From OO to functional programming at 10,000 feet - haskell

I have been using f# and Haskell to learn functional programming for a while now. Until I can get f# approved at our company I must still use c#. I am still trying however to stay in the functional style as I have noticed several benefits.
Here is a typical problem.
There is a key-set table in the
database with 3 keys (6.5 million
rows)
There are 4 other supporting
tables of small to medium size.
There are complex formulas based on several inputs.
I have to use data from all of the above to calculate a value and associate it with each key-set row and send it back to the database. There is a lot of lookups to the other 4 tables. For performance sake it is all done in memory.
I know exactly how I would do the in OO with static dictionaries, object models, strategy patterns and so forth but in a functional way I cannot get rid of the bad smell of using some of these constructs.
I am currently making the following assumptions for a functional solution.
Static dictionaries are bad. It seems the function could have side affects.
I need an Calculate function the takes an immutable object(s) and returns an immutable object with the three keys and the calculated value. Inside this function there could be another function in the same style.
Traditional OO patterns are probably not going to work.
How would you design this at a high level?
Am I wrong? Have I missed anything?

No, you are not not wrong. Both OOP and functional programming have their benefits and their drawbacks.
A developer needs tho know how and when to use each development style. It's fortunate that C# supports in a way both development styles.
In my opinion, and I use both functional and oop programming styles on a daily bases, oop is best when dealing with complex interactions and inter dependencies between various abstract artifacts (entities, nouns etc. ). Functional programming is best used when dealing with algorithms, data transformations etc. e.g. situations where the complexity of statements needed to solve a given problem is great.
I generally use object oriented programming on my domain (entities, aggregates, value objects, repositories and events) and reserve functional programming for my service objects.
Most of the the time it comes to a smell, or feeling which is best, since in software development aren't clear cut cases either way, and experience and practice often is the best judge for a given choice.

If your looking for speed you may want to consider the underlying data structures your using. Dictionary<> in C# is a hash table while SortedDictionary<> in C# is a binary search tree.
F# and Haskell both do a good job of representing tree data structures. You may want to consider using a more specific data structure over the default ones C# provides.
At a high level I would figure out what performance characteristics your formulas display and compare them to different data structures (wikipedia is a good source if you need a refresher). Once you figure out what data structures to use then I'd worry about what implementations to use.

How would you design this at a high level?
Basically, you use higher-order functions to factor the work into reusable components with low syntactic overhead. Then you might like to migrate from imperative data structures to purely functional data structures (purely functional computation wrapped in side effects for IO like database writes). Finally, you might even track side effects (completely purely functional).
As a rough guide, these three gradations to complete purity are seen firstly in Lisp (largely impure), Standard ML (much heavier use of purely functional data structures) and Haskell (complete purity).
I cannot give more specifics without knowing the exact problem but you can rest assured many people are doing this on a daily basis now and it works extremely well.

Functional programming in an OO language tends to be wrong. It produces overly verbose code that doesn't perform well and is more error prone (such as writing deeply recursive functions in a language that doesn't support tail calls.)
Blockquote 1. Static dictionaries are bad. It seems the function could have side affects.
Either it does or does not have side effects. A static dictionary can be a good way to implement memoization in an OO language.
Blockquote 3. Traditional OO patterns are probably not going to work.
OO patterns work well in an OO language trying to shoe horn FP techniques into a OO language will produce verbose and brittle code. It is rather a lot like trying to use a screw driver with hammer techniques sure it produces a result but there are better ways. Try to use your tools in the best way possible. Certain FP techniques can be useful but completely ignoring the language isn't going to make for good quality code.

