Partial Application of Infix Functions in F# - haskell

In haskell it is posible to partially apply an infix function using sections, for instance given the infix function < (less than) one can partially apply any of the function's arguments: (5 <) , (< 5)
In other words, in haskell we have the following shorthand notation:
op :: a -> b -> c
(`op` y) === \x -> x `op` y
(x `op`) === \y -> x `op` y
Does F# have a similar concept?

No, neither of those (apart from standard partial application like (=) x).
Whereas I like the succinctness of Seq.find ((=) x), things like Seq.filter ((<) 3) (or even Seq.map (flip (-) 1)) are simply awkward to read and should immediately be replaced by a lambda expression, imo.

If you want to invent your own standards...
let lsection x f y -> f x y
let rsection f y x -> f x y
Then lsection 5 (<) === (5 <) and rsection (<) 5 === (< 5).
Though really, without language support, just put a lambda in there and it'll be clearer.

Related

Haskell: Understanding the map function when used with lambda function

I have the following two Haskell expressions:
map (\f x -> f x 5) [(-),(+),(*)]
map (\f x -> f 5 x) [(-),(+),(*)]
And I'm trying to figure out whether either expression above is equivalent to the following expression:
map ($ 5) [(-),(+),(*)]
I am trying to understand what the difference between the first two expressions is.
Since for both expressions, there is only one parameter passed to the lambda function (e.g. the operator), the function will be partially applied.
Is it correct to say that the elements in the result list from the first expression will be:
(1) - x 5 = (- x) 5
(2) + x 5 = (+ x) 5
(3) * x 5 = (* x) 5
And for the second expression:
(1) - 5 x = (- 5) x
(2) + 5 x = (+ 5) x
(3) * 5 x = (* 5) x
However, I don't think that either expression is equivalent to map ($ 5) [(-),(+),(*)]. This is because (- x) 5 (where x is a number) gives an error in GHCI and is an invalid expression. Similarly (- 5) x also gives an error.
On the other hand, map ($5) [(-)], results in a function that takes a number and subtracts it from 5.
Is this reasoning correct? Any insights are appreciated.
(- 5) 5 gives out an error because prefix minus is a special case in the language syntax: (- 5) means minus five, the number, and not a function that subtracts five (see also: Currying subtraction). That being so, I will focus on the (+) case, which is not exceptional.
In your second expression, map (\f x -> f 5 x) [(-),(+),(*)], the second element of the result list will be:
(\f x -> f 5 x) (+)
When evaluating such a thing by hand, it is important to be careful to not mix up prefix, infix and sectioned uses of operators. Application here gives out...
\x -> (+) 5 x -- Prefix syntax (note the parentheses around the operator)
... which is equivalent to...
\x -> 5 + x -- Infix syntax
... and to:
\x -> (5 +) x -- Left section
\x -> (+ x) 5 -- Right section
(5 +) -- Left section, pointfree
So the sections, which are patterned after infix usage of the operators, should be the other way around relative to your question. As for map ($ 5) [(-),(+),(*)], it is equivalent to map (\f x -> f 5 x) [(-),(+),(*)], your second expression. You can confirm that by using the fact that ($) f x = f x to figure out what the ($ 5) right section is.

Confusion about the $ operator and parentheses

I'm working my way through the first haskell book and struggle with the $ operator:
The following line works:
map (>= 16) . take 5 $ iterate (\x -> x^2) 2
However, the following doesn't:
map (>= 16) . take 5 (iterate (\x -> x^2) 2)
Possible cause: `take' is applied to too many arguments
I don't see the problem here. take takes an int and a list. To my understanding, I provided both arguments.
What do I have to do if I want to avoid the $ operator?
The ($) :: (a -> b) -> a -> b operator is a function that simply has a the lowest priority (infixr 0, only ($!) and seq have the same priority). As a result:
map (>= 16) . take 5 $ iterate (\x -> x^2) 2
is equivalent to:
(map (>= 16) . take 5) (iterate (\x -> x^2) 2)
so also with brackets for the left operand as well.
It is actually a nice thing about Haskell that you can use operators as a grouping mechanism: ($) is simply defined as ($) f x = f x, but because of the fact that it is an operator, it can be used as a way to avoid brackets.

Partial application of functions and currying, how to make a better code instead of a lot of maps?

