Linux shell bug? Variable assignment in pipe does not work - linux

How come FILE_FOUND is 0 at the end of this bugger :
FILE_FOUND=0
touch /tmp/$$.txt
ls -1 /tmp/$$.* 2>/dev/null | while read item; do
FILE_FOUND=1
echo "FILE_FOUND = $FILE_FOUND"
done
echo "FILE_FOUND = $FILE_FOUND"
rm -f /tmp/$$.txt 2>/dev/null
??!!
On Unix FILE_FOUND stays at 1 (as it should), but on Linux (RedHat, Cygwin, ..) it jumps back to 0!!
Is it a Linux shell feature, not a bug? :)
Please help.

common issue which is caused because you're piping into the while, which is therefore run in a subshell, which can't pass environment variables back to its parent. I'm guessing that "unix" is different in this regard as you're running a different shell there (ksh?)
piping to the while loop may not be required. could you use this idiom instead?
for item in /tmp/$$.*; do
....
done
If you must use a subshell, then you'll have to do something external to the processes like:
touch /tmp/file_found

This is a "feature" of the "bash" shell. The "bash" manual entry states this clearly:
Each command in a pipeline is executed as a separate process (i.e., in a subshell).
The same construct executed with the Korn shell ("ksh") runs the "while" in the same process (not in a subshell) and hence gives the expected answer. So I checked the spec.
The POSIX shell specification is not crystal clear on this, but its does not say anything about changing the "shell execution environment", so I think that the UNIX / Korn shell implementations are compliant and the Bourne Again shell implementation is not. But then, "bash" does not claim to be POSIX compliant!

It has already been mentioned, but since you're piping into the while, the entire while-loop is run in a subshell. I'm not exactly sure which shell you're using on 'Unix', which I suppose means Solaris, but bash should behave consistenly regardless of platform.
To solve this problem, you can do a lot of things, the most common is to examin the result of the while loop somehow, like so
result=`mycommand 2>/dev/null | while read item; do echo "FILE_FOUND"; done`
and look for data in $result. Another common approach is to have the while loop produce valid variable assignments, and eval it directly.
eval `mycommand | while read item; do echo "FILE_FOUND=1"; done`
which will be evaluated by your 'current' shell to assign the given variables.
I'm assuming you don't want to just iterate over files, in which case you should be doing
for item in /tmp/$$.*; do
# whatever you want to do
done

As others have mentioned, it's the extra shell you're creating by using the pipe notation. Try this:
while read item; do
FILE_FOUND=1
echo "FILE_FOUND = $FILE_FOUND"
done < <(ls -1 /tmp/$$.* 2>/dev/null)
In this version, the while loop is in your script's shell, while the ls is a new shell (the opposite of what your script is doing).

another way , bring the result back,
FILE_FOUND=0
result=$(echo "something" | while read item; do
FILE_FOUND=1
echo "$FILE_FOUND"
done )
echo "FILE_FOUND outside while = $result"

Ummmm... ls -1 not l is on your script?

Related

How can I write a bash script that sets a variable that's available to the user in the terminal? [duplicate]

