I have the following C program:
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
int main()
{
int fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NONBLOCK);
if(fd < 0)
{
perror("Could not open device");
}
printf("Device opened\n");
struct termios options;
tcgetattr(fd, &options);
cfmakeraw(&options);
cfsetispeed(&options, B19200);
cfsetospeed(&options, B19200);
tcsetattr(fd, TCSANOW, &options);
char txpacket[] = {0x23, 0x06, 0x00, 0x00, 0xdd, 0xf9};
ssize_t written = write(fd, txpacket, sizeof(txpacket));
printf("Written %d bytes\n", written);
printf("Starting to wait for target to respond\n");
while(1)
{
fd_set readset;
FD_ZERO(&readset);
FD_SET(fd, &readset);
int nCount = select(fd + 1, &readset, NULL, NULL, NULL);
if(nCount > 0)
{
if(FD_ISSET(fd, &readset))
{
int i;
char buffer[128];
ssize_t bytesread = read(fd, buffer, sizeof(buffer));
printf("Received %d bytes\n", bytesread);
for(i = 0; i < bytesread; i++)
{
printf(" %02x", buffer[i]);
}
}
}
}
}
This program opens the serial device /dev/ttyS0, writes a sequence of data to it and starts listening for a response. I get the following output:
Device opened
Written 6 bytes
Starting to wait for target to respond
Received 0 bytes
Received 0 bytes
Received 0 bytes
Received 0 bytes
Received 0 bytes
Received 0 bytes
...
And the application consumes 100% CPU. I'm not able to receive any data, even though the target hardware actually transmits it.
What is wrong?
read() returning 0 indicates the end-of-file condition. You should check for that and break out of the loop if it occurs.
As to what's causing that - end-of-file on a serial port indicates it has detected a hangup, meaning that the DCD line has been dropped.
You can set the CLOCAL flag in options.c_cflag to ignore the modem control lines, if your device doesn't set them properly.
You should try without the O_NONBLOCK flag. in raw mode, if the settings of c_cc[VMIN] and c_cc[VTIME] is 0, the serial port behave like this (according to man cfmakeraw) :
If data is available, read returns
immediately, with the lesser of the
number of bytes available, or the
number of bytes requested. If no data
is available, read returns 0
So what you should try is :
options->c_cc[VMIN]=1;
Related
Good afternoon,
I have a peripheral device which communicates over usb over virtual serial port. Everything works well under Windows with generic ACM serial driver, for example with: https://www.kernel.org/doc/Documentation/usb/linux-cdc-acm.inf
Under Linux, it uses CDC ACM drivers. Everything in sys logs seems to work ok, but communication is behaving strangely. When I connect the device, about 10 bytes at the begining of communication are lost. Next, just each second command is received ok.
My questions are:
1) Communication protocol of this device doesn't use ASCII, it is binary (it can randomly contain control characters etc...). Should I use stty for configuring just speed, data bits, stop bits and parity, or something more is necessary to be set up for binary communication? (To ignore control bits in kernel and transmit every byte - raw data.)
2) Any idea, how to test if linux ACM drivers works properly, or which another drivers should i try for my CDC ACM device?
Thanks for any idea!
Linux will often mangle things like line-ending characters (0x0A and 0x0D) when you try to send them over a serial port, which can cause issues if they are actually binary data and not intended as line-ending characters.
Here is a snippet from Pololu that shows how to configure your serial port correctly and then send and receive a few bytes. Pay attention to the part that calls tcsetattr in particular.
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#ifdef _WIN32
#define O_NOCTTY 0
#else
#include <termios.h>
#endif
// Gets the position of a Maestro channel.
// See the "Serial Servo Commands" section of the user's guide.
int maestroGetPosition(int fd, unsigned char channel)
{
unsigned char command[] = {0x90, channel};
if(write(fd, command, sizeof(command)) == -1)
{
perror("error writing");
return -1;
}
unsigned char response[2];
if(read(fd,response,2) != 2)
{
perror("error reading");
return -1;
}
return response[0] + 256*response[1];
}
// Sets the target of a Maestro channel.
// See the "Serial Servo Commands" section of the user's guide.
