Related
I've learned that a process has running, ready, blocked, and suspended states. Threads also have these states except for suspended because it lives in the process's address space.
A process blocks most of the time when it is doing a blocking i/o or waiting for an event.
I can easily picture out a process getting blocked if its single-threaded or if it follows a one-to-many model, but how does it work if the process is multi-threaded?
For example:
I have a process with two threads in a system that follows a one-to-one model. One handles the gui and the other handles the blocking i/o. I know the process remains responsive because the other thread handles the i/o.
So is there by any chance the process gets blocked or should I just rule it out in this case?
I'm just getting into these stuff so forgive me If I haven't understand some of the important details yet.
Let's say you have a work queue where the UI thread schedules work to be done and the I\O thread looks there for work to do. The work queue itself is data that is read and modified from both threads, therefor you must synchronize access somehow or race conditions result.
The naive approach is to synchronize access to the queue using a lock (aka critical section). If the I\O thread acquires the lock and then blocks, the UI thread will only remain responsive until it decides it needs to schedule work and tries to acquire the lock. A better approach is to use a lock-free queue about which much has been written and you can easily search for more info.
But to answer your question, yes, it is still much easier than you might think to cause UI to stutter / hang even when using multiple threads. There are various libraries that make it easier or harder to solve this problem, so depending on your OS and language of choice, there may be something better than just OS primitives. Win32 (from what I remember) doesn't it make it very easy at all despite having all sorts of synchronization primitives. Pthreads and Boost never seemed very straightforward to me either. Apple's GCD makes it semantically much easier to express what you want (in my opinion), though there are still pitfalls one must be aware of (such as scheduling too many blocking operations on a single work queue to be done in parallel and causing the processor to thrash when they all wake up at the same time).
My advice is to just dive in and write lots of multithreaded code. It can be tough to debug but you will learn a lot and eventually it becomes second nature.
I've been reading about semaphores and came across this article:
www.csc.villanova.edu/~mdamian/threads/posixsem.html
So, this page states that if there are two threads accessing the same data, things can get ugly. The solution is to allow only one thread to access the data at the same time.
This is clear and I understand the solution, only why would anyone need threads to do this? What is the point? If the threads are blocked so that only one can execute, why use them at all? There is no advantage. (or maybe this is a just a dumb example; in such a case please point me to a sensible one)
Thanks in advance.
Consider this:
void update_shared_variable() {
sem_wait( &g_shared_variable_mutex );
g_shared_variable++;
sem_post( &g_shared_variable_mutex );
}
void thread1() {
do_thing_1a();
do_thing_1b();
do_thing_1c();
update_shared_variable(); // may block
}
void thread2() {
do_thing_2a();
do_thing_2b();
do_thing_2c();
update_shared_variable(); // may block
}
Note that all of the do_thing_xx functions still happen simultaneously. The semaphore only comes into play when the threads need to modify some shared (global) state or use some shared resource. So a thread will only block if another thread is trying to access the shared thing at the same time.
Now, if the only thing your threads are doing is working with one single shared variable/resource, then you are correct - there is no point in having threads at all (it would actually be less efficient than just one thread, due to context switching.)
When you are using multithreading not everycode that runs will be blocking. For example, if you had a queue, and two threads are reading from that queue, you would make sure that no thread reads at the same time from the queue, so that part would be blocking, but that's the part that will probably take the less time. Once you have retrieved the item to process from the queue, all the rest of the code can be run asynchronously.
The idea behind the threads is to allow simultaneous processing. A shared resource must be governed to avoid things like deadlocks or starvation. If something can take a while to process, then why not create multiple instances of those processes to allow them to finish faster? The bottleneck is just what you mentioned, when a process has to wait for I/O.
Being blocked while waiting for the shared resource is small when compared to the processing time, this is when you want to use multiple threads.
This is of course a SSCCE (Short, Self Contained, Correct Example)
Let's say you have 2 worker threads that do a lot of work and write the result to a file.
you only need to lock the file (shared resource) access.
The problem with trivial examples....
If the problem you're trying to solve can be broken down into pieces that can be executed in parallel then threads are a good thing.