This question already has answers here:
Can I export a variable to the environment from a Bash script without sourcing it?
(13 answers)
Closed 3 years ago.
The community reviewed whether to reopen this question last year and left it closed:
Original close reason(s) were not resolved
I'm trying to write a shell script that, when run, will set some environment variables that will stay set in the caller's shell.
setenv FOO foo
in csh/tcsh, or
export FOO=foo
in sh/bash only set it during the script's execution.
I already know that
source myscript
will run the commands of the script rather than launching a new shell, and that can result in setting the "caller's" environment.
But here's the rub:
I want this script to be callable from either bash or csh. In other words, I want users of either shell to be able to run my script and have their shell's environment changed. So 'source' won't work for me, since a user running csh can't source a bash script, and a user running bash can't source a csh script.
Is there any reasonable solution that doesn't involve having to write and maintain TWO versions on the script?
Use the "dot space script" calling syntax. For example, here's how to do it using the full path to a script:
. /path/to/set_env_vars.sh
And here's how to do it if you're in the same directory as the script:
. set_env_vars.sh
These execute the script under the current shell instead of loading another one (which is what would happen if you did ./set_env_vars.sh). Because it runs in the same shell, the environmental variables you set will be available when it exits.
This is the same thing as calling source set_env_vars.sh, but it's shorter to type and might work in some places where source doesn't.
Your shell process has a copy of the parent's environment and no access to the parent process's environment whatsoever. When your shell process terminates any changes you've made to its environment are lost. Sourcing a script file is the most commonly used method for configuring a shell environment, you may just want to bite the bullet and maintain one for each of the two flavors of shell.
You're not going to be able to modify the caller's shell because it's in a different process context. When child processes inherit your shell's variables, they're
inheriting copies themselves.
One thing you can do is to write a script that emits the correct commands for tcsh
or sh based how it's invoked. If you're script is "setit" then do:
ln -s setit setit-sh
and
ln -s setit setit-csh
Now either directly or in an alias, you do this from sh
eval `setit-sh`
or this from csh
eval `setit-csh`
setit uses $0 to determine its output style.
This is reminescent of how people use to get the TERM environment variable set.
The advantage here is that setit is just written in whichever shell you like as in:
#!/bin/bash
arg0=$0
arg0=${arg0##*/}
for nv in \
NAME1=VALUE1 \
NAME2=VALUE2
do
if [ x$arg0 = xsetit-sh ]; then
echo 'export '$nv' ;'
elif [ x$arg0 = xsetit-csh ]; then
echo 'setenv '${nv%%=*}' '${nv##*=}' ;'
fi
done
with the symbolic links given above, and the eval of the backquoted expression, this has the desired result.
To simplify invocation for csh, tcsh, or similar shells:
alias dosetit 'eval `setit-csh`'
or for sh, bash, and the like:
alias dosetit='eval `setit-sh`'
One nice thing about this is that you only have to maintain the list in one place.
In theory you could even stick the list in a file and put cat nvpairfilename between "in" and "do".
This is pretty much how login shell terminal settings used to be done: a script would output statments to be executed in the login shell. An alias would generally be used to make invocation simple, as in "tset vt100". As mentioned in another answer, there is also similar functionality in the INN UseNet news server.
In my .bash_profile I have :
# No Proxy
function noproxy
{
/usr/local/sbin/noproxy #turn off proxy server
unset http_proxy HTTP_PROXY https_proxy HTTPs_PROXY
}
# Proxy
function setproxy
{
sh /usr/local/sbin/proxyon #turn on proxy server
http_proxy=http://127.0.0.1:8118/
HTTP_PROXY=$http_proxy
https_proxy=$http_proxy
HTTPS_PROXY=$https_proxy
export http_proxy https_proxy HTTP_PROXY HTTPS_PROXY
}
So when I want to disable the proxy,
the function(s) run in the login shell and sets the variables
as expected and wanted.
It's "kind of" possible through using gdb and setenv(3), although I have a hard time recommending actually doing this. (Additionally, i.e. the most recent ubuntu won't actually let you do this without telling the kernel to be more permissive about ptrace, and the same may go for other distros as well).
$ cat setfoo
#! /bin/bash
gdb /proc/${PPID}/exe ${PPID} <<END >/dev/null
call setenv("foo", "bar", 0)
END
$ echo $foo
$ ./setfoo
$ echo $foo
bar
This works — it isn't what I'd use, but it 'works'. Let's create a script teredo to set the environment variable TEREDO_WORMS:
#!/bin/ksh
export TEREDO_WORMS=ukelele
exec $SHELL -i
It will be interpreted by the Korn shell, exports the environment variable, and then replaces itself with a new interactive shell.
