HashMap with ~100 million keys, still constant time? - hashmap

Does anyone know the answer to this question?

Yes. To search a hash map with 100 million items added to it, you do this:
1) Calculate the hash of the object you're looking for.
2) Find that bucket
3) Search through that bucket for the item.
(1) is independent of the size of the hash map or number of items in it.
(2) is O(1), assuming a standard hashmap implemented as an array of linked lists.
(3) takes an amount of time related to the number of items in the bucket, which should be approximately (number of items added to hash) / (number of buckets). This part will start at O(1), but will very slowly increase as the number of items begins to greatly exceed the number of buckets.
For almost any purpose, Hash Maps can be considered O(1) for both insertion and retrieval, even with very large data sets, as long as you start with a sufficiently large number of buckets.

Yes, still constant time (amortized).

Related

Data Structure Question: Is there a link between the size of a list in a chaining implementation of hash maps and its load factor?

For example, if I have n keys and m slots in the hash map, the average size of a linked list starting from a slot would be n/m. Am I correct in thinking this? Again, I'm talking about an average. Thanks in advance!
I'm trying to learn data structures.
As you say, the average size of a single list is generally going to be the table's load factor; but this is assuming that the "Simple Uniform Hashing Assumption" holds with your hash table (more specifically, with its hash function(s) and expected input keys): simply put, we assume that the hash function distributes elements to buckets uniformly, as well as independently of one another.
To expand a little, and in different words:
We assume that if we choose a new item randomly (imagine sampling an item from the probability distribution that characterizes our inputs), then there is an equal chance that the item we end up with will be mapped to any of the m buckets. (A chance of 1/m.)
Furthermore, that this probability is unaffected given the presence (or absence) of any other elements in any of the buckets.
This is helpful because from this we can conclude that the probability for an item to be sorted into a given bucket is always 1/m, regardless of any other circumstances; from this it directly follows that the expected (average) length of a single bucket's list will be n/m (we insert n elements into the table, and for each one, sort it into this given list at a probability of 1/m).
To see that this is important, we might imagine a case in which it doesn't hold: for instance, if we're facing some kind of "attack" and our inputs are engineered to all hash into the same bucket, or even just with a high probability. In this case SUHA no longer holds, and clearly neither does the link you've asked about between the length of a list and the load factor.
This is part of the reason that it is important to choose a good hash function for your use case: without it, the assumption may not hold which could have a harmful effect on your lookup times.

Hash Table that tries to hash Strings uniformly?

I am currently in a Data Structures course nearing the end of the semester, and have been assigned a project in which we are implementing a Linked Hash Table to store and retrieve keys. We have been given a pretty large amount of freedom with how we are going to design our hash table implementation, but for bonus points we were told to try and find a hash function that distributes our keys (unique strings) close to uniformly and randomly throughout the table.
I have chosen to use the ELF hash, seen here http://www.eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
My question is as follows: With this hash function an integer is returned, but I am having trouble seeing how this can be used to help specify a specific index to put my key in in the hash table. I could simply do: index = ELFhash(String key) % tableSize, but does this defeat the purpose of using the ELF hash in the first place??
Also I have chosen my collision resolution strategy to be double hashing. Is there a good way to determine an appropriate secondary hashing function to find your jumps? My hash table is not going to be a constant size (sets of strings will be added and removed from the set of data I am hashing, and I will be rehashing them after each iteration of adding and removing to have a load factor of .75), so it is hard for me to just do something like k % n where n is a number that is relatively prime with my table size.
Thanks for taking the time to read my question, and let me know what you think!
You're correct to think about "wrapping bias," but for most practical purposes, it's not going to be a problem.
If the hash table is of size N and the hash value is in the range [0..M), then let k = floor(M/N). Any hash value in the range [0..k*N) is a "good" one in that, using mod N as a map, each hash bucket is mapped by exactly k hash values. The hash values in [k*N..M) are "bad" in that if you use them, the corresponding M-K*n lowest hash buckets map from one additional hash value. Even if the hash function is perfect, these buckets have a higher probability of receiving a given value.
The question, though, is "How much higher?" That depends on M and N. If the hash value is an unsigned int in [0..2^32), and - having read Knuth and others - you decide to pick prime number of buckets around a thousand, say 1009, what happens?
floor(2^32 / 1009) = 4256657
The number of "bad" values is
2^32 - 4256657 * 1009 = 383
Consequently, all buckets are mapped from 4256657 "good" values, and 383 get one additional unwanted "bad" value for 4256658. Thus the "bias" for is 1/4,256,657.
It's very unlikely you'll find a hash function where a 1 in 4 million probability difference between buckets will be noticeable.
Now if you redo the calculation with a million buckets instead of a thousand, then things look a bit different. In that case if you're a bit OC, you might want to switch to a 64-bit hash.
On additional thing: The Elf hash is pretty unlikely to give absolutely terrible results, and it's quite fast, but there are much better hash functions. A reasonably well-regarded one you might want give a try is Murmur 32. (The Wiki article mentions that the original alg has some weaknesses that can be exploited for DoS attacks, but for your application it will be fine.) I'm sure your prof doesn't want you to copy code, but the Wikipedia page has it complete. It would be interesting to implement Elf yourself and try it against Murmur to see how they compare.

How Strings are stored in a VBA Dictionary structure?