// The units of 'target' are quarter-microseconds.
int maestroSetTarget(int fd, unsigned char channel, unsigned short target)
{
unsigned char command[] = {0x84, channel, target & 0x7F, target >> 7 & 0x7F};
if (write(fd, command, sizeof(command)) == -1)
{
perror("error writing");
return -1;
}
return 0;
}
int main()
{
const char * device = "/dev/ttyACM0"; // Linux
int fd = open(device, O_RDWR | O_NOCTTY);
if (fd == -1)
{
perror(device);
return 1;
}
#ifdef _WIN32
_setmode(fd, _O_BINARY);
#else
struct termios options;
tcgetattr(fd, &options);
options.c_iflag &= ~(INLCR | IGNCR | ICRNL | IXON | IXOFF);
options.c_oflag &= ~(ONLCR | OCRNL);
options.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
tcsetattr(fd, TCSANOW, &options);
#endif
int position = maestroGetPosition(fd, 0);
printf("Current position is %d.\n", position);
int target = (position < 6000) ? 7000 : 5000;
printf("Setting target to %d (%d us).\n", target, target/4);
maestroSetTarget(fd, 0, target);
close(fd);
return 0;
}
You might be able to do the same thing with the stty command line utility.
I try to read out a serial device. I am working on an Ubuntu 12.04. The device is sending in equivalent time distances some Bits.
I connect to the device via Hterm and I can see the correctly incoming data.
If I read out the device via the linux command cat, there are several Bits missing.
My third method was to write a little C-file
struct termios options;
int main(void)
{
int fd; /* File descriptor for the port */
fd = open(DEVICE, O_RDWR | O_NONBLOCK);
if (fd < 0)
{
/*
* Could not open the port.
*/
perror("open_port: Unable to open /dev/ttyACM3 - ");
}
fd_set read_fds, write_fds, except_fds;
FD_ZERO(&read_fds);
FD_ZERO(&write_fds);
FD_ZERO(&except_fds);
FD_SET(fd,&read_fds);
struct timeval timeout;
timeout.tv_sec = 10;
timeout.tv_usec = 0;
if(select(fd + 1, &read_fds, &write_fds, &except_fds, &timeout) == 1){
char replay[DEBUG_REPLAY_MAX_SIZE];
memset(replay, 0x00, DEBUG_REPLAY_MAX_SIZE);
read(fd, &replay, DEBUG_REPLAY_MAX_SIZE);
printf("Daten: %s", replay);
}
else{
puts("Timeout");
}
return (fd);
}
This code should do the following:
- open serial device and return file descriptor
- the function select() waits a maximum time of 10 s listening there are comming some data in
But if I execute the c-file do not wait 10 s, but prints only "Daten:" with no following datas. Really strange.
Can someone explain this behaviour?
Thanks a lot,
Florian
I'm trying to detect when a gpio pin goes from low to high and am having trouble. From what I've read I should be able to configure the pin as input this way:
# echo in > /sys/class/gpio/gpio51/direction
# echo rising > /sys/class/gpio/gpio51/edge
Next I try running a c program that waits for the rising edge using select. The code looks like this (notice I commented out an attempt to just read the file, since reading is supposed to block if you don't set O_NONBLOCK):
#include<stdio.h>
#include<fcntl.h>
#include <sys/select.h>
int main(void) {
int fd = open("/sys/class/gpio/gpio51/value", O_RDONLY & ~O_NONBLOCK);
//int fd = open("/sys/class/gpio/gpio51/value", O_RDONLY | O_NONBLOCK);
//unsigned char buf[2];
//int x = read(fd, &buf, 2);
//printf("%d %d: %s\n", fd, x, buf);
fd_set exceptfds;
int res;
FD_ZERO(&exceptfds);
FD_SET(fd, &exceptfds);
//printf("waiting for %d: %s\n", exceptfds);
res = select(fd+1,
NULL, // readfds - not needed
NULL, // writefds - not needed
&exceptfds,
NULL); // timeout (never)
if (res > 0 && FD_ISSET(fd, &exceptfds)) {
printf("finished\n");
}
return 0;
}
The program exits immediately no matter what the state of the pin (high or low). Can anyone see something wrong with the way I'm doing this?
PS. I have a python library that uses poll() to do just this, and the python works as expected. I pull the pin low, call the python, it blocks, pull the pin high and the code continues. So I don't think it is a problem with the linux gpio driver.
https://bitbucket.org/cswank/gadgets/src/590504d4a30b8a83143e06c44b1c32207339c097/gadgets/io/poller.py?at=master
I figured it out. You must read from the file descriptor before the select call returns. Here is an example that works:
#include<stdio.h>
#include<fcntl.h>
#include <sys/select.h>
#define MAX_BUF 64
int main(void) {
int len;
char *buf[MAX_BUF];
int fd = open("/sys/class/gpio/gpio51/value", O_RDONLY);
fd_set exceptfds;
int res;
FD_ZERO(&exceptfds);
FD_SET(fd, &exceptfds);
len = read(fd, buf, MAX_BUF); //won't work without this read.
res = select(fd+1,
NULL, // readfds - not needed
NULL, // writefds - not needed
&exceptfds,
NULL); // timeout (never)
if (res > 0 && FD_ISSET(fd, &exceptfds)) {
printf("finished\n");
}
return 0;
}
I'm using Linux Ubuntu and try to get serial communication to work.