Before running this script, we have SHELL set in the environment to the C shell, and the environment variable TEREDO_WORMS is not set:
% env | grep SHELL
SHELL=/bin/csh
% env | grep TEREDO
%
When the script is run, you are in a new shell, another interactive C shell, but the environment variable is set:
% teredo
% env | grep TEREDO
TEREDO_WORMS=ukelele
%
When you exit from this shell, the original shell takes over:
% exit
% env | grep TEREDO
%
The environment variable is not set in the original shell's environment. If you use exec teredo to run the command, then the original interactive shell is replaced by the Korn shell that sets the environment, and then that in turn is replaced by a new interactive C shell:
% exec teredo
% env | grep TEREDO
TEREDO_WORMS=ukelele
%
If you type exit (or Control-D), then your shell exits, probably logging you out of that window, or taking you back to the previous level of shell from where the experiments started.
The same mechanism works for Bash or Korn shell. You may find that the prompt after the exit commands appears in funny places.
Note the discussion in the comments. This is not a solution I would recommend, but it does achieve the stated purpose of a single script to set the environment that works with all shells (that accept the -i option to make an interactive shell). You could also add "$#" after the option to relay any other arguments, which might then make the shell usable as a general 'set environment and execute command' tool. You might want to omit the -i if there are other arguments, leading to:
#!/bin/ksh
export TEREDO_WORMS=ukelele
exec $SHELL "${#-'-i'}"
The "${#-'-i'}" bit means 'if the argument list contains at least one argument, use the original argument list; otherwise, substitute -i for the non-existent arguments'.
You should use modules, see http://modules.sourceforge.net/
EDIT: The modules package has not been updated since 2012 but still works ok for the basics. All the new features, bells and whistles happen in lmod this day (which I like it more): https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
Another workaround that I don't see mentioned is to write the variable value to a file.
I ran into a very similar issue where I wanted to be able to run the last set test (instead of all my tests). My first plan was to write one command for setting the env variable TESTCASE, and then have another command that would use this to run the test. Needless to say that I had the same exact issue as you did.
But then I came up with this simple hack:
First command ( testset ):
#!/bin/bash
if [ $# -eq 1 ]
then
echo $1 > ~/.TESTCASE
echo "TESTCASE has been set to: $1"
else
echo "Come again?"
fi
Second command (testrun ):
#!/bin/bash
TESTCASE=$(cat ~/.TESTCASE)
drush test-run $TESTCASE
You can instruct the child process to print its environment variables (by calling "env"), then loop over the printed environment variables in the parent process and call "export" on those variables.
The following code is based on Capturing output of find . -print0 into a bash array
If the parent shell is the bash, you can use
while IFS= read -r -d $'\0' line; do
export "$line"
done < <(bash -s <<< 'export VARNAME=something; env -0')
echo $VARNAME
If the parent shell is the dash, then read does not provide the -d flag and the code gets more complicated
TMPDIR=$(mktemp -d)
mkfifo $TMPDIR/fifo
(bash -s << "EOF"
export VARNAME=something
while IFS= read -r -d $'\0' line; do
echo $(printf '%q' "$line")
done < <(env -0)
EOF
) > $TMPDIR/fifo &
while read -r line; do export "$(eval echo $line)"; done < $TMPDIR/fifo
rm -r $TMPDIR
echo $VARNAME
Under OS X bash you can do the following:
Create the bash script file to unset the variable
#!/bin/bash
unset http_proxy
Make the file executable
sudo chmod 744 unsetvar
Create alias
alias unsetvar='source /your/path/to/the/script/unsetvar'
It should be ready to use so long you have the folder containing your script file appended to the path.
It's not what I would call outstanding, but this also works if you need to call the script from the shell anyway. It's not a good solution, but for a single static environment variable, it works well enough.
1.) Create a script with a condition that exits either 0 (Successful) or 1 (Not successful)
if [[ $foo == "True" ]]; then
exit 0
else
exit 1
2.) Create an alias that is dependent on the exit code.
alias='myscript.sh && export MyVariable'
You call the alias, which calls the script, which evaluates the condition, which is required to exit zero via the '&&' in order to set the environment variable in the parent shell.
This is flotsam, but it can be useful in a pinch.
You can invoke another one Bash with the different bash_profile.
Also, you can create special bash_profile for using in multi-bashprofile environment.
Remember that you can use functions inside of bashprofile, and that functions will be avialable globally.
for example, "function user { export USER_NAME $1 }" can set variable in runtime, for example: user olegchir && env | grep olegchir