A slightly less trivial example - imagine a for loop where the data being processed in each iteration is different every time. In that circumstance you could execute each iteration of the for loop simultaneously in separate threads. And indeed some compilers like Intel's will convert suitable for loops to threads automatically for you. In that particular circumstances no semaphores are needed because of the iterations' data independence.
But say you were wanting to process a stream of data, and that processing had two distinct steps, A and B. The threadless approach would involve reading in some data then doing A then B and then output the data before reading more input. Or you could have a thread reading and doing A, another thread doing B and output. So how do you get the interim result from the first thread to the second?
One way would be to have a memory buffer to contain the interim result. The first thread could write the interim result to a memory buffer and the second could read from it. But with two threads operating independently there's no way for the first thread to know if it's safe to overwrite that buffer, and there's no way for the second to know when to read from it.
That's where you can use semaphores to synchronise the action of the two threads. The first thread takes a semaphore that I'll call empty, fills the buffer, and then posts a semaphore called filled. Meanwhile the second thread will take the filled semaphore, read the buffer, and then post empty. So long as filled is initialised to 0 and empty is initialised to 1 it will work. The second thread will process the data only after the first has written it, and the first won't write it until the second has finished with it.
It's only worth it of course if the amount of time each thread spends processing data outweighs the amount of time spent waiting for semaphores. This limits the extent to which splitting code up into threads yields a benefit. Going beyond that tends to mean that the overall execution is effectively serial.
You can do multithreaded programming without semaphores at all. There's the Actor model or Communicating Sequential Processes (the one I favour). It's well worth looking up JCSP on Wikipedia.
In these programming styles data is shared between threads by sending it down communication channels. So instead of using semaphores to grant another thread access to data it would be sent a copy of that data down something a bit like a network socket, or a pipe. The advantage of CSP (which limits that communication channel to send-finishes-only-if-receiver-has-read) is that it stops you falling into the many many pitfalls that plague multithreaded do programs. It sounds inefficient (copying data is inefficient), but actually it's not so bad with Intel's QPI architecture, AMD's Hypertransport. And it means hat the 'channel' really could be a network connection; scalability built in by design.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I am applying my new found knowledge of threading everywhere and getting lots of surprises
Example:
I used threads to add numbers in an
array. And outcome was different every
time. The problem was that all of my
threads were updating the same
variable and were not synchronized.
What are some known thread issues?
What care should be taken while using
threads?
What are good multithreading resources.
Please provide examples.
sidenote:(I renamed my program thread_add.java to thread_random_number_generator.java:-)
In a multithreading environment you have to take care of synchronization so two threads doesn't clobber the state by simultaneously performing modifications. Otherwise you can have race conditions in your code (for an example see the infamous Therac-25 accident.) You also have to schedule the threads to perform various tasks. You then have to make sure that your synchronization and scheduling doesn't cause a deadlock where multiple threads will wait for each other indefinitely.
Synchronization
Something as simple as increasing a counter requires synchronization:
counter += 1;
Assume this sequence of events:
counter is initialized to 0
thread A retrieves counter from memory to cpu (0)
context switch
thread B retrieves counter from memory to cpu (0)
thread B increases counter on cpu
thread B writes back counter from cpu to memory (1)
context switch
thread A increases counter on cpu
thread A writes back counter from cpu to memory (1)
At this point the counter is 1, but both threads did try to increase it. Access to the counter has to be synchronized by some kind of locking mechanism:
lock (myLock) {
counter += 1;
}
Only one thread is allowed to execute the code inside the locked block. Two threads executing this code might result in this sequence of events:
counter is initialized to 0
thread A acquires myLock
context switch
thread B tries to acquire myLock but has to wait
context switch
thread A retrieves counter from memory to cpu (0)
thread A increases counter on cpu
thread A writes back counter from cpu to memory (1)
thread A releases myLock
context switch
thread B acquires myLock
thread B retrieves counter from memory to cpu (1)
thread B increases counter on cpu
thread B writes back counter from cpu to memory (2)
thread B releases myLock
At this point counter is 2.
Scheduling
Scheduling is another form of synchronization and you have to you use thread synchronization mechanisms like events, semaphores, message passing etc. to start and stop threads. Here is a simplified example in C#:
AutoResetEvent taskEvent = new AutoResetEvent(false);
Task task;
// Called by the main thread.
public void StartTask(Task task) {
this.task = task;
// Signal the worker thread to perform the task.
this.taskEvent.Set();
// Return and let the task execute on another thread.