Related

is it possible to markup all programming languages under object oriented paradigm using a common markup schema?

i have planned to develop a tool that converts a program written in a programming language (eg: Java) to a common markup language (eg: XML) and that markup code is converted to another language (eg: C#).
in simple words, it is a programming language converter that converts program written in one language to another language.
i think it is possible but i don know where to start. i wanna know the possibilities to do so and information about some existing system.
What you are trying to do is extremely hard, but if you want to know what you are up for I've listed the steps you need to follow below:
First the hard bit:
First you obtain or derive an operational semantics for your source and target languages.
Then you enhance the semantics to capture your source and target memory models.
Then you need to unify the two enhanced-semantics within a common operational model.
Then you need to define a mapping from your source languages onto the common operational model.
Then you need to define a mapping from your operational model to your target language
Step 4, as you pointed out in your question, is trivial.
Step 1 is difficult, as most languages do not have sufficiently formal semantics specified; but I recommend checking out http://lucacardelli.name/TheoryOfObjects.html as this is the best starting point for building a traditional OO semantics.
Step 2 is almost certainly impossible in general, but may be merely obscenely difficult if you are willing to sacrifice some efficiency.
Step 3 will depend on how clean the result of step 1 turned out, but is going to be anything from delicate and tricky to impossible.
Step 5 is not going to be trivial, it is effectively writing a compiler.
Ultimately, what you propose to do is impossible in general, due to the difficulties inherited in steps 1 and 2. However it should be difficult, but doable, if you are willing to: severely restrict the source language constructs supported; pretty much forget handling threads correctly; and pick two languages with sufficiently similar semantics (ie. Java and C# are ok, but C++ and anything-else is not).
It depends on what languages you want to support, but in general this is a huge & difficult task unless you plan to only support a very small subset of each language.
The real problem is that each programming languages has different features (with some areas that overlap and others that don't) and different ways of solving the same problems -- and it's pretty tricky to detect the problem the programmer is trying to solve and convert that to a new idiom. :) And think about the differences between GUIs created in different languages....
See http://xmlvm.org/ as an example (a project aimed at converting between source code of many different languages, with an XML middle-point) -- the site covers in some depth the challenges they are tackling and the compromises they take, and (if you still have any interest in this kind of project...) ask more specific followup questions.
Notice specifically what the output source code looks like -- it's not at all readable, maintainable, efficient, etc..
It is "technically easy" to produce XML for any single langauge: build a parser, construct and abstract syntax tree, and dump out that tree as XML. (I build tools that do this off-the-shelf for many languages). By technically easy, I mean that the community knows how to do this (see any compiler textbook, e.g., Aho&Ullman Dragon book). I do not mean this is a trivial exercise in terms of effort, because real languages are complicated and messy; there have been many attempts to build C++ parsers and few successes. (I have one of the successes, and it was expensive to get right).
What is really hard (and I don't try to do) is produce XML according to a single schema in which the language semantics are exposed. And without that, it will be essentially impossible to write a translator from a generic XML to an arbitrary target language. This is known as the UNCOL problem and people have been looking since 1958 for the answer. I note that the Wikipedia article seems to indicate the problem is solved, but you can't find many references to UNCOL in the literature since 1961.
The closest attempt I've seen to this is the OMG's "ASTM" model (http://www.omg.org/spec/ASTM/1.0/Beta1/); it exports XMI which is XML. But the ASTM model has lots of escapes built into it to allow langauges that it doesn't model perfectly (AFAIK, that means every language) to extend the XMI in arbitrary ways so that the language-specific information can be encoded. Consequently each language parser produces a custom version of the XMI, and thus each reader has to pretty much know about the extensions and full generality vanishes.