Another option is to use "Environment Modules" (http://modules.sourceforge.net/). This unfortunately introduces a third language into the mix. You define the environment with the language of Tcl, but there are a few handy commands for typical modifications (prepend vs. append vs set). You will also need to have environment modules installed. You can then use module load *XXX* to name the environment you want. The module command is basically a fancy alias for the eval mechanism described above by Thomas Kammeyer. The main advantage here is that you can maintain the environment in one language and rely on "Environment Modules" to translate it to sh, ksh, bash, csh, tcsh, zsh, python (?!?!!), etc.
I created a solution using pipes, eval and signal.
parent() {
if [ -z "$G_EVAL_FD" ]; then
die 1 "Rode primeiro parent_setup no processo pai"
fi
if [ $(ppid) = "$$" ]; then
"$#"
else
kill -SIGUSR1 $$
echo "$#">&$G_EVAL_FD
fi
}
parent_setup() {
G_EVAL_FD=99
tempfile=$(mktemp -u)
mkfifo "$tempfile"
eval "exec $G_EVAL_FD<>'$tempfile'"
rm -f "$tempfile"
trap "read CMD <&$G_EVAL_FD; eval \"\$CMD\"" USR1
}
parent_setup #on parent shell context
( A=1 ); echo $A # prints nothing
( parent A=1 ); echo $A # prints 1
It might work with any command.
I don't see any answer documenting how to work around this problem with cooperating processes. A common pattern with things like ssh-agent is to have the child process print an expression which the parent can eval.
bash$ eval $(shh-agent)
For example, ssh-agent has options to select Csh or Bourne-compatible output syntax.
bash$ ssh-agent
SSH2_AUTH_SOCK=/tmp/ssh-era/ssh2-10690-agent; export SSH2_AUTH_SOCK;
SSH2_AGENT_PID=10691; export SSH2_AGENT_PID;
echo Agent pid 10691;
(This causes the agent to start running, but doesn't allow you to actually use it, unless you now copy-paste this output to your shell prompt.) Compare:
bash$ ssh-agent -c
setenv SSH2_AUTH_SOCK /tmp/ssh-era/ssh2-10751-agent;
setenv SSH2_AGENT_PID 10752;
echo Agent pid 10752;
(As you can see, csh and tcsh uses setenv to set varibles.)
Your own program can do this, too.
bash$ foo=$(makefoo)
Your makefoo script would simply calculate and print the value, and let the caller do whatever they want with it -- assigning it to a variable is a common use case, but probably not something you want to hard-code into the tool which produces the value.
Technically, that is correct -- only 'eval' doesn't fork another shell. However, from the point of view of the application you're trying to run in the modified environment, the difference is nil: the child inherits the environment of its parent, so the (modified) environment is conveyed to all descending processes.
Ipso facto, the changed environment variable 'sticks' -- as long as you are running under the parent program/shell.
If it is absolutely necessary for the environment variable to remain after the parent (Perl or shell) has exited, it is necessary for the parent shell to do the heavy lifting. One method I've seen in the documentation is for the current script to spawn an executable file with the necessary 'export' language, and then trick the parent shell into executing it -- always being cognizant of the fact that you need to preface the command with 'source' if you're trying to leave a non-volatile version of the modified environment behind. A Kluge at best.
The second method is to modify the script that initiates the shell environment (.bashrc or whatever) to contain the modified parameter. This can be dangerous -- if you hose up the initialization script it may make your shell unavailable the next time it tries to launch. There are plenty of tools for modifying the current shell; by affixing the necessary tweaks to the 'launcher' you effectively push those changes forward as well.
Generally not a good idea; if you only need the environment changes for a particular application suite, you'll have to go back and return the shell launch script to its pristine state (using vi or whatever) afterwards.
In short, there are no good (and easy) methods. Presumably this was made difficult to ensure the security of the system was not irrevocably compromised.
The short answer is no, you cannot alter the environment of the parent process, but it seems like what you want is an environment with custom environment variables and the shell that the user has chosen.
So why not simply something like
#!/usr/bin/env bash
FOO=foo $SHELL
Then when you are done with the environment, just exit.
You could always use aliases
alias your_env='source ~/scripts/your_env.sh'
I did this many years ago. If I rememeber correctly, I included an alias in each of .bashrc and .cshrc, with parameters, aliasing the respective forms of setting the environment to a common form.
Then the script that you will source in any of the two shells has a command with that last form, that is suitable aliased in each shell.
If I find the concrete aliases, I will post them.
Other than writings conditionals depending on what $SHELL/$TERM is set to, no. What's wrong with using Perl? It's pretty ubiquitous (I can't think of a single UNIX variant that doesn't have it), and it'll spare you the trouble.

