Does waveInXXX applies a lowpass filter? - audio

When I use the (win32) waveInXXX functions in order to collect samples from a mic at a certain sampling frequency (say 8kHZ, even lower possibly), does the system/soundcard applies a lowpass filter on the input sample, or would i get aliasing?
Should I sample at a higher frequency and do the filtering myself before lowering the sampling freq?

Interesting question. I don't know how you would find out the answer for sure (short of experimenting). I suspect that the actual sample rate of the recording might well be 44.1kHz (or 48kHz) and Windows would then do SRC, in which case a low-pass filter almost definitely would be applied. If the sound-card itself is sampling at 8kHz, one would hope that the hardware would perform the low pass filter beforehand.
In short, don't bother implementing a low-pass filter unless you experience problems with aliasing artefacts.

Related

Is it possible to, as accurately as possible, decompose an audio into MIDI, given the SoundFont that was used?

If I know the SoundFont that a MIDI to audio track has used, can I theoretically reverse the audio back into it's (most likely) MIDI components? If so, what would be one of the best approach to doing this?
The end goal is to try encoding audio (even voice samples) into MIDI such that I can reproduce the original audio in MIDI format better than, say, BearFileConverter. Hopefully with better results than just bandpass filters or FFT.
And no, this is not for any lossy audio compression or sheet transcription, this is mostly for my curiosity.
For monophonic music only, with no background sound, and if your SoundFont synthesis engine and your record sample rates are exactly matched (synchronized to 1ppm or better, have no additional effects, also both using a known A440 reference frequency, known intonation, etc.), then you can try using a set of cross correlations of your recorded audio against a set of synthesized waveform samples at each MIDI pitch from your a-priori known font to create a time line of statistical likelihoods for each MIDI note. Find the local maxima across your pitch range, threshold, and peak pick to find the most likely MIDI note onset times.
Another possibility is sliding sound fingerprinting, but at an even higher computational cost.
This fails in real life due to imperfectly matched sample rates plus added noise, speaker and room acoustic effects, multi-path reverb, and etc. You might also get false positives for note waveforms that are very similar to their own overtones. Voice samples vary even more from any template.
Forget bandpass filters or looking for FFT magnitude peaks, as this works reliably only for close to pure sinewaves, which very few musical instruments or interesting fonts sound like (or are as boring as).

Questions about Filters for Note Onset Detection?

Forgive me if I may come as ignorant but I would like to ask some questions regarding using Filter Algorithms for Note Onset Detection.
Is 'Detection Function' the same as using Filters on the audio signal? Or generally, what is the difference between Detection Function, Filtering (pre-processing the signal), and Peak-Picking?
I've constantly heard about the Low-Pass (or High-Pass) filter, but I am confused. I read that it works on cancelling out certain frequencies that are below (or above) a certain threshold. However, I am using the Time-Domain for calculating Note Onsets (that is, using the change in signal amplitude/energy). So I am not sure on how I can apply low-pass filtering to the time-domain. Any other good filters for note-onset detection?
What is the difference between, Spectral and Phase energy? (I have an idea that spectral refers to the spectogram or frequencies, but I do not know what Phase is)
I am having difficulties with working with dynamic thresholding. Any suggestions for a good algorithm? For example, I have the following signal:
As shown in the image above, there are note onsets that I have missed. A brief description of my algorithm, I calculate and take note of the energy/amplitude changes that occur in the audio signal. Then I get the maximum 'energy change' and based on the sensitivity, I take a percentage of it and set it as the threshold. So this is where the problem of dealing with varying degrees of amplitude/energy comes in. If I set the sensitivity too low, I come up with 'ghost' onsets and if I set the sensitivity too high, I miss out on some onsets. Any suggestions to improve the algorithm (or suggest a new algorithm) that I am using?
I am sure that it is difficult to have 100% accuracy but I need to have a better algorithm for note onset detection compared with what I have now. I would appreciate all the help I can get. Thank you very much!
One way is to detect sudden increases in the amplitude envelope. One way of calculating the amplitude envelope is to rectify the input signal (i.e. take the absolute value) and then low pass filter it. Check out the code examples in http://www.musicdsp.org for time domain filter examples and envelope followers.