Large-scale design in Haskell? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 6 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What is a good way to design/structure large functional programs, especially in Haskell?
I've been through a bunch of the tutorials (Write Yourself a Scheme being my favorite, with Real World Haskell a close second) - but most of the programs are relatively small, and single-purpose. Additionally, I don't consider some of them to be particularly elegant (for example, the vast lookup tables in WYAS).
I'm now wanting to write larger programs, with more moving parts - acquiring data from a variety of different sources, cleaning it, processing it in various ways, displaying it in user interfaces, persisting it, communicating over networks, etc. How could one best structure such code to be legible, maintainable, and adaptable to changing requirements?
There is quite a large literature addressing these questions for large object-oriented imperative programs. Ideas like MVC, design patterns, etc. are decent prescriptions for realizing broad goals like separation of concerns and reusability in an OO style. Additionally, newer imperative languages lend themselves to a 'design as you grow' style of refactoring to which, in my novice opinion, Haskell appears less well-suited.
Is there an equivalent literature for Haskell? How is the zoo of exotic control structures available in functional programming (monads, arrows, applicative, etc.) best employed for this purpose? What best practices could you recommend?
Thanks!
EDIT (this is a follow-up to Don Stewart's answer):
#dons mentioned: "Monads capture key architectural designs in types."
I guess my question is: how should one think about key architectural designs in a pure functional language?
Consider the example of several data streams, and several processing steps. I can write modular parsers for the data streams to a set of data structures, and I can implement each processing step as a pure function. The processing steps required for one piece of data will depend on its value and others'. Some of the steps should be followed by side-effects like GUI updates or database queries.
What's the 'Right' way to tie the data and the parsing steps in a nice way? One could write a big function which does the right thing for the various data types. Or one could use a monad to keep track of what's been processed so far and have each processing step get whatever it needs next from the monad state. Or one could write largely separate programs and send messages around (I don't much like this option).
The slides he linked have a Things we Need bullet: "Idioms for mapping design onto
types/functions/classes/monads". What are the idioms? :)
I talk a bit about this in Engineering Large Projects in Haskell and in the Design and Implementation of XMonad. Engineering in the large is about managing complexity. The primary code structuring mechanisms in Haskell for managing complexity are:
The type system
Use the type system to enforce abstractions, simplifying interactions.
Enforce key invariants via types
(e.g. that certain values cannot escape some scope)
That certain code does no IO, does not touch the disk
Enforce safety: checked exceptions (Maybe/Either), avoid mixing concepts (Word, Int, Address)
Good data structures (like zippers) can make some classes of testing needless, as they rule out e.g. out of bounds errors statically.
The profiler
Provide objective evidence of your program's heap and time profiles.
Heap profiling, in particular, is the best way to ensure no unnecessary memory use.
Purity
Reduce complexity dramatically by removing state. Purely functional code scales, because it is compositional. All you need is the type to determine how to use some code -- it won't mysteriously break when you change some other part of the program.
Use lots of "model/view/controller" style programming: parse external data as soon as possible into purely functional data structures, operate on those structures, then once all work is done, render/flush/serialize out. Keeps most of your code pure
Testing
QuickCheck + Haskell Code Coverage, to ensure you are testing the things you can't check with types.
GHC + RTS is great for seeing if you're spending too much time doing GC.
QuickCheck can also help you identify clean, orthogonal APIs for your modules. If the properties of your code are difficult to state, they're probably too complex. Keep refactoring until you have a clean set of properties that can test your code, that compose well. Then the code is probably well designed too.
Monads for Structuring
