NAT, P2P and Multiplayer - p2p

How can an application be designed such that two peers can communicate directly with each other (assuming both know each other's IPs), but without outgoing connections? That's, no ports will be opened. Bitorrent for example does it, but multiplayer games (as far as I know) require port forwarding.

I'm not sure what you mean by No Outgoing Connections, I'm going to assume like everyone else you meant no Incoming Connections (they are behind a NAT/FW/etc).
The most common one mentioned so far is UPNP, which in this context is a protocol that allows you as a computer to talk to the Gateway and say forward me this port because I want someone on the outside to be able to talk to me. UPNP is also designed for other things, but this is the common thing for home networking (Actually it's one of many definitions).
There are also more common and slightly more reliable ways if you don't own the network. The most common is called STUN but if I recall correctly there are a few variants. Basically you use a third party server that allows incoming connections to try and coordinate a communication channel. Basically, what you do is send a UDP packet to you're peer, which will open up you're NAT for a response, but gets dropped on you're peer's NAT (since no forwarding rule exists yet). Through the connection to the intermediary, they are then told to do the same, which now opens up their NAT, and matches the existing rule in you're NAT. Now the communications can proceed. Their is a variant of this which will allow a TCP/IP connection as well by sending SYN and SYN-ACK messages with some coordination.
The Wikipedia articles I've linked to has links to the relevant rfc's for these protocols on precisely how they work. Essentially it comes down to, there isn't an easy answer, as this is a very network centric problem.

You need a "meeting point" in the network somewhere: the participants "meet" at a "gateway" of some sort and the said "gateway function" takes care of the forwarding.
At least that's one way of doing it: I won't try to comment on the details of Bittorrent... I am sure you can google for links.

UPNP dealt with this mostly in the recent years, but the need to open ports is because the application has been coded to listen on a specific port for a response.
Ports beneath 1024 are called "registered" because they've been assigned a port number because a company paid for it. This doesn't mean you couldn't use port 53 for a webserver or SSH, just that most will assume when they see it that they are dealing with DNS. Ports above 1024 are unregistered, so there's no association - your web browser, be it Internet Explorer/Firefox/etc, is using an unregistered port to send the request to the StackOverflow webserver(s) on port 80. You can use:
netstat -a
..on windows hosts to see what network connections are currently established, including the port involved.

UPNP can be used to negotiate with the router to open and forward a port to your application. Even bit-torrent needs at least one of the peers to have an open port to enable p2p connections. There is no need for both peers to have an open port however, since they both communicate with the same server (tracker) that lets them negotiate and determine who has an open port.
An alternative is an echo-server / relay-server somewhere on the internet that both peers trust, and have that relay all the traffic.
The "problem" with this solution is that the echo-server needs to have lots of bandwidth to accomodate all connected peers since it relays all the traffic rather than establish p2p connections.
Check out EchoWare: http://www.echogent.com/tech.htm

Related

How do you create a peer to peer connection without port forwarding or a centeralized server?

I recall reading an article about a proposed way to do this. If I recall correctly, the researchers successfully created a connection to a client on another network without port forwarding by sending HTTP packets to each other (Alice pretends that Bob is an HTTP web server while Bob pretends Alice is a web server).
I'm not sure if that makes sense, but does anyone know where I can find the article or does anyone have any other ideas how to connect two clients together without a central server or port forwarding?
Is it even possible?
Edit: I would know the IPs of both computers and port the program listens on.
It is possible. I see at least 2 parts to your question. (It is not going to be HTTP packet. It is a lot more complex than that.)
First off, I believe you might be talking about a concept called decentralized P2P network. The main idea behind a decentralized peer-to-peer network is the fact that nodes conjoint in such a network will not require central server or group of servers.
As you might already know, most common centralized peer-to-peer networks require such centralized system to exchange and maintain interconnectivity among nodes. The basic concept is such, a new node will connect to one of the main servers to retrieve information about other nodes on the network to maintain its connectivity and availability. The central system gets maintained through servers constantly synchronizing network state, relevant information, and central coordination among each other.
Decentralized network, on the other hand, does not have any structure or predetermined core. This peer-to-peer model is also called unstructured P2P networks. Any new node will copy or inherit original links from the "parent" node and will form its own list over time. There are several categories of decentralization of such unstructured networks.
Interestingly enough, the absence of central command and control system makes it solution of choice for modern malware botnets. A great example could be Storm botnet, which employed so-called Passive P2P Monitor (PPM). PPM was able to locate the infected hosts and build peer list regardless whether or not infected hosts are behind a firewall or NAT. Wikipedia's article Storm botnet is an interesting read. There is also great collaborative study called Towards Complete Node Enumeration in a Peer-to-Peer Botnet, which provides excellent conceptual analysis and techniques employed by Storm botnet network.
Second of all, you might be talking about UDP hole punching. This is a technique or algorithm used to maintain connectivity between 2 hosts behind NATed router/gateway using 3rd comment host by means of a third rendezvous server.
There is a great paper by Bryan Ford, Pyda Srisuresh, and Dan Kegel called Peer-to-Peer Communication Across Network Address Translators.
As answered, a peer-to-peer connection requires establishment of a connection between two (presumably) residential computers, which will necessitate punching holes through both of their firewalls. For a concrete example of hole punching, see pwnat: "The only tool to punch holes through firewalls/NATs without a third party". The process, put simply, goes like this:
The "server" (who doesn't know the client's IP address, but the client knows the server's) pings a very specific ICMP Echo Request packet to 1.2.3.4 every 30 seconds. The NAT, during translation, takes note of this packet in case it gets a response.
The client sends an ICMP Time Exceeded packet to the server, which is a type of packet that usually contains the packet that failed to deliver. The client, knowing in advance the exact packet that the server has been sending to 1.2.3.4, embeds that whole packet in the Data field.
The NAT recognizes the Echo Request packet and happily relays the whole Time Exceeded packet, source IP and all, to the correct user, i.e. the server. Voila, now the server knows the client's IP and port number.
Now that the server knows the address, it begins to continually send UDP packets to the client, despite the fact that the client's NAT did not expect them and will therefore ignore them all.
The client begins sending UDP packets to the server, which will be recognized by the server's NAT as a response to the server's packets and route them appropriately.
Now that the client is sending UDP packets to the server, the server's stream of UDP packets starts getting properly routed by the client's NAT.
And, in 6 easy steps, you have established a UDP connection between a client and a server penetrating two residential firewalls. Take that, ISP!