predefined input in a nohup shell script [duplicate]

I have a script that calls an application that requires user input, e.g. run app that requires user to type in 'Y' or 'N'.
How can I get the shell script not to ask the user for the input but rather use the value from a predefined variable in the script?
In my case there will be two questions that require input.
You can pipe in whatever text you'd like on stdin and it will be just the same as having the user type it themselves. For example to simulating typing "Y" just use:
echo "Y" | myapp
or using a shell variable:
echo $ANSWER | myapp
There is also a unix command called "yes" that outputs a continuous stream of "y" for apps that ask lots of questions that you just want to answer in the affirmative.
If the app reads from stdin (as opposed to from /dev/tty, as e.g. the passwd program does), then multiline input is the perfect candidate for a here-document.
#!/bin/sh
the_app [app options here] <<EOF
Yes
No
Maybe
Do it with $SHELL
Quit
EOF
As you can see, here-documents even allow parameter substitution. If you don't want this, use <<'EOF'.
the expect command for more complicated situations, you system should have it. Haven't used it much myself, but I suspect its what you're looking for.
$ man expect
http://oreilly.com/catalog/expect/chapter/ch03.html
I prefer this way: If You want multiple inputs... you put in multiple echo statements as so:
{ echo Y; Y; } | sh install.sh >> install.out
In the example above... I am feeding two inputs into the install.sh script. Then... at the end, I am piping the script output to a log file to be archived and viewed for later.