Monads capture key architectural designs in types (this code accesses hardware, this code is a single-user session, etc.)
E.g. the X monad in xmonad, captures precisely the design for what state is visible to what components of the system.
Type classes and existential types
Use type classes to provide abstraction: hide implementations behind polymorphic interfaces.
Concurrency and parallelism
Sneak par into your program to beat the competition with easy, composable parallelism.
Refactor
You can refactor in Haskell a lot. The types ensure your large scale changes will be safe, if you're using types wisely. This will help your codebase scale. Make sure that your refactorings will cause type errors until complete.
Use the FFI wisely
The FFI makes it easier to play with foreign code, but that foreign code can be dangerous.
Be very careful in assumptions about the shape of data returned.
Meta programming
A bit of Template Haskell or generics can remove boilerplate.
Packaging and distribution
Use Cabal. Don't roll your own build system. (EDIT: Actually you probably want to use Stack now for getting started.).
Use Haddock for good API docs
Tools like graphmod can show your module structures.
Rely on the Haskell Platform versions of libraries and tools, if at all possible. It is a stable base. (EDIT: Again, these days you likely want to use Stack for getting a stable base up and running.)
Warnings
Use -Wall to keep your code clean of smells. You might also look at Agda, Isabelle or Catch for more assurance. For lint-like checking, see the great hlint, which will suggest improvements.
With all these tools you can keep a handle on complexity, removing as many interactions between components as possible. Ideally, you have a very large base of pure code, which is really easy to maintain, since it is compositional. That's not always possible, but it is worth aiming for.
In general: decompose the logical units of your system into the smallest referentially transparent components possible, then implement them in modules. Global or local environments for sets of components (or inside components) might be mapped to monads. Use algebraic data types to describe core data structures. Share those definitions widely.
Don gave you most of the details above, but here's my two cents from doing really nitty-gritty stateful programs like system daemons in Haskell.
In the end, you live in a monad transformer stack. At the bottom is IO. Above that, every major module (in the abstract sense, not the module-in-a-file sense) maps its necessary state into a layer in that stack. So if you have your database connection code hidden in a module, you write it all to be over a type MonadReader Connection m => ... -> m ... and then your database functions can always get their connection without functions from other modules having to be aware of its existence. You might end up with one layer carrying your database connection, another your configuration, a third your various semaphores and mvars for the resolution of parallelism and synchronization, another your log file handles, etc.
Figure out your error handling first. The greatest weakness at the moment for Haskell in larger systems is the plethora of error handling methods, including lousy ones like Maybe (which is wrong because you can't return any information on what went wrong; always use Either instead of Maybe unless you really just mean missing values). Figure out how you're going to do it first, and set up adapters from the various error handling mechanisms your libraries and other code uses into your final one. This will save you a world of grief later.
Addendum (extracted from comments; thanks to Lii & liminalisht) —
more discussion about different ways to slice a large program into monads in a stack:
Ben Kolera gives a great practical intro to this topic, and Brian Hurt discusses solutions to the problem of lifting monadic actions into your custom monad. George Wilson shows how to use mtl to write code that works with any monad that implements the required typeclasses, rather than your custom monad kind. Carlo Hamalainen has written some short, useful notes summarizing George's talk.
Designing large programs in Haskell is not that different from doing it in other languages.
Programming in the large is about breaking your problem into manageable pieces, and how to fit those together; the implementation language is less important.
That said, in a large design it's nice to try and leverage the type system to make sure you can only fit your pieces together in a way that is correct. This might involve newtype or phantom types to make things that appear to have the same type be different.