FFTW for exponential frequency axis

I have a group of related questions regarding FFTW and audio analysis on Linux.
What is the easiest-to-use, most comprehensive audio library in Linux/Ubuntu that will allow me to decode any of a variety of audio formats (MP3, etc.) and acquire a buffer of raw 16-bit PCM values? gstreamer?
I intend on taking that raw buffer and feeding it to FFTW to acquire frequency-domain data (without complex information or phase information). I think I should use one of their "r2r" methods, probably the DHT. Is this correct?
It seems that FFTW's output frequency axis is discretized in linear increments that are based on the buffer length. It further seems that I can't change this discretization within FFTW so I must do it after the DHT. Instead of a linear frequency axis, I need an exponential axis that follows 2^(i/12). I think I'll have to take the DHT output and run it through some custom anti-aliasing function. Is there a Linux library to do such anti-aliasing? If not, would a basic cosine-based anti-aliasing function work?
Thanks.
This is an age old problem with FFTs and working with audio - ideally we want a log frequency scale for audio but the DFT/FFT has a linear scale. You will need to choose an FFT size that gives sufficient resolution at the low end of your frequency range, and then accumulate bins across the frequency range of interest to give yourself a pseudo-logarithmic representation. There are more complex schemes, but essentially it all boils down to the same thing.
I've seen libsndfile used all over the place:
http://www.mega-nerd.com/libsndfile/
It's LGPL too. It can read pretty much all the open source and lossless audio format you would care about. It doesn't do MP3, however, because of licensing costs.

Pitch recognition of musical notes on a smart phone, pt. 2

As a follow-up to my previous question, if I want my smartphone application to detect a certain musical note, and I only need to know whether the incoming sound is that musical note or not, with a certain amount of fuzziness, to allow the note to be off-key by x cents.
Given that, is there a superior method over others for speed and accuracy? That is, by knowing that the note you are looking for is, say, a #C3, how best to tell if that note is present or not? I'm assuming that looking for a single note would be easier than separating out all waveforms, and then looking at the results for the fundamental frequency.
In the responses to my original question, one respondent suggested that autocorrelation might work well if you know that the notes are within a certain range. I wonder if autocorrelation would then work even better, if you only have to check for the presence or absence of a certain note (+/- x cents).
Those methods being:
Kiss FFT
FFTW
Discrete Wavelet Transform
autocorrelation
zero crossing analysis
octave-spaced filters
DWT
Any thoughts would be appreciated.
As you describe it, you just need to determine if a particular pitch is present. A very simple (fast) detector would just record the equivalent of one period of the waveform, then record another period and correlate them, like an oversimplified (single-lag) autocorrelation. If there's a high match, you know the waveform being recorded is repeating at around the same period, or a harmonic of it.
For instance, to detect 1 kHz, record 1 ms of audio (48 samples at 48 kHz), then record another 1 ms, and compare them (correlate = multiply all samples and sum). If they line up (correlation above some threshold), then you're listening to 1 kHz, 2 kHz, 3 kHz, or some other multiple. Doing several periods would give you more confidence on the match.
A true autocorrelation would tell you which harmonic, specifically, if that's important to you.

