executed (in your case) as: dir.sh test.pas test.swift
BTW, it acts exactly with the same way for your ls example:
the bash expands the ls test* to ls test.pas test.swift
then executes the ls with the above two arguments
and the ls will print the result for the got two arguments.
with other words, the ls don't even see the test* argument - if it is possible - the bash expands the wilcard characters. (* and ?).
Now back to your script: add after the shebang the following line:
echo "the $0 got this arguments: $#"
and you will immediatelly see, the real argumemts how your script got executed.
also, in such cases is a good practice trying to execute the script in debug-mode, e.g.
bash -x dir.sh test*
and you will see, what the script does exactly.
Also, you can do the same for your current interpreter, e.g. just enter into the terminal
set -x
and try run the dir.sh test* = and you will see, how the bash will execute the dir.sh command. (to stop the debug mode, just enter set +x)
Everbody is giving you valuable advice which you should definitely should follow!
But here is the real answer to your question.
To pass unexpanded arguments to any executable you need to single quote them:
./your_script '*'
The best solution I have is to use the eval command, in this way:
#!/bin/bash
cmd="some command \"with_quetes_and_asterisk_in_it*\""
echo "$cmd"
eval $cmd
The eval command takes its arguments and evaluates them into the command as the shell does.
This solves my problem when I need to call a command with asterisk '*' in it from a script.

Bash: execute a multi-command line string in a script

There is, in a file, some multi-command line like this:
cd /home/user; ls
In a bash script, I would like to execute these commands, adding some arguments to the last one. For example:
cd /home/user; ls -l *.png
I thought it would be enough to do something like this:
#!/bin/bash
commandLine="$(cat theFileWithCommandInside) -l *.png"
$commandLine
exit 0
But it says:
/home/user;: No such file or directory
In other words, the ";" character doesn't mean anymore "end of the command": The shell is trying to find a directory called "user;" in the home folder...
I tried to replace ";" with "&&", but the result is the same.
the point of your question is to execute command stored in string. there are thousands of ways to execute that indirectly. but eventually, bash has to involve.
so why not explicitly invoke bash to do the job?
bash -c "$commandLine"
from doc:
-c string
If the -c option is present, then commands are read from string. If there are arguments after the string, they are assigned to the positional parameters, starting with $0.
http://linux.die.net/man/1/bash
Why dont you execute the commands themselves in the script, instead of "importing" them?
#!/bin/bash
cd /home/user; ls -l *.png
exit 0
Wrap the command into a function:
function doLS() {
cd user; ls $#
}
$# expands to all arguments passed to the function. If you (or the snippet authors) add functions expecting a predefined number of arguments, you may find the positional parameters $1, $2, ... useful instead.
As the maintainer of the main script, you will have to make sure that everyone providing such a snippet provides that "interface" your code uses (i.e. their code defines the functions your program calls and their functions process the arguments your program passes).
Use source or . to import the function into your running shell:
#!/bin/bash
source theFileWithCommandInside
doLS -l *.png
exit 0
I'd like to add a few thoughts on the ; topic:
In other words, the ";" character doesn't mean anymore "end of the
command": The shell is trying to find a directory called "user;" in
the home folder...
; is not used to terminate a statement as in C-style languages. Instead it is used to separate commands that should be executed sequentially inside a list. Example executing two commands in a subshell:
( command1 ; command2 )
If the list is part of a group, it must be succeeded by a ;:
{ command1 ; command2 ; }
In your example, tokenization and globbing (replacing the *) will not be executed (as you may have expected), so your code will not be run successfully.
The key is: eval
Here, the fixed script (look at the third line):
#!/bin/bash
commandLine="$(cat theFileWithCommandInside) -l *.png"
eval $commandLine
exit 0
Using the <(...) form
sh <(sed 's/$/ *.png/' theFileWithCommandInside)

Bourne Shell Script test throws error with two of same file-type in folder?