When it comes to refactoring the code as you go along, purity is a great boon, so try to keep as much of the code as possible pure. Pure code is easy to refactor, because it has no hidden interaction with other parts of your program.
I did learn structured functional programming the first time with this book.
It may not be exactly what you are looking for, but for beginners in functional programming, this may be one of the best first steps to learn to structure functional programs - independant of the scale. On all abstraction levels, the design should always have clearly arranged structures.
The Craft of Functional Programming
http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/
I'm currently writing a book with the title "Functional Design and Architecture". It provides you with a complete set of techniques how to build a big application using pure functional approach. It describes many functional patterns and ideas while building an SCADA-like application 'Andromeda' for controlling spaceships from scratch. My primary language is Haskell. The book covers:
Approaches to architecture modelling using diagrams;
Requirements analysis;
Embedded DSL domain modelling;
External DSL design and implementation;
Monads as subsystems with effects;
Free monads as functional interfaces;
Arrowised eDSLs;
Inversion of Control using Free monadic eDSLs;
Software Transactional Memory;
Lenses;
State, Reader, Writer, RWS, ST monads;
Impure state: IORef, MVar, STM;
Multithreading and concurrent domain modelling;
GUI;
Applicability of mainstream techniques and approaches such as UML, SOLID, GRASP;
Interaction with impure subsystems.
You may get familiar with the code for the book here, and the 'Andromeda' project code.
I expect to finish this book at the end of 2017. Until that happens, you may read my article "Design and Architecture in Functional Programming" (Rus) here.
UPDATE
I shared my book online (first 5 chapters). See post on Reddit
Gabriel's blog post Scalable program architectures might be worth a mention.
Haskell design patterns differ from mainstream design patterns in one
important way:
Conventional architecture: Combine a several components together of
type A to generate a "network" or "topology" of type B
Haskell architecture: Combine several components together of type A to
generate a new component of the same type A, indistinguishable in
character from its substituent parts
It often strikes me that an apparently elegant architecture often tends to fall out of libraries that exhibit this nice sense of homogeneity, in a bottom-up sort of way. In Haskell this is especially apparent - patterns that would traditionally be considered "top-down architecture" tend to be captured in libraries like mvc, Netwire and Cloud Haskell. That is to say, I hope this answer will not be interpreted as an attempt replace any of the others in this thread, just that structural choices can and should ideally be abstracted away in libraries by domain experts. The real difficulty in building large systems, in my opinion, is evaluating these libraries on their architectural "goodness" versus all of your pragmatic concerns.
As liminalisht mentions in the comments, The category design pattern is another post by Gabriel on the topic, in a similar vein.
I have found the paper "Teaching Software Architecture Using Haskell" (pdf) by Alejandro Serrano useful for thinking about large-scale structure in Haskell.
Perhaps you have to go an step back and think of how to translate the description of the problem to a design in the first place. Since Haskell is so high level, it can capture the description of the problem in the form of data structures , the actions as procedures and the pure transformation as functions. Then you have a design. The development start when you compile this code and find concrete errors about missing fields, missing instances and missing monadic transformers in your code, because for example you perform a database Access from a library that need a certain state monad within an IO procedure. And voila, there is the program. The compiler feed your mental sketches and gives coherence to the design and the development.
In such a way you benefit from the help of Haskell since the beginning, and the coding is natural. I would not care to do something "functional" or "pure" or enough general if what you have in mind is a concrete ordinary problem. I think that over-engineering is the most dangerous thing in IT. Things are different when the problem is to create a library that abstract a set of related problems.