I am a beginner at Haskell and I am trying to grasp it.
I am having the following problem:
I have a function that gets 5 parameters, lets say
f x y w z a = x - y - w - z - a
And I would like to apply it while only changing the variable x from 1 to 10 whereas y, w, z and a will always be the same. The implementation I achieved was the following but I think there must be a better way.
Let's say I would like to use:
x from 1 to 10
y = 1
w = 2
z = 3
a = 4
Accordingly to this I managed to apply the function as following:
map ($ 4) $ map ($ 3) $ map ($ 2) $ map ($ 1) (map f [1..10])
I think there must be a better way to apply a lot of missing parameters to partially applied functions without having to use too many maps.
All the suggestions so far are good. Here's another, which might seem a bit weird at first, but turns out to be quite handy in lots of other situations.
Some type-forming operators, like [], which is the operator which maps a type of elements, e.g. Int to the type of lists of those elements, [Int], have the property of being Applicative. For lists, that means there is some way, denoted by the operator, <*>, pronounced "apply", to turn lists of functions and lists of arguments into lists of results.
(<*>) :: [s -> t] -> [s] -> [t] -- one instance of the general type of <*>
rather than your ordinary application, given by a blank space, or a $
($) :: (s -> t) -> s -> t
The upshot is that we can do ordinary functional programming with lists of things instead of things: we sometimes call it "programming in the list idiom". The only other ingredient is that, to cope with the situation when some of our components are individual things, we need an extra gadget
pure :: x -> [x] -- again, one instance of the general scheme
which wraps a thing up as a list, to be compatible with <*>. That is pure moves an ordinary value into the applicative idiom.
For lists, pure just makes a singleton list and <*> produces the result of every pairwise application of one of the functions to one of the arguments. In particular
pure f <*> [1..10] :: [Int -> Int -> Int -> Int -> Int]
is a list of functions (just like map f [1..10]) which can be used with <*> again. The rest of your arguments for f are not listy, so you need to pure them.
pure f <*> [1..10] <*> pure 1 <*> pure 2 <*> pure 3 <*> pure 4
For lists, this gives
[f] <*> [1..10] <*> [1] <*> [2] <*> [3] <*> [4]
i.e. the list of ways to make an application from the f, one of the [1..10], the 1, the 2, the 3 and the 4.
The opening pure f <*> s is so common, it's abbreviated f <$> s, so
f <$> [1..10] <*> [1] <*> [2] <*> [3] <*> [4]
is what would typically be written. If you can filter out the <$>, pure and <*> noise, it kind of looks like the application you had in mind. The extra punctuation is only necessary because Haskell can't tell the difference between a listy computation of a bunch of functions or arguments and a non-listy computation of what's intended as a single value but happens to be a list. At least, however, the components are in the order you started with, so you see more easily what's going on.
Esoterica. (1) in my (not very) private dialect of Haskell, the above would be
(|f [1..10] (|1|) (|2|) (|3|) (|4|)|)
where each idiom bracket, (|f a1 a2 ... an|) represents the application of a pure function to zero or more arguments which live in the idiom. It's just a way to write
pure f <*> a1 <*> a2 ... <*> an
Idris has idiom brackets, but Haskell hasn't added them. Yet.
(2) In languages with algebraic effects, the idiom of nondeterministic computation is not the same thing (to the typechecker) as the data type of lists, although you can easily convert between the two. The program becomes
f (range 1 10) 2 3 4
where range nondeterministically chooses a value between the given lower and upper bounds. So, nondetermism is treated as a local side-effect, not a data structure, enabling operations for failure and choice. You can wrap nondeterministic computations in a handler which give meanings to those operations, and one such handler might generate the list of all solutions. That's to say, the extra notation to explain what's going on is pushed to the boundary, rather than peppered through the entire interior, like those <*> and pure.
Managing the boundaries of things rather than their interiors is one of the few good ideas our species has managed to have. But at least we can have it over and over again. It's why we farm instead of hunting. It's why we prefer static type checking to dynamic tag checking. And so on...
Others have shown ways you can do it, but I think it's useful to show how to transform your version into something a little nicer. You wrote
map ($ 4) $ map ($ 3) $ map ($ 2) $ map ($ 1) (map f [1..10])
map obeys two fundamental laws:
map id = id. That is, if you map the identity function over any list, you'll get back the same list.
For any f and g, map f . map g = map (f . g). That is, mapping over a list with one function and then another one is the same as mapping over it with the composition of those two functions.
The second map law is the one we want to apply here.
map ($ 4) $ map ($ 3) $ map ($ 2) $ map ($ 1) (map f [1..10])
=
map ($ 4) . map ($ 3) . map ($ 2) . map ($ 1) . map f $ [1..10]
=
map (($ 4) . ($ 3) . ($ 2) . ($ 1) . f) [1..10]
What does ($ a) . ($ b) do? \x -> ($ a) $ ($ b) x = \x -> ($ a) $ x b = \x -> x b a. What about ($ a) . ($ b) . ($ c)? That's (\x -> x b a) . ($ c) = \y -> (\x -> x b a) $ ($ c) y = \y -> y c b a. The pattern now should be clear: ($ a) . ($ b) ... ($ y) = \z -> z y x ... c b a. So ultimately, we get
map ((\z -> z 1 2 3 4) . f) [1..10]
=
map (\w -> (\z -> z 1 2 3 4) (f w)) [1..10]
=
map (\w -> f w 1 2 3 4) [1..10]
=
map (\x -> ($ 4) $ ($ 3) $ ($ 2) $ ($ 1) $ f x) [1..10]
In addition to what the other answers say, it might be a good idea to reorder the parameters of your function, especially x is usually the parameter that you vary over like that:
f y w z a x = x - y - w - z - a
If you make it so that the x parameter comes last, you can just write
map (f 1 2 3 4) [1..10]
This won't work in all circumstances of course, but it is good to see what parameters are more likely to vary over a series of calls and put them towards the end of the argument list and parameters that tend to stay the same towards the start. When you do this, currying and partial application will usually help you out more than they would otherwise.
Assuming you don't mind variables you simply define a new function that takes x and calls f. If you don't have a function definition there (you can generally use let or where) you can use a lambda instead.
f' x = f x 1 2 3 4
Or with a lambda
\x -> f x 1 2 3 4
Currying won't do you any good here, because the argument you want to vary (enumerate) isn't the last one. Instead, try something like this.
map (\x -> f x 1 2 3 4) [1..10]
The general solution in this situation is a lambda:
\x -> f x 1 2 3 4
however, if you're seeing yourself doing this very often, with the same argument, it would make sense to move that argument to be the last argument instead:
\x -> f 1 2 3 4 x
in which case currying applies perfectly well and you can just replace the above expression with
f 1 2 3 4
so in turn you could write:
map (f 1 2 3 4) [1..10]