I am writing a Bourne Script and am looking to select files that match certain regular expressions. I am doing this with an if test structure, and it identifies a file ending in ".o". However, when there are two files in a directory which I am searching that end in ".o" I get the following error: "expr: syntax error". How could this be possible?
if test "`expr \"$file\" : ${SPECIFIED_DIRECTORY}/*.o`" != "0"; then
do something
fi
A regular expression test is almost certainly the wrong tool for the job here, but let's assume that specified_directory (lower-case by convention to avoid conflicts with environment variables and builtins) contained a regex to match a directory name, as opposed to a literal name, and thus actually was the right tool. If that were the case, you'd want to write...
if expr "$file" : "$specified_directory"/'.*[.]o' >/dev/null; then
...
fi
No test command, no subshell. Keep it simple.
If you don't escape the . (in this case, by making it a character class, [.]), it has its normal regular-expression meaning, of matching exactly one character. Similarly, .* is the way to match zero-or-more of any character in a regex, not bare * (which is the fnmatch syntax).
This approach works on any POSIX shell, and calls no tools not available built-in to the shell, thus making it efficient at runtime.
contains_any_files() {
set -- "$1"/*
[ "$#" -gt 0 ] && [ -f "$1" ]
}
if contains_any_files "$dir"; then
...
fi
If I understand correctly, if there are any .o files in the directory, then do something:
if find "$dir"/*.o >/dev/null 2>&1; then
# do something
fi
The find command will exit with success only if there are any matching files. Otherwise it will exit with failure, and the then block won't be executed. The >/dev/null 2>&1 is to hide stdout and stderr.