What is Haskell used for in the real world? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
There is a lot of hype around Haskell, however, it is hard to get information on how it is used in the real world applications. What are the most popular projects / usages of Haskell and why it excels at solving these problems?
What are some common uses for this
language?
Rapid application development.
If you want to know "why Haskell?", then you need to consider advantages of functional programming languages (taken from https://c2.com/cgi/wiki?AdvantagesOfFunctionalProgramming):
Functional programs tend to be much more terse than their ImperativeLanguage counterparts. Often this leads to enhanced
programmer productivity
FP encourages quick prototyping. As such, I think it is the best software design paradigm for ExtremeProgrammers... but what do I know?
FP is modular in the dimension of functionality, where ObjectOrientedProgramming is modular in the dimension of different
components.
The ability to have your cake and eat it. Imagine you have a complex OO system processing messages - every component might make state
changes depending on the message and then forward the message to some
objects it has links to. Wouldn't it be just too cool to be able to
easily roll back every change if some object deep in the call
hierarchy decided the message is flawed? How about having a history of
different states?
Many housekeeping tasks made for you: deconstructing data structures (PatternMatching), storing variable bindings (LexicalScope with
closures), strong typing (TypeInference), GarbageCollection, storage
allocation, whether to use boxed (pointer-to-value) or unboxed (value
directly) representation...
Safe multithreading! Immutable data structures are not subject to data race conditions, and consequently don't have to be protected by
locks. If you are always allocating new objects, rather than
destructively manipulating existing ones, the locking can be hidden in
the allocation and GarbageCollection system.
Apart from this Haskell has its own advantages such as:
Clear, intuitive syntax inspired by mathematical notation.
List comprehensions to create a list based on existing lists.
Lambda expressions: create functions without giving them explicit names. So it's easier to handle big formulas.
Haskell is completely referentially transparent. Any code that uses I/O must be marked as such. This way, it encourages you to separate code with side effects (e.g. putting text on the screen) from code without (calculations).
Lazy evaluation is a really nice feature:
Even if something would usually cause an error, it will still work as long as you don't use the result. For example, you could put 1 / 0 as the first item of a list and it will still work if you only used the second item.
It is easier to write search programs such as this sudoku solver because it doesn't load every combination at once—it just generates them as it goes along. You can do this in other languages, but only Haskell does this by default.
You can check out following links:
https://c2.com/cgi/wiki?AdvantagesOfFunctionalProgramming
https://learn.microsoft.com/archive/blogs/wesdyer/why-functional-programming-is-important-in-a-mixed-environment
https://web.archive.org/web/20160626145828/http://blog.kickino.org/archives/2007/05/22/T22_34_16/
https://useless-factor.blogspot.com/2007/05/advantage-of-functional-programming.html
I think people in this post are missing the most important point for anyone who has never used a functional programming language: expanding your mind. If you are new to functional programming then Haskell will make you think in ways you've never thought before. As a result your programming in other areas and other languages will improve. How much? Hard to quantify.
There is one good answer for what a general purpose language like Haskell is good for: writing programs in general.
For what it is used for in practice, I've three approaches to establishing that:
A tag cloud of Haskell library and app areas, weighted by frequency on Hackage.
Indicates that it is good for graphics, networking, systems programming, data structures, databases, development, text processing ...
Areas it is used in industry - a lot of DSLs, web apps, compiler design, networking, analysis, systems programming , ...
And finally, my opinion on what it is really strong at:
Problems where correctness matters, domain specific languages, and parallel and concurrent programming
I hope that gives you a sense on how broad your question is, if it is to be answered with any specificity.
One example of Haskell in action is xmonad, a "featureful window manager in less than 1200 lines of code".
From the Haskell Wiki:
Haskell has a diverse range of use
commercially, from aerospace and
defense, to finance, to web startups,
hardware design firms and lawnmower
manufacturers. This page collects
resources on the industrial use of
Haskell.
According to Wikipedia, the Haskell language was created out of the need to consolidate existing functional languages into a common one which could be used for future research in functional-language design.
It is apparent based on the information available that it has outgrown it's original purpose and is used for much more than research. It is now considered a general purpose functional programming language.
If you're still asking yourself, "Why should I use it?", then read the Why use it? section of the Haskell Wiki Introduction.
Haskell is a general purpose programming language. It can be used for anything you use any other language to do. You aren't limited by anything but your own imagination. As for what it's suited for? Well, pretty much everything. There are few tasks in which a functional language does not excel.
And yes, I'm the Rayne from Dreamincode. :)
I would also like to mention that, in case you haven't read the Wikipedia page, functional programming is a paradigm like Object Oriented programming is a paradigm. Just in case you didn't know. Haskell is also functional in the sense that it works; it works quite well at that.
Just because a language isn't an Object Oriented language doesn't mean the language is limited by anything. Haskell is a general-purpose programming language, and is just as general purpose as Java.
I have a cool one, facebook created a automated tool for rewriting PHP code. They parse the source into an abstract syntax tree, do some transformations:
if ($f == false) -> if (false == $f)
I don't know why, but that seems to be their particular style and then they pretty print it.
https://github.com/facebook/lex-pass
We use haskell for making small domain specific languages. Huge amounts of data processing. Web development. Web spiders. Testing applications. Writing system administration scripts. Backend scripts, which communicate with other parties. Monitoring scripts (we have a DSL which works nicely together with munin, makes it much easier to write correct monitor code for your applications.)
All kind of stuff actually. It is just a everyday general purpose language with some very powerful and useful features, if you are somewhat mathematically inclined.
From Haskell:
Haskell is a standardized, general-purpose purely functional
programming language, with
non-strict semantics and strong static
typing. It is named after logician
Haskell Curry.
Basically Haskell can be used to create pretty much anything you would normally create using other general-purpose languages (e.g. C#, Java, C, C++, etc.).
For example, for developing interactive, realtime HTML5 web applications. See Elm, the compiler of which is implemented in Haskell and the syntax of which borrows a lot from Haskell's.
This is a pretty good source for info about Haskell and its uses:
Open Source Haskell Releases and Growth