Error while declaring a lambda function: declare an instance first

I am trying to understand lambda functions (i.e. anonymous functions) in Haskell by writing a few simple functions that use them.
In the following example, I am simply trying to take in 3 parameters and add two of the three using an anonymous function and adding the third parameter after that.
I am getting an error saying that I must declare an instance first.
specialAdd x y z = (\x y -> x + y) + z
I appreciate any explanation of why my example is not working and/or any explanation that would help me better understand lambda functions.
specialAdd x y z = (\x y -> x + y) + z
In this example, what you are trying to do is add a function to a number, which is not going to work. Look at (\x y -> x + y) + z: it has the form a + b. In order for such an expression to work, the a part and the b part must be numbers of the same type.
Haskell is a bit of an unusual language, so its error messages are rarely of the form "you can't do that". So what's going on here is that Haskell sees that (\x y -> x + y) is a function, and since in an expression like a + b, b must be the same type as a, it concludes that b must also be a function. Haskell also allows you to define your own rules for adding non-built-in types; so it can't just give you an error saying "you can't add two functions," but instead the error is "you have not defined a rule that allows me to add two functions."
The following would do what you want:
specialAdd x y z = ((\x y -> x + y) x y) + z
Here you are applying the function (\x y -> x + y) to arguments x and y, then adding the result to z.
A good way to practice anonymous function is to use them with high order function as fold or map.
Using map as an entry point,
Basic definition of map,
map f [] = []
map f (x:xs) = f x : f xs
Built up an example,
>>> let list = [0..4]
>>> let f x = x + 1
Applying map we obtain,
>>> map f list
[1,2,3,4,5]
Now, we can omit the declaration of f and replace it using anonymous function,
>>> map (\x->x+1) list
[1,2,3,4,5]
then we deduce, map f list == map (\x->x+1) list, thus
f = \x-> x + 1 --- The same as f x = x + 1, but this is the equivalent lambda notation.
then starting with a simple function we see how to translate it into an anonymous function and then how an anonymous function can be rely to a lambda abstraction.
As an exercise try to translate f x = 2*x.
Now more complex, an anonymous function which take two arguments,
Again an working example,
>>> let add x y = x + y
>>> foldl' add 0 [0..4]
10
Can be rewrite using anonymous function as,
>>> foldl' (\x y -> x + y) 0 [0..4]
Again using equality we deduce that add = \x y -> x + y
Moreover as in hakell all function are function of one argument, and we can partial apply it, we can rewrite our previous anonymous function as, add = \x -> (\y -> x + y).
Then where is the trick ?? Because, I just show the use of anonymous function into high order one, and starting from that, showing how this can be exploited to rewrite function using lambda notation. I mean how can it help you to learn how to write down anonymous function ?
Simply cause I've give you (show you) an existing framework using high order function.
This framework is a huge opportunity to accommodate you with this notation.
Starting from that an infinity range of exercise can be deduce, for example try to do the following.
A - Find the corresponding anonymous function ?
1 - let f (x,y) = x + y in map f [(0,1),(2,3),(-1,1)]
2 - let f x y = x * y in foldl' f 1 [1..5]
B - Rewrite all of them using lambda notation into a declarative form (f = \x-> (\y-> ...)
And so on ....
To summarize,
A function as
(F0) f x1 x2 ... xn = {BODY of f}
can always be rewrite as,
(F1) f = \x1 x2 ... xn -> {BODY of f}
where
(F2) (\x1 x2 ... xn -> {BODY of f})
F2 form are just anonymous function, a pure translation of the function into lambda calculus form. F1 is a declarative lambda notation (because we declare f, as we define it, binding it to the anonymous F2). F0 being the usual notation of Haskeller.
A last note focusing on the fact we can put parenthesis between the argument, this create a closure. Doing that mean that a subset of the function's code can be fully evaluated using a subset of the function's argument, (mean converting to a form where no more free variable occurs), but that's another story.
Here is correct form:
specialAdd a b c = ((\x y -> x + y) a b) + c
Example from Learn You a Haskell...:
zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]
Great explanation:
http://learnyouahaskell.com/higher-order-functions#lambdas
From what I understand Labmbda/Anonymous functions help you declare a function "inline" without the need to give it a name. The "\" (ASCII for the Greek, λ) precedes the variable names for the expression that follows the "->". For example,
(\x y -> x + y)
is an anonymous (lambda) function similar to (+). It takes two parameters of type Num and returns their sum:
Prelude> :type (+)
(+) :: Num a => a -> a -> a
Prelude> :type (\x y -> x + y)
(\x y -> x + y) :: Num a => a -> a -> a
Your example is not working because, as others have pointed out, the right hand side of it is using a lambda function, (\x y -> x + y), as a parameter for the (+) operator, which is defined by default only for parameters of type Num. Some of the beauty of the lambda function can be in its "anonymous" use. Vladimir showed how you can use the lambda function in your declaration by passing it the variables from the left side. A more "anonymous" use could be simply calling it, with variables, without giving the function a name (hence anonymous). For example,
Prelude> (\x y z -> x + y + z) 1 2 3
6
and if you like writing parentheses:
Prelude> (((+).) . (+)) 1 2 3
6
Or in a longer expression (as in your example declaration), e.g.,
Prelude> filter (\x -> length x < 3) [[1],[1,2],[1,2,3]]
[[1],[1,2]]
You are trying to use (+) as something like (Num a) => (a -> a -> a) -> a -> ?? which is not correct.
(+) is defined in the class Num and (a -> a -> a) is not an instance of this class.
What exactly are you trying to achieve ?