The 'eval' command in Bash and its typical uses

After reading the Bash man pages and with respect to this post, I am still having trouble understanding what exactly the eval command does and which would be its typical uses.
For example, if we do:
$ set -- one two three # Sets $1 $2 $3
$ echo $1
one
$ n=1
$ echo ${$n} ## First attempt to echo $1 using brackets fails
bash: ${$n}: bad substitution
$ echo $($n) ## Second attempt to echo $1 using parentheses fails
bash: 1: command not found
$ eval echo \${$n} ## Third attempt to echo $1 using 'eval' succeeds
one
What exactly is happening here and how do the dollar sign and the backslash tie into the problem?
eval takes a string as its argument, and evaluates it as if you'd typed that string on a command line. (If you pass several arguments, they are first joined with spaces between them.)
${$n} is a syntax error in bash. Inside the braces, you can only have a variable name, with some possible prefix and suffixes, but you can't have arbitrary bash syntax and in particular you can't use variable expansion. There is a way of saying “the value of the variable whose name is in this variable”, though:
echo ${!n}
one
$(…) runs the command specified inside the parentheses in a subshell (i.e. in a separate process that inherits all settings such as variable values from the current shell), and gathers its output. So echo $($n) runs $n as a shell command, and displays its output. Since $n evaluates to 1, $($n) attempts to run the command 1, which does not exist.
eval echo \${$n} runs the parameters passed to eval. After expansion, the parameters are echo and ${1}. So eval echo \${$n} runs the command echo ${1}.
Note that most of the time, you must use double quotes around variable substitutions and command substitutions (i.e. anytime there's a $): "$foo", "$(foo)". Always put double quotes around variable and command substitutions, unless you know you need to leave them off. Without the double quotes, the shell performs field splitting (i.e. it splits value of the variable or the output from the command into separate words) and then treats each word as a wildcard pattern. For example:
$ ls
file1 file2 otherfile
$ set -- 'f* *'
$ echo "$1"
f* *
$ echo $1
file1 file2 file1 file2 otherfile
$ n=1
$ eval echo \${$n}
file1 file2 file1 file2 otherfile
$eval echo \"\${$n}\"
f* *
$ echo "${!n}"
f* *
eval is not used very often. In some shells, the most common use is to obtain the value of a variable whose name is not known until runtime. In bash, this is not necessary thanks to the ${!VAR} syntax. eval is still useful when you need to construct a longer command containing operators, reserved words, etc.
Simply think of eval as "evaluating your expression one additional time before execution"
eval echo \${$n} becomes echo $1 after the first round of evaluation. Three changes to notice:
The \$ became $ (The backslash is needed, otherwise it tries to evaluate ${$n}, which means a variable named {$n}, which is not allowed)
$n was evaluated to 1
The eval disappeared
In the second round, it is basically echo $1 which can be directly executed.
So eval <some command> will first evaluate <some command> (by evaluate here I mean substitute variables, replace escaped characters with the correct ones etc.), and then run the resultant expression once again.
eval is used when you want to dynamically create variables, or to read outputs from programs specifically designed to be read like this. See Eval command and security issues for examples. The link also contains some typical ways in which eval is used, and the risks associated with it.
In my experience, a "typical" use of eval is for running commands that generate shell commands to set environment variables.
Perhaps you have a system that uses a collection of environment variables, and you have a script or program that determines which ones should be set and their values. Whenever you run a script or program, it runs in a forked process, so anything it does directly to environment variables is lost when it exits. But that script or program can send the export commands to standard output.
Without eval, you would need to redirect standard output to a temporary file, source the temporary file, and then delete it. With eval, you can just:
eval "$(script-or-program)"
Note the quotes are important. Take this (contrived) example:
# activate.sh
echo 'I got activated!'
# test.py
print("export foo=bar/baz/womp")
print(". activate.sh")
$ eval $(python test.py)
bash: export: `.': not a valid identifier
bash: export: `activate.sh': not a valid identifier
$ eval "$(python test.py)"
I got activated!
The eval statement tells the shell to take eval’s arguments as commands and run them through the command-line. It is useful in a situation like below:
In your script if you are defining a command into a variable and later on you want to use that command then you should use eval:
a="ls | more"
$a
Output:
bash: command not found: ls | more
The above command didn't work as ls tried to list file with name pipe (|) and more. But these files are not there:
eval $a
Output:
file.txt
mailids
remote_cmd.sh
sample.txt
tmp
Update: Some people say one should -never- use eval. I disagree. I think the risk arises when corrupt input can be passed to eval. However there are many common situations where that is not a risk, and therefore it is worth knowing how to use eval in any case. This stackoverflow answer explains the risks of eval and alternatives to eval. Ultimately it is up to the user to determine if/when eval is safe and efficient to use.
The bash eval statement allows you to execute lines of code calculated or acquired, by your bash script.
Perhaps the most straightforward example would be a bash program that opens another bash script as a text file, reads each line of text, and uses eval to execute them in order. That's essentially the same behavior as the bash source statement, which is what one would use, unless it was necessary to perform some kind of transformation (e.g. filtering or substitution) on the content of the imported script.
I rarely have needed eval, but I have found it useful to read or write variables whose names were contained in strings assigned to other variables. For example, to perform actions on sets of variables, while keeping the code footprint small and avoiding redundancy.
eval is conceptually simple. However, the strict syntax of the bash language, and the bash interpreter's parsing order can be nuanced and make eval appear cryptic and difficult to use or understand. Here are the essentials:
The argument passed to eval is a string expression that is calculated at runtime. eval will execute the final parsed result of its argument as an actual line of code in your script.
Syntax and parsing order are stringent. If the result isn't an executable line of bash code, in scope of your script, the program will crash on the eval statement as it tries to execute garbage.
When testing you can replace the eval statement with echo and look at what is displayed. If it is legitimate code in the current context, running it through eval will work.
The following examples may help clarify how eval works...
Example 1:
eval statement in front of 'normal' code is a NOP
$ eval a=b
$ eval echo $a
b
In the above example, the first eval statements has no purpose and can be eliminated. eval is pointless in the first line because there is no dynamic aspect to the code, i.e. it already parsed into the final lines of bash code, thus it would be identical as a normal statement of code in the bash script. The 2nd eval is pointless too, because, although there is a parsing step converting $a to its literal string equivalent, there is no indirection (e.g. no referencing via string value of an actual bash noun or bash-held script variable), so it would behave identically as a line of code without the eval prefix.
Example 2:
Perform var assignment using var names passed as string values.
$ key="mykey"
$ val="myval"
$ eval $key=$val
$ echo $mykey
myval
If you were to echo $key=$val, the output would be:
mykey=myval
That, being the final result of string parsing, is what will be executed by eval, hence the result of the echo statement at the end...
Example 3:
Adding more indirection to Example 2
$ keyA="keyB"
$ valA="valB"
$ keyB="that"
$ valB="amazing"
$ eval eval \$$keyA=\$$valA
$ echo $that
amazing
The above is a bit more complicated than the previous example, relying more heavily on the parsing-order and peculiarities of bash. The eval line would roughly get parsed internally in the following order (note the following statements are pseudocode, not real code, just to attempt to show how the statement would get broken down into steps internally to arrive at the final result).