Ok, what am I using...
I use a Raspberry Pi and connected it via USB/Serial-Adapter with an Inserial Measurement Unit (mulifunction sensor).
Just to clarify what i'm trying to do:
Establishing a connection betwenn Raspberry Pi and IMU.
To run IMU there are given steps i have to follow.
Power-on Sequence:
(a) power-on.
(b) Wait 800ms.
(c) Wait until NOT_READY bit goes to 0. NOT_READY is GLOB_CMD[3Eh]'s bit[10].
TXdata={0x3E,0x00,0x0d}. /* GLOB_CMD read command */
TXdata={0x3E,MSByte,LSByte,0x0d}. /* get response */
Confirm NOT_READY bit.
When NOT_READY becomes 0, it ends. Otherwise , please repeat (c).
(d) Confirm HARD_ERR bits. HARD_ERR is DIAG_STAT[3Ch]'s bit[6:5].
TXdata={0x3C,0x00,0x0d}. /* DIAG_STAT read command */
TXdata={0x3C,MSByte,LSByte,0x0d}. /* get response */
Confirm HARD_ERR is 00.
If HARD_ERR is 00, the IMU is OK. Otherwise, the IMU is faulty.
Register read and write:
[Read Example]
To read a 16bit-data from a register(addr=0x38).
TXdata={0x38,0x00,0x0d}. /* command */
RXdata={0x38,0x04,0x04,0x0d} /* response */
0x04 in 2nd byte of RXdata is Configuration mode.
0x04 in 3rd byte of RXdata is TAP=16.
Please note that read data unit is 16bit, and Most Significant Byte first.
-------------------------------------------------------------
[Write Example]
To write a 8bit-data into a register(addr=0x39).
TXdata={0xB9,0x01,0x0d}. /* command */
RXdata= w/o response
By sending this command, the IMU moves to Sampling mode.
Please note that write data unit is 8bit.
On my Linux Ubuntu there is a ttyUSB0 device given after connecting IMU.
So i tried to set Baudrate, Databits, Stopbits, Parity, flowcontrol.
First via stty-command, later with a simple c++-code.
I'm using this c++-code:
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
#include <stdlib.h>
#include <cstdlib>
void SleepMs(int);
int main(int argc, char** argv)
{
int fd; // port file descriptor
char port[20] = "/dev/ttyUSB0"; // port to connect to
fd = open(port, O_RDWR | O_NOCTTY | O_NDELAY); // connect to port
if(fd == -1)
{
printf("Error while opening the port.\n");
return 1;
}
printf("Port opened successfully.\n");
fcntl(fd, F_SETOWN, getpid());
struct termios settings;
tcgetattr(fd, &settings);
settings.c_cflag &= ~(CBAUD | CSIZE | CREAD);
settings.c_cflag |= B230400;
settings.c_cflag |= CS8;
tcflush(fd, TCIFLUSH);
tcsetattr(fd, TCSANOW, &settings); // apply the settings
int len = 7;
unsigned char bytes[len];
bytes[0] = 0x3E;
bytes[1] = 0x00;
bytes[2] = 0x0D;
bytes[3] = 0x3E;
bytes[4] = 0x00;
bytes[5] = 0x00;
bytes[6] = 0x0D;
int wr = write(fd, bytes, len);
unsigned char answer[32];
SleepMs(350);
int rd = -1;
int i;
while (rd==-1)
{
if(wr != 7)
{
printf("Error while sending!\n");
}
for(i=0; i<len; i++)
{
printf("%X sent\n", (unsigned int)bytes[i]);
SleepMs(350);
}
printf("\n");
printf("%d bytes sent.\n", wr);
printf("\n");
printf("Trying to read...\n");
printf("\n");
rd = read(fd, answer, 32);
SleepMs(350);
printf("%d\n", rd);
for(i=0; i<rd; i++)
{
printf("%X ", (unsigned int)answer[i]);
}
printf("\n\n");
}
close(fd);
return 0;
}
void SleepMs(int ms) {
usleep(ms*1000); //convert to microseconds
return;
}
If i start program, it tells me "Port open successfully" and writes given bytes in program.
But it receives no data.
I transmit 0x3E 0x00 0x0D to activate GLOB_CMD read command.