How would one connect two clients (one of them is browser) behind firewalls

I know p2p software like Skype is using UDP hole punching for that. But what if one of the clients is a web browser which needs to download a file from another client (TCP connection instead of UDP)? Is there any technique for such case?
I can have an intermediate public server which can marry the clients but I can't afford all the traffic between these clients go through this server. The public server can only establish the connection between the clients, like Skype does, and that's all. And this must work via TCP (more exactly, HTTP) to let the downloading client be a web browser.
Both clients must not be required to setup anything in their routers or anything like that.
I'll plan to code this in C/C++ but at the point I'm wondering if this idea is possible at all.
I previously wrote up a very consolidated rough answer on how P2P roughly works with some discussion on various protocols and corresponding open-source libraries. You can read it here.
The reliability of P2P is ultimately a result of how much you invest in it from both a client coding perspective and a service configuration (i.e. signaling servers and relays). You can settle for easy NAT traversal of UDP with no firewall support. Maybe a little more effort and you get TCP connectivity. And you can go "all the way" and have relays that have HTTPS listeners for clients behind the hardest of firewalls to traverse.
As to the answer of your question about firewalls. Depends on how the Firewall is configured. Many firewalls are just glorified NATs with security to restrict traffic to certain ports and block unsolicited incoming connections. Others are extremely restrictive and just allow HTTP/HTTPS traffic over a proxy.
The video conference apps will ultimately fallback to emulating an HTTPS connection over the PC's configured proxy server to port 443 (or 80) of a remote relay server if it can't get directly connected. (And in some cases, the remote client will try to listen on port 80 or port 443 so it can connect direct).
You are absolutely right to assume that having all the clients going through a relay will be expensive to maintain. If your goal is 100% connectivity no matter what type of firewall the clients is behind, some relay solution will have to exist. If you don't support a relay solution, you can invest heavily in getting the direct connectivity to work reliably and only have a small percentage of clients blocked.
Hope this helps.
PeerConnection, part of WebRTC solves this in modern browsers.
Under the hood it uses ICE which is an RFC for NAT hole-punching.
For older browsers, it is possible to use the P2P support in Flash.

Is there a way to test if a computer's connection is firewalled?

I'm writing a piece of P2P software, which requires a direct connection to the Internet. It is decentralized, so there is no always-on server that it can contact with a request for the server to attempt to connect back to it in order to observe if the connection attempt arrives.
Is there a way to test the connection for firewall status?
I'm thinking in my dream land where wishes were horses, there would be some sort of 3rd-party, public, already existent servers to whom I could send some sort of simple command, and they would send a special ping back. Then I could simply listen to see if that arrives and know whether I'm behind a firewall.
Even if such a thing does not exist, are there any alternative routes available?
Nantucket - does your service listen on UDP or TCP?
For UDP - what you are sort of describing is something the STUN protocol was designed for. It matches your definition of "some sort of simple command, and they would send a special ping back"
STUN is a very "ping like" (UDP) protocol for a server to echo back to a client what IP and port it sees the client as. The client can then use the response from the server and compare the result with what it thinks its locally enumerated IP address is. If the server's response matches the locally enumerated IP address, the client host can self determinte that it is directly connected to the Internet. Otherwise, the client must assume it is behind a NAT - but for the majority of routers, you have just created a port mapping that can be used for other P2P connection scenarios.
Further, you can you use the RESPONSE-PORT attribute in the STUN binding request for the server to respond back to a different port. This will effectively allow you to detect if you are firewalled or not.
TCP - this gets a little tricky. STUN can partially be used to determine if you are behind a NAT. Or simply making an http request to whatismyip.com and parsing the result to see if there's a NAT. But it gets tricky, as there's no service on the internet that I know of that will test a TCP connection back to you.
With all the above in mind, the vast majority of broadband users are likely behind a NAT that also acts as a firewall. Either given by their ISP or their own wireless router device. And even if they are not, most operating systems have some sort of minimal firewall to block unsolicited traffic. So it's very limiting to have a P2P client out there than can only work on direct connections.
With that said, on Windows (and likely others), you can program your app's install package can register with the Windows firewall so your it is not blocked. But if you aren't targeting Windows, you may have to ask the user to manually fix his firewall software.
Oh shameless plug. You can use this open source STUN server and client library which supports all of the semantics described above. Follow up with me offline if you need access to a stun service.
You might find this article useful
http://msdn.microsoft.com/en-us/library/aa364726%28v=VS.85%29.aspx
I would start with each os and ask if firewall services are turned on. Secondly, I would attempt the socket connections and determine from the error codes if connections are being reset or timeout. I'm only familiar with winsock coding, so I can't really say much for Linux or mac os.