eval eval \$$keyA=\$$valA # substitution of $keyA and $valA by interpreter
eval eval \$keyB=\$valB # convert '$' + name-strings to real vars by eval
eval $keyB=$valB # substitution of $keyB and $valB by interpreter
eval that=amazing # execute string literal 'that=amazing' by eval
If the assumed parsing order doesn't explain what eval is doing enough, the third example may describe the parsing in more detail to help clarify what is going on.
Example 4:
Discover whether vars, whose names are contained in strings, themselves contain string values.
a="User-provided"
b="Another user-provided optional value"
c=""
myvarname_a="a"
myvarname_b="b"
myvarname_c="c"
for varname in "myvarname_a" "myvarname_b" "myvarname_c"; do
eval varval=\$$varname
if [ -z "$varval" ]; then
read -p "$varname? " $varname
fi
done
In the first iteration:
varname="myvarname_a"
Bash parses the argument to eval, and eval sees literally this at runtime:
eval varval=\$$myvarname_a
The following pseudocode attempts to illustrate how bash interprets the above line of real code, to arrive at the final value executed by eval. (the following lines descriptive, not exact bash code):
1. eval varval="\$" + "$varname" # This substitution resolved in eval statement
2. .................. "$myvarname_a" # $myvarname_a previously resolved by for-loop
3. .................. "a" # ... to this value
4. eval "varval=$a" # This requires one more parsing step
5. eval varval="User-provided" # Final result of parsing (eval executes this)
Once all the parsing is done, the result is what is executed, and its effect is obvious, demonstrating there is nothing particularly mysterious about eval itself, and the complexity is in the parsing of its argument.
varval="User-provided"
The remaining code in the example above simply tests to see if the value assigned to $varval is null, and, if so, prompts the user to provide a value.
I originally intentionally never learned how to use eval, because most people will recommend to stay away from it like the plague. However I recently discovered a use case that made me facepalm for not recognizing it sooner.
If you have cron jobs that you want to run interactively to test, you might view the contents of the file with cat, and copy and paste the cron job to run it. Unfortunately, this involves touching the mouse, which is a sin in my book.
Lets say you have a cron job at /etc/cron.d/repeatme with the contents:
*/10 * * * * root program arg1 arg2
You cant execute this as a script with all the junk in front of it, but we can use cut to get rid of all the junk, wrap it in a subshell, and execute the string with eval
eval $( cut -d ' ' -f 6- /etc/cron.d/repeatme)
The cut command only prints out the 6th field of the file, delimited by spaces. Eval then executes that command.
I used a cron job here as an example, but the concept is to format text from stdout, and then evaluate that text.
The use of eval in this case is not insecure, because we know exactly what we will be evaluating before hand.
I've recently had to use eval to force multiple brace expansions to be evaluated in the order I needed. Bash does multiple brace expansions from left to right, so
xargs -I_ cat _/{11..15}/{8..5}.jpg
expands to
xargs -I_ cat _/11/8.jpg _/11/7.jpg _/11/6.jpg _/11/5.jpg _/12/8.jpg _/12/7.jpg _/12/6.jpg _/12/5.jpg _/13/8.jpg _/13/7.jpg _/13/6.jpg _/13/5.jpg _/14/8.jpg _/14/7.jpg _/14/6.jpg _/14/5.jpg _/15/8.jpg _/15/7.jpg _/15/6.jpg _/15/5.jpg
but I needed the second brace expansion done first, yielding
xargs -I_ cat _/11/8.jpg _/12/8.jpg _/13/8.jpg _/14/8.jpg _/15/8.jpg _/11/7.jpg _/12/7.jpg _/13/7.jpg _/14/7.jpg _/15/7.jpg _/11/6.jpg _/12/6.jpg _/13/6.jpg _/14/6.jpg _/15/6.jpg _/11/5.jpg _/12/5.jpg _/13/5.jpg _/14/5.jpg _/15/5.jpg
The best I could come up with to do that was
xargs -I_ cat $(eval echo _/'{11..15}'/{8..5}.jpg)
This works because the single quotes protect the first set of braces from expansion during the parsing of the eval command line, leaving them to be expanded by the subshell invoked by eval.
There may be some cunning scheme involving nested brace expansions that allows this to happen in one step, but if there is I'm too old and stupid to see it.
You asked about typical uses.
One common complaint about shell scripting is that you (allegedly) can't pass by reference to get values back out of functions.
But actually, via "eval", you can pass by reference. The callee can pass back a list of variable assignments to be evaluated by the caller. It is pass by reference because the caller can allowed to specify the name(s) of the result variable(s) - see example below. Error results can be passed back standard names like errno and errstr.
Here is an example of passing by reference in bash:
#!/bin/bash
isint()
{
re='^[-]?[0-9]+$'
[[ $1 =~ $re ]]
}
#args 1: name of result variable, 2: first addend, 3: second addend
iadd()
{
if isint ${2} && isint ${3} ; then
echo "$1=$((${2}+${3}));errno=0"
return 0
else
echo "errstr=\"Error: non-integer argument to iadd $*\" ; errno=329"
return 1
fi
}
var=1
echo "[1] var=$var"
eval $(iadd var A B)
if [[ $errno -ne 0 ]]; then
echo "errstr=$errstr"
echo "errno=$errno"
fi
echo "[2] var=$var (unchanged after error)"
eval $(iadd var $var 1)
if [[ $errno -ne 0 ]]; then
echo "errstr=$errstr"
echo "errno=$errno"
fi
echo "[3] var=$var (successfully changed)"
The output looks like this:
[1] var=1
errstr=Error: non-integer argument to iadd var A B
errno=329
[2] var=1 (unchanged after error)
[3] var=2 (successfully changed)
There is almost unlimited band width in that text output! And there are more possibilities if the multiple output lines are used: e.g., the first line could be used for variable assignments, the second for continuous 'stream of thought', but that's beyond the scope of this post.
In the question:
who | grep $(tty | sed s:/dev/::)
outputs errors claiming that files a and tty do not exist. I understood this to mean that tty is not being interpreted before execution of grep, but instead that bash passed tty as a parameter to grep, which interpreted it as a file name.
There is also a situation of nested redirection, which should be handled by matched parentheses which should specify a child process, but bash is primitively a word separator, creating parameters to be sent to a program, therefore parentheses are not matched first, but interpreted as seen.
I got specific with grep, and specified the file as a parameter instead of using a pipe. I also simplified the base command, passing output from a command as a file, so that i/o piping would not be nested:
grep $(tty | sed s:/dev/::) <(who)
works well.
who | grep $(echo pts/3)
is not really desired, but eliminates the nested pipe and also works well.
In conclusion, bash does not seem to like nested pipping. It is important to understand that bash is not a new-wave program written in a recursive manner. Instead, bash is an old 1,2,3 program, which has been appended with features. For purposes of assuring backward compatibility, the initial manner of interpretation has never been modified. If bash was rewritten to first match parentheses, how many bugs would be introduced into how many bash programs? Many programmers love to be cryptic.
As clearlight has said, "(p)erhaps the most straightforward example would be a bash program that opens another bash script as a text file, reads each line of text, and uses eval to execute them in order". I'm no expert, but the textbook I'm currently reading (Shell-Programmierung by Jürgen Wolf) points to one particular use of this that I think would be a valuable addition to the set of potential use cases collected here.
For debugging purposes, you may want to go through your script line by line (pressing Enter for each step). You could use eval to execute every line by trapping the DEBUG signal (which I think is sent after every line):
trap 'printf "$LINENO :-> " ; read line ; eval $line' DEBUG
I like the "evaluating your expression one additional time before execution" answer, and would like to clarify with another example.
var="\"par1 par2\""
echo $var # prints nicely "par1 par2"
function cntpars() {
echo " > Count: $#"
echo " > Pars : $*"
echo " > par1 : $1"
echo " > par2 : $2"
if [[ $# = 1 && $1 = "par1 par2" ]]; then
echo " > PASS"
else
echo " > FAIL"
return 1
fi
}
# Option 1: Will Pass
echo "eval \"cntpars \$var\""
eval "cntpars $var"
# Option 2: Will Fail, with curious results
echo "cntpars \$var"
cntpars $var
The curious results in option 2 are that we would have passed two parameters as follows:
First parameter: "par1
Second parameter: par2"
How is that for counter intuitive? The additional eval will fix that.
It was adapted from another answer on How can I reference a file for variables using Bash?