Why are there not more control structures in most programming languages?

Why do most languages seem to only exhibit fairly basic control structures from a logic point of view? Stuff like If ... then, Else..., loops, For each, switch statement, etc. The standard list seems fairly basic from a logic point of view.
Why is there not much more in the way of logic syntactical sugar? Perhaps something like a proposition engine, where you could feed an array of premises or functions that return complicated self referential interdependent functions and results. Something where you could chain together a complex array of conditions, but represented in a way that was easy and clear to read in the code.
Premise 1
Premise 2 if and only if Premise 1
Premise 3
Premise 4 if Premise 2 and Premise 3
Premise 5 if and only if Premise 4
etc...
Conclusion
I realize that this kind of logic this can be constructed in functions and/or nested conditional statements. But why are there not generally more syntax options for structuring these kind of logical propositions without resulting in hairy looking conditional statements that can be hard to read and debug?
Is there an explanation for the kinds of control structures we typically see in mainstream programming languages? Are there specific control structures you would like to see directly supported by a language's syntax? Does this just add unnecessary complexity to the language?
Have you looked a Prolog? A Prolog program is basically a set of rules that is turned into one big evaluation engine.
From my personal experience Prolog is a bit too weird and I actually prefer ifs, whiles and so on but YMMV.
Boolean algebra is not difficult, and provides a solution for any conditionals you can think of, plus an infinite number of other variants.
You might as well ask for special syntax for "commonly-used" arithmetic expressions. Who is to say what qualifies as commonly-used? And where do you stop adding special-case syntax?
Adding to the complexity of a language parser is not preferable to using constructive expression syntax, combined with extensibility through defining functions.
It's been a long time since my Logic class in college but I would guess it's a mixture of difficulty in writing them into the language vs. the frequency with which they'd be used. I can't say I've ever had the need for them (not that I can recall). For those times that you would require something of that ilk the language designers probably figure you can work out the logic yourself using just the basic structures.
Just my wild guess though.
Because most programming languages don't provide sufficient tools for users to implement them, it is not seen as an important enough feature for the implementer to provide as an extension, and it isn't demanded enough or used enough to be added to the standard.
If you really want it, use a language that provides it, or provides the tools to implement it (for instance, lisp macros).
It sounds as though you are describing a rules engine.
The basic control algorithms we use mirror what processor can do efficiently. Basicly this boils down to simple test-and-branches.
It may seem limiting to you, but many people don't like the idea of writing a simple-looking line of code that requires hundreds or thousands (or millions) of processor cycles to complete. Among these people are systems software folks, who write things like Operating Systems and compilers. Naturally most compilers are going to reflect their own writer's concerns.
It relates to the concern regarding atomicity. If you can express A,B,C,D in simpler structures Y, Z, why not simply not supply A,B,C,D but supply Y, Z instead?
The existing languages reflect 60 years of the tension between atomicity and usability. The modern approach is "small language, large libraries". (C#, Java, C++, etc).
Because computers are binary, all decisions must come down to a 1/0, yes/no, true/false, etc.
To be efficient, the language constructs must reflect this.
Eventually all your code goes down to a micro-code that is executed one instruction at a time. Until the micro-code and accompanying CPU can describe something more colorful, we are stuck with a very plain language.

