Using Lucene like a relational database - search

I am just wondering if we could achieve some RDBMS capabilities in lucene.
Example:
1) I have 10,000 project documents (pdf files) which have to be indexed with their content to make them available for search.
2) Every document is related to a SINGLE PROJECT. The project can contain details like project name, number, start date, end date, location, type etc.
I have to search in the contents of the pdf files for a given keyword, but while displaying the results I want to display the project meta data as mentioned in point (2).
My idea is to associate a field called projectId with each pdf file while indexing. Once we get that, we will fire search again for getting project meta data.
This way we could avoid duplicated data. Also, if we want to update the project meta data we will end up updating at a SINGLE PLACE only. Otherwise if we store this meta data with all the pdf doument indexes, we will end up updating all of the documents, which is not the way I am looking for.
please advise.

If I understand you correctly, you have two questions:
Can I store a project id in Lucene and use it for further searches? Yes, you can. This is a common practice.
Can I use this project id to search Lucene for project meta data? Yes, you can. I do not know if this is a good idea. It depends on the frequency of your meta data updates and your access pattern. If the meta data is relatively static, and you only access it by id, Lucene may be a good place to store it. Otherwise, you can use the project id as a primary key to a database table, which could be a better fit.

Sounds like a perfectly good thing to do. The only limitation you'll have (by storing a reference to the project in Lucene rather than the project data itself) is that you won't be able to query both the document text and project metadata at the same time. For example, "documentText:foo OR projectName:bar" . If you have no such requirement, then seems like storing the ID in Lucene which refers to a database row is a fine thing to do.

I am not sure on your overall setup, but maybe Hibernate Search is for you. It would allow you to combine the benefits of a relational database with the power of a fulltext search engine like Lucene. The meta data could live in the database, maybe together with the original pdf documents, while the Lucene documents just contain the searchable data.

This is definitely possible. But always be aware of the fact that you're using Lucene for something that it was not intended for. In general, Lucene is designed for full-text search, not for mapping relational content. So the more complex your system your relational content becomes, the more you'll see a decrease in performance.
In particular, there are a few areas to keep a close eye on:
Storing the value of each field in your index will decrease performance. If you are not overly concerned with sub-second search results, or if your index is relatively small, then this may not be a problem.
Also, be aware that if you are not using the default ranking algorithm, and your custom algorithm requires information about the project in order to calculate the score for each document, this will have a dramatic impact on search performance, as well.
If you need a more powerful index that was designed for relational content, there are hierarchical indexing tools out there (one developed by Apache, called Jackrabbit) that are worth looking into.
As your project continues to grow, you might also check out Solr, also developed by Apache, which provides some added functionality, such as multi-faceted search.

You can use Lucene that way;
Pros:
Full-text search is easy to implement, which is not the case in an RDBMS.
Cons:
Referential integrity: you get it for free in an RDBMS, but in Lucene, you must implement it yourself.

Related

Yii2: How should site-wide search work?

What is the best practice methododology of implementing site-wide search in Yii2?
This question is not about how to implement search specifically, but rather about what kind of approach to use. Should we use Sphinx? Elasticsearch? Or do we use UNION selects to get the data into a DataProvider?
Assume the application is using a relational database to store data. We want to search and display multiple different models. For example, our database contains tables of Books, Authors and Stores. When we search for a keyword we want to display results from all 3 tables (matching Books by title or content, Authors by full name and Stores by name etc).
There are tutorials which show how to use Elasticsearch but assume that our data is stored in the Elasticsearch database, which does not make sense. Our data is already stored in MySQL or PostgreSQL. Does this mean
we need to maintain a duplicate of our data in the Elasticsearch database?
What is the best practice methododology of implementing site-wide search in Yii2?
That depends on many factors, so I cant give you a specific recommendation for your case. Some of the factors to think about are:
What would you like to achieve with this search? Is every little bit in your database a significant search term?
Do you need only full-text-search or a wide range of analytics?
Have you any limits in time or costs?
Can your (tech-)infrastructure handle your ideas?
Is it worth to bring in another extensive technology in the project?
Can you handle additional maintenance tasks to run such a search engine?
And many more ...
In my internal Yii2 Project with a PostgreSQL RDBMS, I decided to use a PostgreSQL Text Search Type called tsvector. Thats good enough for my needs. Why?
You can use Stemming.
Supports Fuzzy search.
Supports basic ranking.
Supports multiple languages.
I highly recommend this blog post Postgres full-text search is Good Enough.