ksh script + print argument content in shell script

I want to run the script.sh with one argument.
If the first argument = action then script.sh will print the action parameter - restart machine each 1 min
My example not work but please advice what need to fix in the script so I will print the $action parameter if argument is action.
Remark I not want to set the following solution - [[ $1 = action ]] && echo action "restart machine each 1 min
My example script:
#!/bin/ksh
action="restart machine each 1 min"
echo "action" ${$1}
Example how to run the script
./script.sh action
Expected results that I need to get :
action restart machine each 1 min
Well with pdksh this works:
echo "action" `eval echo '$'$1`
You want to use eval:
action="restart machine each 1 min"
eval echo $1 \$$1
Note that doing something like this is a huge security risk. Consider what happens if the user invokes the script with the first argument "; rm -rf /"
You can probably alleviate such problems with:
eval "echo '$1' \"\$$1\""
but really you're just asking for trouble (This last version will struggle if the first argument contains a double-quote, and a $() construct will permit an arbitrary command to be executed). It is much safer to simply use a case statement and check that the argument matches exactly a string that you are looking for. Or, at least check that the argument you are eval'ing does not contain any of the following characters: ;()$"'. It's probably safest to check that it only contains alphanumerics (a-zA-Z0-9)
It's been two years, but here's an example of using nameref (a.k.a. typeset -N).
It includes three consecutive tests for validity of the given argument.
Is an argument given?
Does the argument match a known variable? nameref checks this.
Does the target variable have a value set?
action='This is the value of $action'
word='This it the value of ${word}'
list='This is a list'
lie='This is a lie'
(
typeset name=${1:?Usage: script.sh varname} || exit
nameref arg1=${name} || exit
: ${arg1:?} || exit
echo "$name $arg1"
)

Resources