As I am currently playing with huge number of strings (have a look at another question: VBA memory size of Arrays and Arraylist) I used a scripting dictionary just for the feature of the keyed access that it has.
Everything was looking fine except that it was some how slow in loading the strings and that it uses a lot of memory. For an example of 100,000 strings of 128 characters in length, the Task manager showed at the end of the sub approximately 295 MB and when setting Dictionary=Nothing a poor 12 MB was remaining in Excel. Even considering internal Unicode conversion of strings 128 * 2 * 100,000 gives 25.6 MB ! Can someone explain this big difference ?
Here is all the info I could find on the Scripting.Dictionary:
According to Eric Lippert, who wrote the Scripting.Dictionary, "the actual implementation of the generic dictionary is an extensible-hashing-with-chaining algorithm that re-hashes when the table gets too full." (It is clear from the context that he is referring to the Scripting.Dictionary) Wikipedia's article on Hash Tables is a pretty good introduction to the concepts involved. (Here is a search of Eric's blog for the Scripting.Dictionary, he occasionally mentions it)
Basically, you can think of a Hash Table as a large array in memory. Instead of storing your strings directly by an index, you must provide a key (usually a string). The key gets "hashed", that is, a consistent set of algorithmic steps is applied to the key to crunch it down into a number between 0 and current max index in the Hash Table. That number is used as the index to store your string into the hash table. Since the same set of steps is applied each time the key is hashed, it results in the same index each time, meaning if you are looking up a string by its key, there is no need to search through the array as your normally would.
The hash function (which is what converts a key to an index into the table) is designed to be as random as possible, but every once in a while two keys can crunch down to the same index - this is called a collision. This is handled by "chaining" the strings together in a linked list (or possibly a more searchable structure). So suppose you tried to look a string up in the Hash Table with a key. The key is hashed, and you get an index. Looking in the array at that index, it could be an empty slot if no string with that key was ever added, or it could be a linked list that contains one or more strings whose keys mapped to that index in the array.
The entire reason for going through the details above is to point out that a Hash Table must be larger than the number of things it will store to make it efficient (with some exceptions, see Perfect Hash Function). So much of the overhead you would see in a Hash Table are the empty parts of the array that have to be there to make the hash table efficient.
Additionally, resizing the Hash Table is an expensive operation because the all the existing strings have to be rehashed to new locations, so when the load factor of the Hash Table exceeds the predefined threshold and it gets resized, it might get doubled in size to avoid having to do so again soon.
The implementation of the structure that holds the chain of strings at each array position can also have a large impact on the overhead.
If I find anything else out, I'll add it here...

Why LinkedList as a bucket implementation for HashMap?

I understand the workings of HashMap -collisions and everything - trying to understand the deeper mechanics and the choice for entry bucket - and not say an Array (making it a 2 dimensional matrix )? Since search through both are O(n) operations ? I assumed one factor that might make the choice for Linked List is the insertions o(1) factor! Is that a correct assumption?
If it is in Java then the linked list is the bucket. And each entry in the table is a linked list containing the array of entry elements. In that each node knows what is in the next to the list till the time you reach to the end when the next reference is null.
Also do check:-
How does Java's Hashmap work internally?
An array has a predetermined size. So if you use an array, then the hash table has a predetermined size for each of the array elements. Every possible bucket is allocated, and your hash table will become big. This will be make sense if you have very huge memory but if not then use link list and walk through the list to find the match.
Its because you do not add at the end of the linkedlist but at the head to make it O(1)
[Answering below question - No not looking for a solution :) - I just wanted to understand why was the choice was made for Buckets to be am internam implemetnation of a Linked List and not an array based List (i didn't mean a fixed size array - ). Linked lists offer node based implemetnation that certainly help when there are a large number of inserts into the data structure - but when you are adding to the end of list - any growable array based implementation for bucket should suffice?]

hashmap remove complexity

So a lot of sources say the hashmap remove function is O(1), but I don't see how this could be unless a hashmap were backed by a linkedlist because list removals are O(n). Could someone explain?
You can view a Hasmap as an array. Imagine, you want to store objects of all humans on earth somewhere. You could just get an unique number for everyone and use an array with a dimension of 10*10^20.
If someone is born, she/he gets the next free number and is added to the end. If someone dies, her/his number is used and the array entry is set to null.
You can easily see, to add some or to remove someone, you need only constant time. calculate array address, done (if you have random access memory).
What is added by the Hashmap? There are 2 motivations. On the one side, you do not want to have such a big array. If you only want to store 10 people from all over the world, nearly all entries of the array are free. On the other side, not all data you want to store somewhere have an unique number. Sometimes there are multiple times the same number, some numbers do now show overall and sometimes you do not have any number. Therefore, you define a function, which uses the big numbers from the input and reduce them to numbers in a smaller range. This reduction should be in a way, that the resulting number is most likely unique for different inputs.
Example: Lets say you want to store 10 numbers from 1 to 100000000. You could use an array with 100000000 indices. Or you could use an array with 100 indices and the function f(x) = x % 100. If you have the number 1234, f(1234) = 34. Mark 34 as assigned.
Now you could ask, what happens if you have the number 2234? We have a collision then. You need some strategy then to handle this, there are several. Study some literature or ask specific questions for this.
If you want to store a string, you could imagine to use the length or the sum of the ascii value from every characters.
As you see, we can easily store something, and easily access it again. What we have to do? Calculate the hash from the function (constant time for a good function), access the array (constant time), store or remove (constant time).
In real world, a good hash function is not that easy. Try to stick with the included ones in java.
If you want to read more details, the wikipedia article about hash table is a good starting point: http://en.wikipedia.org/wiki/Hash_table
I don't think the remove(key) complexity is O(1). If we have a big hash table with many collisions, then it would be O(n) in worst case. It very rare to get the worst case but we can't neglect the fact that O(1) is not guaranteed.
If your HashMap is backed by a LinkedList buckets array
The worst case of the remove function will be O(n)
If your HashMap is backed by a Balanced Binary Tree buckets array
The worst case of the remove function will be O(log n)
The best case and the average case (amortized complexity) of the remove function is O(1)

Resources