full text search in databases

I have two fairly general question about full text search in a database. I was looking into elastic search and solr and it seems to me that one needs to produce separate documents made up of table entries, which then get searched. So the result of such a search is not actually a database entry? Or did I misunderstand something?
I also looked into whoosh search, which does index table columns and the result of whoosh are actual table rows.
When using solr or elastic search, should I put the row id into the document which gets searched and after I have my result use that id to retrieve the relevant rows from the table? Or is there a better solution?
Another question I have is if I have a id like abc/123.64664, which is stored as a string, is there any advantage in searching such a column with a FTS? It seems to me there is not much to be gained by indexing? Or am I wrong?
thanks
Elasticsearch can store the indexed document, and you can retrieve it as a part of query result. Usually ppl still store the original data in an usual DB, it gives you more reliability and flexibility on reindexing. Mind that ES indexes non-relational data. You can have you data stored in relational manner and compose denormalized documents for indexing.
As for "abc/123.64664" you can index it as tokenized string or you can tune the index for prefix search etc. It's up to you
(TL;DR) Don't think about what your data is structured in your RDBS. Think about what you are searching.
Content storage for good full text search is quite different from relational database standard storage. So, your data going into Search Engine can end up looking quite differently from the way you stored it.
This is all driven by your expected search results. You may increase granularity of the data or - opposite - denormalize it so the parent/related record content shows up in the records you actually want returned as part of search. Text processing (copyField, tokenization, pre-processing, etc) is also where a lot of content modifications happen to make a record findable.
Sometimes, relational databases support full-text search. PostgreSQL is getting better and better at that. But most of the time, relational databases just do not provide enough flexibility to support good relevancy-driven search.
Finally, if the original schema is quite complex, it may make sense to only use search engine to get the right - relevant - IDs out and then merge them in the client code with the details from the original database records.

Solr - Enriching the TermsComponent answer

I'm using Solr 3.5.0 (with WebSphere Commerce). While performing a search, commerce use the suggestion tool to suggest (auto-complete) search terms regarding the letters already typed on the search box.
Currently WebSphere Commerce is using the Solr's TermsComponent. But one of my new requirement is to be abble to enrich the list of suggested terms.
Do you know is there is any way to do that by creating a plain text dictionary, using an other solr component, ... ?
Thanks for reading,
and for your help.
Regards,
Dekx.
I think a plain-text dictionary probably wouldn't be a usable data source (even if you could use it, search linearly through a plain-text file would probably be too slow). If you create an index from you dictionary, you could probably incorporate it in the TermsComponent as a shard (see the TermsComponent documentation, under the heading "Distributed Search Support").
I don't believe TermsComponent supports searching multiple fields, so you'll want to make sure the same field name is used for the terms in the dictionary that you want to use (that is, if you are looking at the "name" field in the index, then create a "name" field in your indexed dictionary as well, rather than a "dictionaryentry" field)
Just to my mind, though, I fail to understand what the value this would be. Generally, it's intended to look at the terms available in the index on that field. "Enriching" it with more data, would just be providing suggestions that it won't actually be able to find when searching. Of course, I don't really know about your search implementation, but in most cases, that would certainly be my thought.

Using Lucene to index private data, should I have a separate index for each user or a single index

I am developing an Azure based website and I want to provide search capabilities using Lucene. (structured json objects would be indexed and stored in Lucene and other content such as Word documents, etc. would be indexed in lucene but stored in blob storage) I want the search to be secure, such that one user would never see a document belonging to another user. I want to allow ad-hoc searches as typed by the user. Lastly, I want to query programmatically to return predefined sets of data, such as "all notes for user X". I think I understand how to add properties to each document to achieve these 3 objectives. (I am listing them here so if anyone is kind enough to answer, they will have better idea of what I am trying to do)
My questions revolve around performance and security.
Can I improve document security by having a separate index for each user, or is including the user's ID as a parameter in each search sufficient?
Can I improve indexing speed and total throughput of the system by having a separate index for each user? My thinking is that having separate indexes would allow me to scale the system by having multiple index writers (perhaps even on different server instances) working at the same time, each on their own index.
Any insight would be greatly appreciated.
Regards,
Nate
Of course, one index.
You can do even better than what you suggested by using ManifoldCF (Apache product that knows how to handle Solr) to manage security.
And one off topic, uninformed suggestion: I'd rather use CloudBees or Heroku (or Amazon) instead of Azure.
Until you will use several machines for indexing I guess it's more convenient to use single index. Lucene community done a lot of work to make indexing process as efficient as it can. So unless you intentionally want to implement distributed indexing I doesn't recommend you to split indexes.
However there are several reasons why you would want to split indexes:
if your machine have several IO devices which could be utilized in parallel. In this case, if you are IO bound, splitting indexes is good idea.
splitting document fields between indexes (this is what ParallelReader is supposed for). This is more exotic form of splitting, but it may be a good idea if search is performed using different groups of fields. Suppose, we have two search query types: the first is using field name and type, and the second is using fields price and discount. If those fields are updated at different rate (I guess, name updates are far more rarely than price updates), updating only part of index would require less IO resources. This will give more overall throughput to the system.