}
// Called by the worker thread.
void ThreadProc() {
while (true) {
// Wait for the event to become signaled.
this.taskEvent.WaitOne();
// Perform the task.
}
}
You will notice that access to this.task probably isn't synchronized correctly, that the worker thread isn't able to return results back to the main thread, and that there is no way to signal the worker thread to terminate. All this can be corrected in a more elaborate example.
Deadlock
A common example of deadlock is when you have two locks and you are not careful how you acquire them. At one point you acquire lock1 before lock2:
public void f() {
lock (lock1) {
lock (lock2) {
// Do something
}
}
}
At another point you acquire lock2 before lock1:
public void g() {
lock (lock2) {
lock (lock1) {
// Do something else
}
}
}
Let's see how this might deadlock:
thread A calls f
thread A acquires lock1
context switch
thread B calls g
thread B acquires lock2
thread B tries to acquire lock1 but has to wait
context switch
thread A tries to acquire lock2 but has to wait
context switch
At this point thread A and B are waiting for each other and are deadlocked.
There are two kinds of people that do not use multi threading.
1) Those that do not understand the concept and have no clue how to program it.
2) Those that completely understand the concept and know how difficult it is to get it right.
I'd make a very blatant statement:
DON'T use shared memory.
DO use message passing.
As a general advice, try to limit the amount of shared state and prefer more event-driven architectures.
I can't give you examples besides pointing you at Google. Search for threading basics, thread synchronisation and you'll get more hits than you know.
The basic problem with threading is that threads don't know about each other - so they will happily tread on each others toes, like 2 people trying to get through 1 door, sometimes they will pass though one after the other, but sometimes they will both try to get through at the same time and will get stuck. This is difficult to reproduce, difficult to debug, and sometimes causes problems. If you have threads and see "random" failures, this is probably the problem.
So care needs to be taken with shared resources. If you and your friend want a coffee, but there's only 1 spoon you cannot both use it at the same time, one of you will have to wait for the other. The technique used to 'synchronise' this access to the shared spoon is locking. You make sure you get a lock on the shared resource before you use it, and let go of it afterwards. If someone else has the lock, you wait until they release it.
Next problem comes with those locks, sometimes you can have a program that is complex, so much that you get a lock, do something else then access another resource and try to get a lock for that - but some other thread has that 2nd resource, so you sit and wait... but if that 2nd thread is waiting for the lock you hold for the 1st resource.. it's going to sit and wait. And your app just sits there. This is called deadlock, 2 threads both waiting for each other.
Those 2 are the vast majority of thread issues. The answer is generally to lock for as short a time as possible, and only hold 1 lock at a time.
I notice you are writing in java and that nobody else mentioned books so Java Concurrency In Practice should be your multi-threaded bible.
-- What are some known thread issues? --
Race conditions.
Deadlocks.
Livelocks.
Thread starvation.
-- What care should be taken while using threads? --
Using multi-threading on a single-processor machine to process multiple tasks where each task takes approximately the same time isn’t always very effective.For example, you might decide to spawn ten threads within your program in order to process ten separate tasks. If each task takes approximately 1 minute to process, and you use ten threads to do this processing, you won’t have access to any of the task results for the whole 10 minutes. If instead you processed the same tasks using just a single thread, you would see the first result in 1 minute, the next result 1 minute later, and so on. If you can make use of each result without having to rely on all of the results being ready simultaneously, the single
thread might be the better way of implementing the program.
If you launch a large number of threads within a process, the overhead of thread housekeeping and context switching can become significant. The processor will spend considerable time in switching between threads, and many of the threads won’t be able to make progress. In addition, a single process with a large number of threads means that threads in other processes will be scheduled less frequently and won’t receive a reasonable share of processor time.
If multiple threads have to share many of the same resources, you’re unlikely to see performance benefits from multi-threading your application. Many developers see multi-threading as some sort of magic wand that gives automatic performance benefits. Unfortunately multi-threading isn’t the magic wand that it’s sometimes perceived to be. If you’re using multi-threading for performance reasons, you should measure your application’s performance very closely in several different situations, rather than just relying on some non-existent magic.