What does "expressive" mean when referring to programming languages?

I hear this word a lot in sentences like "javascript is a very expressive language". Does it just mean there aren't a lot of rules, or does "expressive" have a more specific meaning?
'Expressive' means that it's easy to write code that's easy to understand, both for the compiler and for a human reader.
Two factors that make for expressiveness:
intuitively readable constructs
lack of boilerplate code
Compare this expressive Groovy, with the less expressive Java eqivalent:
3.times {
println 'Hip hip hooray'
}
vs
for(int i=0; i<3; i++) {
System.out.println("Hip hip hooray");
}
Sometimes you trade precision for expressiveness -- the Groovy example works because it assumes stuff that Java makes you to specify explicitly.
I take it to mean that it's capable of expressing ideas/algorithms/tasks in an easy-to-read and succinct way.
Usually I associate a language being expressive with syntactic sugar, although that's not always the case. Examples in C# of it being expressive would be:
foreach (instead of explicitly writing the iteration)
the using statement (instead of explicitly writing the try/finally)
query expressions (simpler syntax for writing LINQ queries)
extension methods (allowing chaining of method calls, again primarily for LINQ)
anonymous methods and lambda expressions (allowing easier delegate and expression tree construction)
A different example would be generics: before C# got generics, you couldn't express the idea of "an ArrayList containing only strings" in code. (You could document it, of course, or write your own StringList type, but that's not quite the same.)
Neal Grafter has a blog with a good quote from it on the subject...
In my mind, a language construct is expressive if it enables you to write
(and use) an API that can't be written (and used) without the construct.
I'd say that it means you can more naturaly express your thoughts in code.
That's a tough one.
For me, it has to do with the ease at which you can express your intent. This is different in different languages, and also depends a lot on what you want to do, so this is an area where generalizations are common. It's also subjective and personal, of course.
It's easy to think that a more high-level language is always more expressive, but I don't think that is true. It depends on what you're trying to express, i.e. on the problem domain.
If you wanted to print the floating-point number that has the binary pattern 0xdeadbeef, that is far easier to do in C than in Bash, for instance. Yet Bash is, compared to C, an ultra-high-level language. On the other hand, if you want to run a program and collect its output into a text file, that is so simple it's almost invisible in Bash, yet would require at least a page of code in C (assuming a POSIX environment).
Here, a very controversial comparison:
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
So, what are the best languages by these metrics?
If you pick the top 10 based on ranking by median and by IQR, then
take the intersection of them, here’s what’s left. The median and IQR
are listed immediately after the names:
Augeas (48, 28): A domain-specific languages for configuration files
Puppet (52, 65): Another DSL for configuration REBOL (57, 47): A language designed for distributed computing
eC (75, 75): Ecere C, a C derivative with object orientation
CoffeeScript (100, 23): A higher-level language that transcompiles to JavaScript
Clojure (101,51): A Lisp dialect for functional, concurrent programming
Vala (123, 61): An object-oriented language used by GNOME
Haskell (127, 71): A purely functional, compiled language with strong static typing
http://en.wikipedia.org/wiki/Expressive_power
Maybe this site http://gafter.blogspot.com/2007/03/on-expressive-power-of-programming.html can help you
In short he says: In my mind, a language construct is expressive if it enables you to write (and use) an API that can't be written (and used) without the construct. In the context of the Closures for Java proposed language extension, control abstraction APIs are the kind of thing that don't seem to be supported by the competing proposals.
I'd make a distinction between expressivity and expressiveness.
Expressivity - expressive power = the breadth of ideas that can be represented and communicated in a language (with reasonable effort)
Expressiveness - ability to express complex things in a compact way without having to spell out details - the opposite of wordiness (this goes down to "easier to write or understand" or compactness of expression(s) ) This definition is used by that controversial article already mentioned.
The qualifier (with reasonable effort) serves to avoid the sharp edge (and contrived stretches) of "at all" (people "proving" that "everything" can be written in language X even though it's clearly not meant for "that" - example mad "proofs" that "imperative/iterative algo can be written in XSLT")
With these definitions we can reason how expressiveness and expressivity can be antagonists. So called "higher"/declarative languages usually have high expressiveness (compact expressions denote functionality of hundreds, thousands lines of code) but substantially decreased expressivity. They achieve compactness of expression by restricting the domain (things they can work with, ideas one can express in them).
Strictly functional languages have to do huge acrobatics to express very simple things (like counting) if they can at all. When they can't they are incomplete and relegated to a rather narrow, specialized, application.
One thing we didn't touch on is performance. Language that can't give fast result gets relegated to academic, sketching, experimental use. Would you call a language "more expressive" if the same algo runs 100 times slower in it? You'd call it a waste of time :-)
High expressiveness (easier to write or understand) tends to cost a lot of perf, high expressivity usually lets you choose whether to do (approx) the same algo with "lower" (faster) or "higher" (slower) constructs.
Python is good example since it mixes constructs with high expressivity and expressiveness (it's not by chance that it's so bellowed) - as long as they are not mixed that is :-) You'll see articles (including here on StackOverflow) comparing how using very different constructs for the same problem can result in huge perf differences. But it's the fact that you do have a choice (high expressivity) that gives you reasonable trust that you will find (measure) the fastest way - eventually :-)
Quite recent debate: Gremlin vs Cypher (on its way to be enshrined as GQL standard). Cypher is praised for being simple, easier to learn, declarative. But it can't express algos/tactics (in graph crawling) that Gremlin can even in theory and is 100-200 times slower - by admission of the team/company that's writing it and popularizing.
This is why it's important to be aware whether you are talking about expressivity or expressiveness and not reduce it to a vague "expressive".
High expressivity of Gremlin lets you use declarative and imperative "way" as needed and write whole crawler as "engine" (shall we say FSA :-) When I was writing a system with very complex graph crawling, crawlers were in strict C++ (modern - lambdas, higher order templates, packs) based on the style/concepts of Gremlin (you have to think in terms of a crawler being active, 'live' and how far (in the future :-) he can look if you want any chance of being fast).
Gremlin vs Cypher situation is very interesting exactly because they are almost diametric opposites - Cypher all expressiveness (all the way down to simple,easy,declarative), Gremlin all expressivity. If you are writing missile navigation (or algorithmic trading) which one would you chose? How would you know where to look if you call both "expressive" ? :-)

Resources