How does the packets go out even behind Firewall or NAT with some application?

Such as Skype/Team viewer/Logmein etc application, which send audio/video behind NAT (behind firewall). But when i make a small tiny application which send text to another NAT location it failed to do the same.
Example:
Sender:
-> Public ip: 91.1.2.3 My lan ip is: 192.168.1.2 with port 14446 udp
-------> Data format: RTP packets
Receiver:
<------- Data received: 0 packets
-> Public ip: 92.1.2.3 Friend lan ip is: 10.0.0.2 with port 14446 udp
* same in both way
How others does this? What is the way of doing peer 2 peer application development to overcome NAT issues? Always we have public ip's and mostly it has NAT issues.
But how does then Skype works in such cases too? Do we have a audio/video port range for UDP or always UDP is open from anything? But mine does not work above range ports for UDP i also tried. What is the secret? that is making me curious!!.
Note:
My goal is audio packets handling where i believe too much filtering or firewall cause latency and delay and other issues gets involved relatively too. So i would like to know very clearly for my application that some of the ports (which port ranges?) can be used for such purposes, where it really not blocking development stress.
There are a number of types of NATs, which vary in what traffic they'll allow in.
See the Wikipedia article on NATs
For most NATs, STUN will let you open ports AND find out what port you opened (may be different than the port you sent from). In SIP and RTSP you'd typically provide the external IP and port determined by STUN to the other end.
A fully-symmetric NAT means that STUN won't let you use a 3rd-party server to prop ports via STUN, so you'll have to use UPnP (if enabled) or map ports in the router (or set up triggers), or you'll have to play evil games to make both sides think they initiated the connection. (Not easy and not guaranteed.)
See the ICE & TURN specs (RFCs) from the IETF for detailed mechanisms to traverse NATs - though note that in some cases you must use an external proxy to forward packets.
One common solution is that the client program connects outward to the server and thus establishes a connection. Most firewalls allow outward connections - the assumption being that you are trusted and can always connect to the outside. When the server then wishes to send a message to you, it responds on the open connection.
I believe the port that you use is what is usually used to determine if it should be allowed or not. Certain ports are always let through. I'm not sure of the exact ports, but that will be different for all NATs and firewalls.

Remote port blocking in firewalls?

some guys use a firewall on their laptops which not only blocks their own local incoming ports (except those they need for their application) but also blocks messages unless they are issued from a distinct port number. We're talking about a local UDP server which is listening to UDP broadcasts.
The problem is that the remote client uses a random port, say 1024, which is blocked unless they tell the firewall to accept it.
What puzzles me is that as far as I know from using sockets in my programs is that usually the client gets its port number from the OS, whereas only when you have a server, you bind your socket to a distinct port, right?
In my literature and in tutorials and code snippets in the web I haven't found any clue that clients should be using fixed port numbers at all.
So how is this in reality? Am I probably missing a point?
Are there client applications around using fixed ports?
Is is actually useful to block remote ports with a firewall?
And if yes, what level of added security does this give to you?
Thanks for enlightenment in beforehand...
Although the default API's allow the network stack to select a local port for client connections, clients may specify a fixed port for various reasons.
Some specifications (FTP) specify a fixed port for clients. Most servers don't care if clients get this correct.
Some clients use a fixed pool of ports for egress from a LAN to the Internet. This allows firewall rules to more completely lock down outbound traffic.
Source ports are sometimes uses as a weak type of "security through obscurity".
You always get a random address and/or port when not explicitly having bound to one before sending.
Daemons are usually bound to a fixed port, so that:
you can actually contact them without having to try all possible ports or utilize a secondary resolver (remember the SUNRPC portmapping crap?)
and because a TCP socket is not allowed to listen() if it has not bound to a port, IIRC.
Are there client applications around using fixed ports?
Some can be configured so, like BIND9.
useful to block remote ports with a firewall?
No, because your peer may choose any port of his. Block him and you'll lose a customer, so to speak.

Resources