Why should (or shouldn't) a Search Query return back only document IDs?

So for a new project, I'm building a system for an ecommerce site. The idea is to import products from suppliers and instead of inserting them directly into our catalog, we would store all the information in a staging area. Each supplier has their own stage (i.e. table in the database), and then I will flatten the multiple staging areas into a single entity (currently a single table but later on perhaps into Sphinx or Solr). Then our merchandisers would be able to search the staging products' relevant fields (name and description) and be shown a list of products that match and then choose to have those products pushed into the live catalog. The search will query on the single table (the flattened staging areas).
My design calls to only store searchable and filterable fields in the single flattened table - e.g. name, description, supplier_id, supplier_prod_id etc. And the search queries will return only the ID's of the items matching and a class (supplier_id) that would be used to identify which staging area the product is from.
Another senior engineer feels the flattened search table should include other meta fields (which would not be searched on), but could be used when 'pushing' the products from stage to live catalog. He also feels that the query should return all this other information.
I feel pretty strongly about only having searchable fields in the flattened table and having the search return only class/id pairs which could be used to fetch all the other necessary metadata about the product (simple select * from class_table where id in (1,2,3)).
Part of my reasoning is that this will make it easier later on to switch the flattened table from database to a search server like sphinx or solr and the rest of the code wouldn't have to be changed just because implementation of the search changed.
Am I on the right path? How can I convince the other engineer why it is important to keep only searchable fields and return only ID's? Or more specifically, why should a search application return only IDs of objects?
I think that you're on the right path. If those other fields provide no value to either uniquely identify a staged item or to allow the user to filter staged items, then the data is fundamentally useless until the item is pushed to the live environment. If the other engineer feels that the extra metadata will help the users make a more informed decision, then you might as well make those extra fields searchable (thereby meeting your stated purpose for the table(s).)
The only reason I could think of to pre-fetch that other, non-searchable data would be for a performance improvement on the push to the live environment.
You should use each tool for what it does best. A full text search engine, such as Solr or Sphinx, excels at searching textual fields and ranking the hits quickly. It has no special advantage in retrieving stored data in a select-like fashion. A database is optimized for that. So, yes, you are on the right path. Please see Search Engine versus DBMS for other issues involved in deciding what to store inside the search engine.
In the case of sphinx, it only returns document ids and named attributes back to you anyway (attributes being numerical data, for the most part). I'd say you've got the right idea as the other metadata is just a simple JOIN away from the flattened table if you need it.
You can regard Solr as a powerfull index, so as an index gives IDs back, it would be logical that solr does the same.
You can use the solr query parameter fl to ask for identifier only results, for instance fl=id.
However, there's a feature that needs solr to give you back some data too: the highlighting of search terms in the matched documents. If you don't need it, then using solr to retrieve the identifiers only is fine (I assume you need only the documents list, and no other features, like facets, related docs or spell checking).
That said, it should matter how you build your objects in your search function, either from the DB using uniquely solr to retrieve IDs or from solr returned fields (providing they're stored) or even a mix of both. Think solr to get the 'highlighted' content fields and DB for the other ones. Again if you don't need highlighting, this is not an issue.
I'm using Solr with thousands of documents but only return the ids for the following reasons :
For Solr :
- if some sync mistake append, it's not a big deal (especially in your case, displaying a different price can be a big issue... it's like the item will not be in the right place, but the data are right)
- you will save a lot of time because when you don't ask Solr to return the 'description' of documents (I mean many lines of text)
For your DB :
- you can cache your results, so it's even faster with an ID (you don't need all the data from Solr everytime !!!)
- you build you results in the same way (you don't need a specific method when you want to build html from Solr, and an other method from your DB)
I think there is a lot more...

Resources