Downsampling and applying a lowpass filter to digital audio

I've got a 44Khz audio stream from a CD, represented as an array of 16 bit PCM samples. I'd like to cut it down to an 11KHz stream. How do I do that? From my days of engineering class many years ago, I know that the stream won't be able to describe anything over 5500Hz accurately anymore, so I assume I want to cut everything above that out too. Any ideas? Thanks.
Update: There is some code on this page that converts from 48KHz to 8KHz using a simple algorithm and a coefficient array that looks like { 1, 4, 12, 12, 4, 1 }. I think that is what I need, but I need it for a factor of 4x rather than 6x. Any idea how those constants are calculated? Also, I end up converting the 16 byte samples to floats anyway, so I can do the downsampling with floats rather than shorts, if that helps the quality at all.
Read on FIR and IIR filters. These are the filters that use a coefficent array.
If you do a google search on "FIR or IIR filter designer" you will find lots of software and online-applets that does the hard job (getting the coefficients) for you.
EDIT:
This page here ( http://www-users.cs.york.ac.uk/~fisher/mkfilter/ ) lets you enter the parameters of your filter and will spit out ready to use C-Code...
You're right in that you need apply lowpass filtering on your signal. Any signal over 5500 Hz will be present in your downsampled signal but 'aliased' as another frequency so you'll have to remove those before downsampling.
It's a good idea to do the filtering with floats. There are fixed point filter algorithms too but those generally have quality tradeoffs to work. If you've got floats then use them!
Using DFT's for filtering is generally overkill and it makes things more complicated because dft's are not a contiuous process but work on buffers.
Digital filters generally come in two tastes. FIR and IIR. The're generally the same idea but IIF filters use feedback loops to achieve a steeper response with far less coefficients. This might be a good idea for downsampling because you need a very steep filter slope there.
Downsampling is sort of a special case. Because you're going to throw away 3 out of 4 samples there's no need to calculate them. There is a special class of filters for this called polyphase filters.
Try googling for polyphase IIR or polyphase FIR for more information.
Notice (in additions to the other comments) that the simple-easy-intuitive approach "downsample by a factor of 4 by replacing each group of 4 consecutive samples by the average value", is not optimal but is nevertheless not wrong, nor practically nor conceptually. Because the averaging amounts precisely to a low pass filter (a rectangular window, which corresponds to a sinc in frequency). What would be conceptually wrong is to just downsample by taking one of each 4 samples: that would definitely introduce aliasing.
By the way: practically any software that does some resampling (audio, image or whatever; example for the audio case: sox) takes this into account, and frequently lets you choose the underlying low-pass filter.
You need to apply a lowpass filter before you downsample the signal to avoid "aliasing". The cutoff frequency of the lowpass filter should be less than the nyquist frequency, which is half the sample frequency.
The "best" solution possible is indeed a DFT, discarding the top 3/4 of the frequencies, and performing an inverse DFT, with the domain restricted to the bottom 1/4th. Discarding the top 3/4ths is a low-pass filter in this case. Padding to a power of 2 number of samples will probably give you a speed benefit. Be aware of how your FFT package stores samples though. If it's a complex FFT (which is much easier to analyze, and generally has nicer properties), the frequencies will either go from -22 to 22, or 0 to 44. In the first case, you want the middle 1/4th. In the latter, the outermost 1/4th.
You can do an adequate job by averaging sample values together. The naïve way of grabbing samples four by four and doing an equal weighted average works, but isn't too great. Instead you'll want to use a "kernel" function that averages them together in a non-intuitive way.
Mathwise, discarding everything outside the low-frequency band is multiplication by a box function in frequency space. The (inverse) Fourier transform turns pointwise multiplication into a convolution of the (inverse) Fourier transforms of the functions, and vice-versa. So, if we want to work in the time domain, we need to perform a convolution with the (inverse) Fourier transform of box function. This turns out to be proportional to the "sinc" function (sin at)/at, where a is the width of the box in the frequency space. So at every 4th location (since you're downsampling by a factor of 4) you can add up the points near it, multiplied by sin (a dt) / a dt, where dt is the distance in time to that location. How nearby? Well, that depends on how good you want it to sound. It's common to ignore everything outside the first zero, for instance, or just take the number of points to be the ratio by which you're downsampling.
Finally there's the piss-poor (but fast) way of just discarding the majority of the samples, keeping just the zeroth, the fourth, and so on.
Honestly, if it fits in memory, I'd recommend just going the DFT route. If it doesn't use one of the software filter packages that others have recommended to construct the filter for you.
The process you're after called "Decimation".
There are 2 steps:
Applying Low Pass Filter on the data (In your case LPF with Cut Off at Pi / 4).
Downsampling (In you case taking 1 out of 4 samples).
There are many methods to design and apply the Low Pass Filter.
You may start here:
http://en.wikipedia.org/wiki/Filter_design
You could make use of libsamplerate to do the heavy lifting. Libsamplerate is a C API, and takes care of calculating the filter coefficients. You to select from different quality filters so that you can trade off quality for speed.
If you would prefer not to write any code, you could just use Audacity to do the sample rate conversion. It offers a powerful GUI, and makes use of libsamplerate for it's sample rate conversion.
I would try applying DFT, chopping 3/4 of the result and applying inverse DFT. I can't tell if it will sound good without actually trying tough.
I recently came across BruteFIR which may already do some of what you're interested in?
You have to apply low-pass filter (removing frequencies above 5500 Hz) and then apply decimation (leave every Nth sample, every 4th in your case).
For decimation, FIR, not IIR filters are usually employed, because they don't depend on previous outputs and therefore you don't have to calculate anything for discarded samples. IIRs, generally, depends on both inputs and outputs, so, unless a specific type of IIR is used, you'd have to calculate every output sample before discarding 3/4 of them.
Just googled an intro-level article on the subject: https://www.dspguru.com/dsp/faqs/multirate/decimation

Resources