I have to confirm "Not Ready"-Bit is 0 but i dont get an answer with my serial connection.
So this is where i need your help, maybe someone got a hint for me.
How can i communicate with my IMU or via serialcommunication properly with Linux?
int wr = write(fd, bytes, len);
Your bytes array only needs to be 3 bytes long, so len should be 3. (The 0x3e is what the IMU should respond with, so it shouldn't be in your program except when checking the response.) When you read, you should only read the expected size of the answer (len=4). You don't need to sleep after writing, and probably not after reading.
Is it possible to use ICMP sockets under the IP protocol? Maybe something like:
socket(PF_INET, <type>, IPPROTO_ICMP)?
What should I put in the <type> field? I saw some examples using SOCK_RAW, but won't that prevent the OS from doing his job handling the IP protocol?
And another thing. How can the OS know to which process he should send the ICMP datagrams, since there are no ports involved with the protocol?
Linux have a special ICMP socket type you can use with:
socket(PF_INET, SOCK_DGRAM, IPPROTO_ICMP);
This allows you to only send ICMP echo requests The kernel will handle it specially (match request/responses, fill in the checksum).
This only works if a special sysctl is set. By default not even root can use this kind of socket. You specify the user groups that can access it. To allow root (group 0) to use ICMP sockets, do:
sysctl -w net.ipv4.ping_group_range="0 0"
Here is an example program to demonstrate the very basic usage of sending an ICMP echo request:
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>
#include <arpa/inet.h>
#include <sys/select.h>
//note, to allow root to use icmp sockets, run:
//sysctl -w net.ipv4.ping_group_range="0 0"
void ping_it(struct in_addr *dst)
{
struct icmphdr icmp_hdr;
struct sockaddr_in addr;
int sequence = 0;
int sock = socket(AF_INET,SOCK_DGRAM,IPPROTO_ICMP);
if (sock < 0) {
perror("socket");
return ;
}
memset(&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_addr = *dst;
memset(&icmp_hdr, 0, sizeof icmp_hdr);
icmp_hdr.type = ICMP_ECHO;
icmp_hdr.un.echo.id = 1234;//arbitrary id
for (;;) {
unsigned char data[2048];
int rc;
struct timeval timeout = {3, 0}; //wait max 3 seconds for a reply
fd_set read_set;
socklen_t slen;
struct icmphdr rcv_hdr;
icmp_hdr.un.echo.sequence = sequence++;
memcpy(data, &icmp_hdr, sizeof icmp_hdr);
memcpy(data + sizeof icmp_hdr, "hello", 5); //icmp payload
rc = sendto(sock, data, sizeof icmp_hdr + 5,
0, (struct sockaddr*)&addr, sizeof addr);
if (rc <= 0) {
perror("Sendto");
break;
}
puts("Sent ICMP\n");
memset(&read_set, 0, sizeof read_set);
FD_SET(sock, &read_set);
//wait for a reply with a timeout
rc = select(sock + 1, &read_set, NULL, NULL, &timeout);
if (rc == 0) {
puts("Got no reply\n");
continue;
} else if (rc < 0) {
perror("Select");
break;
}
//we don't care about the sender address in this example..
slen = 0;
rc = recvfrom(sock, data, sizeof data, 0, NULL, &slen);
if (rc <= 0) {
perror("recvfrom");
break;
} else if (rc < sizeof rcv_hdr) {
printf("Error, got short ICMP packet, %d bytes\n", rc);
break;
}
memcpy(&rcv_hdr, data, sizeof rcv_hdr);
if (rcv_hdr.type == ICMP_ECHOREPLY) {
printf("ICMP Reply, id=0x%x, sequence = 0x%x\n",
icmp_hdr.un.echo.id, icmp_hdr.un.echo.sequence);
} else {
printf("Got ICMP packet with type 0x%x ?!?\n", rcv_hdr.type);
}
}
}
int main(int argc, char *argv[])
{
if (argc != 2) {
printf("usage: %s destination_ip\n", argv[0]);
return 1;
}
struct in_addr dst;
if (inet_aton(argv[1], &dst) == 0) {
perror("inet_aton");
printf("%s isn't a valid IP address\n", argv[1]);
return 1;
}
ping_it(&dst);
return 0;
}
Note that the kernel will reject and fail the sendto() call if the data sent does not have room for a proper ICMP header, and the ICMP type must be 8 (ICMP_ECHO) and the ICMP code must be 0.
Yes it is possible, since the ping command does ICMP.
To find out the syscalls involved, you can strace that command (under root).
You could also glance into that command's source code, e.g. Debian's ping
And there is the liboping library to help you...