Silence output in bash script using function advisable?

Suppose, someone is writing bash script in which it is needed to silent stdout,stderr and provide custom output.
Is it advisable to use function like below:
dump(){
"$#" > /dev/null 2>&1
}
And, then
dump rm filename || echo "custom-message"
What are the possible cases where it fails to function as expected?
This is a good technique. I use something like it all the time. Pros:
Preserves the exit code of the command.
Hides output of almost every program unless they directly write to /dev/tty or /dev/console, which is rare and probably for good reason anyways.
Works on shell builtins just as well as binaries. You can use this for cd, pushd/popd, etc.
Doesn't stop the command from reading from stdin. dump can be used at the end of a pipeline if you wish.
"$#" properly handles command names and arguments with whitespace, globs, and other special characters.
It looks good to me!
The only nitpick I have is that the name dump isn't the clearest.

In my command-line, why does echo $0 return "-"?

When I type echo $0 I see -
I expect to see bash or some filename, what does it mean if I just get a "-"?
A hyphen in front of $0 means that this program is a login shell.
note: $0 does not always contain accurate path to the running executable as there is a way to override it when calling execve(2).
I get '-bash', a few weeks ago, I played with modifying a process name visible when you run ps or top/htop or echo $0. To answer you question directly, I don't think it means anything. Echo is a built-in function of bash, so when it checks the arguments list, bash is actually doing the checking, and seeing itself there.
Your intuition is correct, if you wrote echo $0 in a script file, and ran that, you would see the script's filename.
So based on one of your comments, you're really want to know how to determine what shell you're running; you assumed $0 was the solution, and asked about that, but as you've seen $0 won't reliably tell you what you need to know.
If you're running bash, then several unexported variables will be set, including $BASH_VERSION. If you're running tcsh, then the shell variables $tcsh and $version will be set. (Note that $version is an excessively generic name; I've run into problems where some system-wide startup script sets it and clobbers the tcsh-specific variable. But $tcsh should be reliable.)
The real problem, though, is that bash and tcsh syntax are mostly incompatible. It might be possible to write a script that can execute when invoked (via . or source) from either tcsh or bash, but it would be difficult and ugly.
The usual approach is to have separate setup files, one for each shell you use. For example, if you're running bash you might run
. ~/setup.bash
or
. ~/setup.sh
and if you're running tcsh you might run
source ~/setup.tcsh
or
source ~/setup.csh
The .sh or .csh versions refer to the ancestors of both shells; it makes sense to use those suffixes if you're not using any bash-specific or tcsh-specific features.
But that requires knowing which shell you're running.
You could probably set up an alias in your .cshrc, .tcshrc, or.login, and an alias or function in your.profile,.bash_profile, or.bashrc` that will invoke whichever script you need.
Or if you want to do the setup every time you login, or every time you start a new interactive shell, you can put the commands directly in the appropriate shell startup file(s). Of course the commands will be different for tcsh vs. bash.

syntax of for loop in linux shell scripting

I have a problem implementing a for loop. I get this error when I execute my script
test1.sh: 2: Syntax error: Bad for loop variable
I don't understand this error.
This is my script
#!/bin/bash
for (( c=1; c<=5; c++ ))
do
echo "Welcome $c times..."
done
can any one tell me syntax for for loop in sh(in ubuntu it links to dash shell) shell in ubuntu?
You probably run it with sh, not bash. Try bash test1.sh, or ./test1.sh if it's executable, but not sh test1.sh.
A standard POSIX shell only accepts the syntax for varname in list
The C-like for-loop syntax for (( expr1; expr2; expr3 )) is a bashism.
You can get similar behavior in the standard POSIX shell using for c in $(seq 1 5)
What does
ls -l /bin/sh
give on your machine ?
Make sh a symbolic link to bash and then you can do sh ./test1.sh
Your shell script (as shown) runs in both Korn shell and Bash. Some thoughts:
You might need a space after the shebang (#! /bin/bash and not #!/bin/bash). However, Dennis Ritchie had originally specified the space is optional. Besides, it isn't the error you get with Bourne shell (you get syntax error: '(' unexpected instead).
Are you on a Windows system? Just a stab in the dark. This doesn't look like a Windows error.
Is this Solaris or HP/UX system? They might not be running true versions of Bash, or maybe an older version. However, even the oldest version of Bash recognizes the for ((x;y;z)) construct.
Try this:
#! /bin/bash
set -vx
echo "Random = $RANDOM" #Test for bash/Kornshell. Will be blank in other shells
echo \$BASH_VERSINFO[0] = ${BASH_VERSINFO[0]} #Should only work in BASH
echo \$BASH_VERSINFO[1] = ${BASH_VERSINFO[1]}
echo \$BASH_VERSINFO[2] = ${BASH_VERSINFO[2]}
echo \$BASH_VERSINFO[3] = ${BASH_VERSINFO[3]}
echo \$BASH_VERSINFO[4] = ${BASH_VERSINFO[4]}
echo \$BASH_VERSINFO[5] = ${BASH_VERSINFO[5]}
for ((c=0, c<=5, c++))
do
echo "Welcome $c times"
done
The set -xv will display all lines as they are executed.
The $RANDOM should display a value if this is either BASH or Kornshell (your for loop will work in either one).
The {$BASH_VERINFO[x]} should only be set if this is truly BASH. These aren't even set even if you run Korn shell after you're in BASH (unlike $SHELL which will still contain bash).
If the for loop still gives you trouble, just delete it. Somewhere in this script, we'll find out if you're really executing a bash shell or not.

Resources