Coordinating thread access to common data can be a big performance killer. Achieving good performance with multiple threads isn’t easy when using a coarse locking plan, because this leads to low concurrency and threads waiting for access. Alternatively, a fine-grained locking strategy increases the complexity and can also slow down performance unless you perform some sophisticated tuning.
Using multiple threads to exploit a machine with multiple processors sounds like a good idea in theory, but in practice you need to be careful. To gain any significant performance benefits, you might need to get to grips with thread balancing.
-- Please provide examples. --
For example, imagine an application that receives incoming price information from
the network, aggregates and sorts that information, and then displays the results
on the screen for the end user.
With a dual-core machine, it makes sense to split the task into, say, three threads. The first thread deals with storing the incoming price information, the second thread processes the prices, and the final thread handles the display of the results.
After implementing this solution, suppose you find that the price processing is by far the longest stage, so you decide to rewrite that thread’s code to improve its performance by a factor of three. Unfortunately, this performance benefit in a single thread may not be reflected across your whole application. This is because the other two threads may not be able to keep pace with the improved thread. If the user interface thread is unable to keep up with the faster flow of processed information, the other threads now have to wait around for the new bottleneck in the system.
And yes, this example comes directly from my own experience :-)
DONT use global variables
DONT use many locks (at best none at all - though practically impossible)
DONT try to be a hero, implementing sophisticated difficult MT protocols
DO use simple paradigms. I.e share the processing of an array to n slices of the same size - where n should be equal to the number of processors
DO test your code on different machines (using one, two, many processors)
DO use atomic operations (such as InterlockedIncrement() and the like)
YAGNI
The most important thing to remember is: do you really need multithreading?
I agree with pretty much all the answers so far.
A good coding strategy is to minimise or eliminate the amount of data that is shared between threads as much as humanly possible. You can do this by:
Using thread-static variables (although don't go overboard on this, it will eat more memory per thread, depending on your O/S).
Packaging up all state used by each thread into a class, then guaranteeing that each thread gets exactly one state class instance to itself. Think of this as "roll your own thread-static", but with more control over the process.
Marshalling data by value between threads instead of sharing the same data. Either make your data transfer classes immutable, or guarantee that all cross-thread calls are synchronous, or both.
Try not to have multiple threads competing for the exact same I/O "resource", whether it's a disk file, a database table, a web service call, or whatever. This will cause contention as multiple threads fight over the same resource.
Here's an extremely contrived OTT example. In a real app you would cap the number of threads to reduce scheduling overhead:
All UI - one thread.
Background calcs - one thread.
Logging errors to a disk file - one thread.
Calling a web service - one thread per unique physical host.
Querying the database - one thread per independent group of tables that need updating.
Rather than guessing how to do divvy up the tasks, profile your app and isolate those bits that are (a) very slow, and (b) could be done asynchronously. Those are good candidates for a separate thread.
And here's what you should avoid:
Calcs, database hits, service calls, etc - all in one thread, but spun up multiple times "to improve performance".
Don't start new threads unless you really need to. Starting threads is not cheap and for short running tasks starting the thread may actually take more time than executing the task itself. If you're on .NET take a look at the built in thread pool, which is useful in a lot of (but not all) cases. By reusing the threads the cost of starting threads is reduced.
EDIT: A few notes on creating threads vs. using thread pool (.NET specific)
Generally try to use the thread pool. Exceptions:
Long running CPU bound tasks and blocking tasks are not ideal run on the thread pool cause they will force the pool to create additional threads.
All thread pool threads are background threads, so if you need your thread to be foreground, you have to start it yourself.
If you need a thread with different priority.
If your thread needs more (or less) than the standard 1 MB stack space.
If you need to be able to control the life time of the thread.
If you need different behavior for creating threads than that offered by the thread pool (e.g. the pool will throttle creating of new threads, which may or may not be what you want).
There are probably more exceptions and I am not claiming that this is the definitive answer. It is just what I could think of atm.
I am applying my new found knowledge of threading everywhere
[Emphasis added]
DO remember that a little knowledge is dangerous. Knowing the threading API of your platform is the easy bit. Knowing why and when you need to use synchronisation is the hard part. Reading up on "deadlocks", "race-conditions", "priority inversion" will start you in understanding why.