Partial Application with Infix Functions

While I understand a little about currying in the mathematical sense, partially
applying an infix function was a new concept which I discovered after diving
into the book Learn You a Haskell for Great Good.
Given this function:
applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)
The author uses it in a interesting way:
ghci> applyTwice (++ [0]) [1]
[1,0,0]
ghci> applyTwice ([0] ++) [1]
[0,0,1]
Here I can see clearly that the resulting function had different parameters
passed, which would not happen by normal means considering it is a curried
function (would it?). So, is there any special treatment on infix sectioning by
Haskell? Is it generic to all infix functions?
As a side note, this is my first week with Haskell and functional programming,
and I'm still reading the book.
Yes, you can partially apply an infix operator by specifying either its left or right operand, just leaving the other one blank (exactly in the two examples you wrote).
So, ([0] ++) is the same as (++) [0] or \x -> [0] ++ x (remember you can turn an infix operator into a standard function by means of parenthesis), while (++ [0]) equals to \x -> x ++ [0].
It is useful to know also the usage of backticks, ( `` ), that enable you to turn any standard function with two arguments in an infix operator:
Prelude> elem 2 [1,2,3]
True
Prelude> 2 `elem` [1,2,3] -- this is the same as before
True
Prelude> let f = (`elem` [1,2,3]) -- partial application, second operand
Prelude> f 1
True
Prelude> f 4
False
Prelude> let g = (1 `elem`) -- partial application, first operand
Prelude> g [1,2]
True
Prelude> g [2,3]
False
Yes, this is the section syntax at work.
Sections are written as ( op e ) or ( e op ), where op is a binary operator and e is an expression. Sections are a convenient syntax for partial application of binary operators.
The following identities hold:
(op e) = \ x -> x op e
(e op) = \ x -> e op x
All infix operators can be used in sections in Haskell - except for - due to strangeness with unary negation. This even includes non-infix functions converted to infix by use of backticks. You can even think of the formulation for making operators into normal functions as a double-sided section:
(x + y) -> (+ y) -> (+)
Sections are (mostly, with some rare corner cases) treated as simple lambdas. (/ 2) is the same as:
\x -> (x / 2)
and (2 /) is the same as \x -> (2 / x), for an example with a non-commutative operator.
There's nothing deeply interesting theoretically going on here. It's just syntactic sugar for partial application of infix operators. It makes code a little bit prettier, often. (There are counterexamples, of course.)

Resources