The details of when to use synchronisation are both simple (shared data needs synchronisation) and complex (atomic data types used in the right way don't need synchronisation, which data is really shared): a lifetime of learning and very solution specific.
An important thing to take care of (with multiple cores and CPUs) is cache coherency.
I am surprised that no one has pointed out Herb Sutter's Effective Concurrency columns yet. In my opinion, this is a must read if you want to go anywhere near threads.
a) Always make only 1 thread responsible for a resource's lifetime. That way thread A won't delete a resource thread B needs - if B has ownership of the resource
b) Expect the unexpected
DO think about how you will test your code and set aside plenty of time for this. Unit tests become more complicated. You may not be able to manually test your code - at least not reliably.
DO think about thread lifetime and how threads will exit. Don't kill threads. Provide a mechanism so that they exit gracefully.
DO add some kind of debug logging to your code - so that you can see that your threads are behaving correctly both in development and in production when things break down.
DO use a good library for handling threading rather than rolling your own solution (if you can). E.g. java.util.concurrency
DON'T assume a shared resource is thread safe.
DON'T DO IT. E.g. use an application container that can take care of threading issues for you. Use messaging.
In .Net one thing that surprised me when I started trying to get into multi-threading is that you cannot straightforwardly update the UI controls from any thread other than the thread that the UI controls were created on.
There is a way around this, which is to use the Control.Invoke method to update the control on the other thread, but it is not 100% obvious the first time around!
Don't be fooled into thinking you understand the difficulties of concurrency until you've split your head into a real project.
All the examples of deadlocks, livelocks, synchronization, etc, seem simple, and they are. But they will mislead you, because the "difficulty" in implementing concurrency that everyone is talking about is when it is used in a real project, where you don't control everything.
While your initial differences in sums of numbers are, as several respondents have pointed out, likely to be the result of lack of synchronisation, if you get deeper into the topic, be aware that, in general, you will not be able to reproduce exactly the numeric results you get on a serial program with those from a parallel version of the same program. Floating-point arithmetic is not strictly commutative, associative, or distributive; heck, it's not even closed.
And I'd beg to differ with what, I think, is the majority opinion here. If you are writing multi-threaded programs for a desktop with one or more multi-core CPUs, then you are working on a shared-memory computer and should tackle shared-memory programming. Java has all the features to do this.
Without knowing a lot more about the type of problem you are tackling, I'd hesitate to write that 'you should do this' or 'you should not do that'.
I was reading the SQLite FAQ, and came upon this passage:
Threads are evil. Avoid them.
I don't quite understand the statement "Thread are evil". If that is true, then what is the alternative?
My superficial understanding of threads is:
Threads make concurrence happen. Otherwise, the CPU horsepower will be wasted, waiting for (e.g.) slow I/O.
But the bad thing is that you must synchronize your logic to avoid contention and you have to protect shared resources.
Note: As I am not familiar with threads on Windows, I hope the discussion will be limited to Linux/Unix threads.
When people say that "threads are evil", the usually do so in the context of saying "processes are good". Threads implicitly share all application state and handles (and thread locals are opt-in). This means that there are plenty of opportunities to forget to synchronize (or not even understand that you need to synchronize!) while accessing that shared data.
Processes have separate memory space, and any communication between them is explicit. Furthermore, primitives used for interprocess communication are often such that you don't need to synchronize at all (e.g. pipes). And you can still share state directly if you need to, using shared memory, but that is also explicit in every given instance. So there are fewer opportunities to make mistakes, and the intent of the code is more explicit.
Simple answer the way I understand it...
Most threading models use "shared state concurrency," which means that two execution processes can share the same memory at the same time. If one thread doesn't know what the other is doing, it can modify the data in a way that the other thread doesn't expect. This causes bugs.
Threads are "evil" because you need to wrap your mind around n threads all working on the same memory at the same time, and all of the fun things that go with it (deadlocks, racing conditions, etc).
You might read up about the Clojure (immutable data structures) and Erlang (message passsing) concurrency models for alternative ideas on how to achieve similar ends.
What makes threads "evil" is that once you introduce more than one stream of execution into your program, you can no longer count on your program to behave in a deterministic manner.
That is to say: Given the same set of inputs, a single-threaded program will (in most cases) always do the same thing.
A multi-threaded program, given the same set of inputs, may well do something different every time it is run, unless it is very carefully controlled. That is because the order in which the different threads run different bits of code is determined by the OS's thread scheduler combined with a system timer, and this introduces a good deal of "randomness" into what the program does when it runs.
The upshot is: debugging a multi-threaded program can be much harder than debugging a single-threaded program, because if you don't know what you are doing it can be very easy to end up with a race condition or deadlock bug that only appears (seemingly) at random once or twice a month. The program will look fine to your QA department (since they don't have a month to run it) but once it's out in the field, you'll be hearing from customers that the program crashed, and nobody can reproduce the crash.... bleah.
To sum up, threads aren't really "evil", but they are strong juju and should not be used unless (a) you really need them and (b) you know what you are getting yourself into. If you do use them, use them as sparingly as possible, and try to make their behavior as stupid-simple as you possibly can. Especially with multithreading, if anything can go wrong, it (sooner or later) will.
I would interpret it another way. It's not that threads are evil, it's that side-effects are evil in a multithreaded context (which is a lot less catchy to say).
A side effect in this context is something that affects state shared by more than one thread, be it global or just shared. I recently wrote a review of Spring Batch and one of the code snippets used is:
private static Map<Long, JobExecution> executionsById = TransactionAwareProxyFactory.createTransactionalMap();
private static long currentId = 0;
public void saveJobExecution(JobExecution jobExecution) {
Assert.isTrue(jobExecution.getId() == null);
Long newId = currentId++;
jobExecution.setId(newId);
jobExecution.incrementVersion();
executionsById.put(newId, copy(jobExecution));
}
Now there are at least three serious threading issues in less than 10 lines of code here. An example of a side effect in this context would be updating the currentId static variable.
Functional programming (Haskell, Scheme, Ocaml, Lisp, others) tend to espouse "pure" functions. A pure function is one with no side effects. Many imperative languages (eg Java, C#) also encourage the use of immutable objects (an immutable object is one whose state cannot change once created).
The reason for (or at least the effect of) both of these things is largely the same: they make multithreaded code much easier. A pure function by definition is threadsafe. An immutable object by definition is threadsafe.
The advantage processes have is that there is less shared state (generally). In traditional UNIX C programming, doing a fork() to create a new process would result in shared process state and this was used as a means of IPC (inter-process communication) but generally that state is replaced (with exec()) with something else.
But threads are much cheaper to create and destroy and they take less system resources (in fact, the operating itself may have no concept of threads yet you can still create multithreaded programs). These are called green threads.
The paper you linked to seems to explain itself very well. Did you read it?
Keep in mind that a thread can refer to the programming-language construct (as in most procedural or OOP languages, you create a thread manually, and tell it to executed a function), or they can refer to the hardware construct (Each CPU core executes one thread at a time).
The hardware-level thread is obviously unavoidable, it's just how the CPU works. But the CPU doesn't care how the concurrency is expressed in your source code. It doesn't have to be by a "beginthread" function call, for example. The OS and the CPU just have to be told which instruction threads should be executed.
His point is that if we used better languages than C or Java with a programming model designed for concurrency, we could get concurrency basically for free. If we'd used a message-passing language, or a functional one with no side-effects, the compiler would be able to parallelize our code for us. And it would work.
Threads aren't any more "evil" than hammers or screwdrivers or any other tools; they just require skill to utilize. The solution isn't to avoid them; it's to educate yourself and up your skill set.
Creating a lot of threads without constraint is indeed evil.. using a pooling mechanisme (threadpool) will mitigate this problem.
Another way threads are 'evil' is that most framework code is not designed to deal with multiple threads, so you have to manage your own locking mechanisme for those datastructures.
Threads are good, but you have to think about how and when you use them and remember to measure if there really is a performance benefit.
A thread is a bit like a light weight process. Think of it as an independent path of execution within an application. The thread runs in the same memory space as the application and therefore has access to all the same resources, global objects and global variables.
The good thing about them: you can parallelise a program to improve performance. Some examples, 1) In an image editing program a thread may run the filter processing independently of the GUI. 2) Some algorithms lend themselves to multiple threads.
Whats bad about them? if a program is poorly designed they can lead to deadlock issues where both threads are waiting on each other to access the same resource. And secondly, program design can me more complex because of this. Also, some class libraries don't support threading. e.g. the c library function "strtok" is not "thread safe". In other words, if two threads were to use it at the same time they would clobber each others results. Fortunately, there are often thread safe alternatives... e.g. boost library.
Threads are not evil, they can be very useful indeed.
Under Linux/Unix, threading hasn't been well supported in the past although I believe Linux now has Posix thread support and other unices support threading now via libraries or natively. i.e. pthreads.
The most common alternative to threading under Linux/Unix platforms is fork. Fork is simply a copy of a program including it's open file handles and global variables. fork() returns 0 to the child process and the process id to the parent. It's an older way of doing things under Linux/Unix but still well used. Threads use less memory than fork and are quicker to start up. Also, inter process communications is more work than simple threads.
In a simple sense you can think of a thread as another instruction pointer in the current process. In other words it points the IP of another processor to some code in the same executable. So instead of having one instruction pointer moving through the code there are two or more IP's executing instructions from the same executable and address space simultaneously.
Remember the executable has it's own address space with data / stack etc... So now that two or more instructions are being executed simultaneously you can imagine what happens when more than one of the instructions wants to read/write to the same memory address at the same time.
The catch is that threads are operating within the process address space and are not afforded protection mechanisms from the processor that full blown processes are. (Forking a process on UNIX is standard practice and simply creates another process.)
Out of control threads can consume CPU cycles, chew up RAM, cause execeptions etc.. etc.. and the only way to stop them is to tell the OS process scheduler to forcibly terminate the thread by nullifying it's instruction pointer (i.e. stop executing). If you forcibly tell a CPU to stop executing a sequence of instructions what happens to the resources that have been allocated or are being operated on by those instructions? Are they left in a stable state? Are they properly freed? etc...
So, yes, threads require more thought and responsibility than executing a process because of the shared resources.
For any application that requires stable and secure execution for long periods of time without failure or maintenance, threads are always a tempting mistake. They invariably turn out to be more trouble than they are worth. They produce rapid results and prototypes that seem to be performing correctly but after a couple weeks or months running you discover that they have critical flaws.
As mentioned by another poster, once you use even a single thread in your program you have now opened a non-deterministic path of code execution that can produce an almost infinite number of conflicts in timing, memory sharing and race conditions. Most expressions of confidence in solving these problems are expressed by people who have learned the principles of multithreaded programming but have yet to experience the difficulties in solving them.
Threads are evil. Good programmers avoid them wherever humanly possible. The alternative of forking was offered here and it is often a good strategy for many applications. The notion of breaking your code down into separate execution processes which run with some form of loose coupling often turns out to be an excellent strategy on platforms that support it. Threads running together in a single program is not a solution. It is usually the creation of a fatal architectural flaw in your design that can only be truly remedied by rewriting the entire program.
The recent drift towards event oriented concurrency is an excellent development innovation. These kinds of programs usually prove to have great endurance after they are deployed.
I've never met a young engineer who didn't think threads were great. I've never met an older engineer who didn't shun them like the plague.
Being an older engineer, I heartily agree with the answer by Texas Arcane.
Threads are very evil because they cause bugs that are extremely difficult to solve. I have literally spent months solving sporadic race-conditions. One example caused trams to suddenly stop about once a month in the middle of the road and block traffic until towed away. Luckily I didn't create the bug, but I did get to spend 4 months full-time to solve it...
It's a tad late to add to this thread, but I would like to mention a very interesting alternative to threads: asynchronous programming with co-routines and event loops. This is being supported by more and more languages, and does not have the problem of race conditions like multi-threading has.
It can replace multi-threading in cases where it is used to wait on events from multiple sources, but not where calculations need to be performed in parallel on multiple CPU cores.
Separating different parts of a program into different processes seems (to me) to make a more elegant program than just threading everything. In what scenario would it make sense to make things run on a thread vs. separating the program into different processes? When should I use a thread?
Edit
Anything on how (or if) they act differently with single-core and multi-core would also be helpful.
You'd prefer multiple threads over multiple processes for two reasons:
Inter-thread communication (sharing data etc.) is significantly simpler to program than inter-process communication.
Context switches between threads are faster than between processes. That is, it's quicker for the OS to stop one thread and start running another than do the same with two processes.
Example:
Applications with GUIs typically use one thread for the GUI and others for background computation. The spellchecker in MS Office, for example, is a separate thread from the one running the Office user interface. In such applications, using multiple processes instead would result in slower performance and code that's tough to write and maintain.
Well apart from advantages of using thread over process, like:
Advantages:
Much quicker to create a thread than
a process.
Much quicker to switch
between threads than to switch
between processes.
Threads share data
easily
Consider few disadvantages too:
No security between threads.
One thread can stomp on another thread's
data.
If one thread blocks, all
threads in task block.
As to the important part of your question "When should I use a thread?"
Well you should consider few facts that a threads should not alter the semantics of a program. They simply change the timing of operations. As a result, they are almost always used as an elegant solution to performance related problems. Here are some examples of situations where you might use threads:
Doing lengthy processing: When a windows application is calculating it cannot process any more messages. As a result, the display cannot be updated.
Doing background processing: Some
tasks may not be time critical, but
need to execute continuously.
Doing I/O work: I/O to disk or to
network can have unpredictable
delays. Threads allow you to ensure
that I/O latency does not delay
unrelated parts of your application.
I assume you already know you need a thread or a process, so I'd say the main reason to pick one over the other would be data sharing.
Use of a process means you also need Inter Process Communication (IPC) to get data in and out of the process. This is a good thing if the process is to be isolated though.
You sure don't sound like a newbie. It's an excellent observation that processes are, in many ways, more elegant. Threads are basically an optimization to avoid too many transitions or too much communication between memory spaces.
Superficially using threads may also seem like it makes your program easier to read and write, because you can share variables and memory between the threads freely. In practice, doing that requires very careful attention to avoid race conditions or deadlocks.
There are operating-system kernels (most notably L4) that try very hard to improve the efficiency of inter-process communication. For such systems one could probably make a convincing argument that threads are pointless.
I would like to answer this in a different way. "It depends on your application's working scenario and performance SLA" would be my answer.
For instance threads may be sharing the same address space and communication between threads may be faster and easier but it is also possible that under certain conditions threads deadlock and then what do you think would happen to your process.
Even if you are a programming whiz and have used all the fancy thread synchronization mechanisms to prevent deadlocks it certainly is not rocket science to see that unless a deterministic model is followed which may be the case with hard real time systems running on Real Time OSes where you have a certain degree of control over thread priorities and can expect the OS to respect these priorities it may not be the case with General Purpose OSes like Windows.
From a Design perspective too you might want to isolate your functionality into independent self contained modules where they may not really need to share the same address space or memory or even talk to each other. This is a case where processes will make sense.
Take the case of Google Chrome where multiple processes are spawned as opposed to most browsers which use a multi-threaded model.
Each tab in Chrome can be talking to a different server and rendering a different website. Imagine what would happen if one website stopped responding and if you had a thread stalled due to this, the entire browser would either slow down or come to a stop.
So Google decided to spawn multiple processes and that is why even if one tab freezes you can still continue using other tabs of your Chrome browser.
Read more about it here
and also look here
I agree to most of the answers above. But speaking from design perspective i would rather go for a thread when i want set of logically co-related operations to be carried out parallel. For example if you run a word processor there will be one thread running in foreground as an editor and other thread running in background auto saving the document at regular intervals so no one would design a process to do that auto saving task separately.
In addition to the other answers, maintaining and deploying a single process is a lot simpler than having a few executables.
One would use multiple processes/executables to provide a well-defined interface/decoupling so that one part or the other can be reused or reimplemented more easily than keeping all the functionality in one process.
Came across this post. Interesting discussion. but I felt one point is missing or indirectly pointed.
Creating a new process is costly because of all of the
data structures that must be allocated and initialized. The process is subdivided into different threads of control to achieve multithreading inside the process.
Using a thread or a process to achieve the target is based on your program usage requirements and resource utilization.