Multiple instances of QWebView (qt jambi) - multithreading

Good day,
How I can use QWebView with method load() in threads?
I have create QWebView in main(!) thread, but I can't use load() with QWebView (used signals/slots from other threads to do it):
QWebView wv = new QWebView(); //ok
QUrl url = new QUrl("http://somesite.com/"); //ok
wv.load(url); //ERROR: QObject: Cannot create children for a parent that is in a different thread.
In c++ it work. Please, help me!
p.s. sorry for my English

I know this is an old question but for anyone else interested, the problem is creating children on a different thread. To marshal back to the owning thread, do something like the following:
public void loadURL(String url) {
QApplication.invokeLater(new LoadURL(url));
}
private class LoadURL implements Runnable {
private String url;
public LoadURL(String url) {
this.url = url;
}
public void run() {
QNetworkRequest nreq = new QNetworkRequest(new QUrl(this.url));
load(nreq);
}
}

Related

how to do something when liferay module stop

i am making cron job like loop to do something using new thread.
when module stop, this thread keeps running, so when i deployed updated module, i'm afraid it will make duplicate thread doing similar task
#Component(immediate = true, service = ExportImportLifecycleListener.class)
public class StaticUtils extends Utils{
private StaticUtils() {}
private static class SingletonHelper{
private static final StaticUtils INSTANCE = new StaticUtils();
}
public static StaticUtils getInstance() {
return SingletonHelper.INSTANCE;
}
}
public class Utils extends BaseExportImportLifecycleListener{
public Utils() {
startTask();
}
protected Boolean CRON_START = true;
private void startTask() {
new Thread(new Runnable() {
public void run() {
while (CRON_START) {
System.out.println("test naon bae lah ");
}
}
}).start();
}
#Deactivate
protected void deactivate() {
CRON_START = false;
System.out.println(
"cron stop lah woooooooooooooooooy");
}
}
i'm using liferay 7
I have populated task that i store from db, so this thread is checking is there a task that it must do, then if it exist execute it.
I'm quite new in osgi and liferay. i've try to use scheduler and failed and also exportimportlifecycle listener but dont really get it yet
think again: Do you really need something to run all the time in the background, or do you just need some asynchronous processing in the background, when triggered? It might be better to start a background task as a one-off, that automatically terminates
Liferay provides an internal MessageBus, that you can utilize to listen to events and implement background processing, without the need for a custom thread
You're in the OSGi world, so you can utilize #Activate, #Modified, #Deactivate (from org.osgi.service.component.annotations) or use a org.osgi.framework.BundleActivator.
But, in general, it's preferable if you don't start your own thread

construct GUI with event dispatch thread and make assignment

I'd like to do the following without making the variable gui final:
public class MainClass
{
GUIClass gui;
Runnable r = new Runnable()
{
public void run()
{
// this won't work!
gui = new GUIClass();
}
};
SwingUtilities.invokeLater(r);
Controller c = new Controller(gui);
}
How can I achieve that? I want to construct the gui via the EDT. At the same time I want to assign that new instance to the variable gui. But this won't work without making gui final. I don't want to use final because it's not possible in my context. Anyone any idea how this could be solved? The code above is of course executed within the main method. But for some reasons I couldn't post it here as an error occured.
For all those who should be interested in this issue someday, here's the solution:
I made a mistake. Actually you should differentiate between constructing the GUI-Object and making it visible. So here is the way to do that:
public class MainClass
{
final GUIClass gui = new GUIClass();
Runnable r = new Runnable()
{
public void run()
{
gui.pack();
gui.setVisible(true);
}
};
SwingUtilities.invokeLater(r);
Controller c = new Controller(gui);
}

JavaFX: How to bind two values?

I'm new guy here :)
I have a small problem which concerns binding in JavaFX. I have created Task which is working as a clock and returns value which has to be set in a special label (label_Time). This label presents how many seconds left for player's answer in quiz.
The problem is how to automatically change value in label using the timer task? I tried to link value from timer Task (seconds) to label_Time value in such a way...
label_Time.textProperty().bind(timer.getSeconds());
...but it doesn't work. Is it any way to do this thing?
Thanks in advance for your answer! :)
Initialize method in Controller class:
public void initialize(URL url, ResourceBundle rb) {
Timer2 timer = new Timer2();
label_Time.textProperty().bind(timer.getSeconds());
new Thread(timer).start();
}
Task class "Timer2":
public class Timer2 extends Task{
private static final int SLEEP_TIME = 1000;
private static int sec;
private StringProperty seconds;
public Timer2(){
Timer2.sec = 180;
this.seconds = new SimpleStringProperty("180");
}
#Override protected StringProperty call() throws Exception {
int iterations;
for (iterations = 0; iterations < 1000; iterations++) {
if (isCancelled()) {
updateMessage("Cancelled");
break;
}
System.out.println("TIK! " + sec);
seconds.setValue(String.valueOf(sec));
System.out.println("TAK! " + seconds.getValue());
// From the counter we subtract one second
sec--;
//Block the thread for a short time, but be sure
//to check the InterruptedException for cancellation
try {
Thread.sleep(10);
} catch (InterruptedException interrupted) {
if (isCancelled()) {
updateMessage("Cancelled");
break;
}
}
}
return seconds;
}
public StringProperty getSeconds(){
return this.seconds;
}
}
Why your app does not work
What is happening is that you run the task on it's own thread, set the seconds property in the task, then the binding triggers an immediate update of the label text while still on the task thread.
This violates a rule for JavaFX thread processing:
An application must attach nodes to a Scene, and modify nodes that are already attached to a Scene, on the JavaFX Application Thread.
This is the reason that your originally posted program does not work.
How to fix it
To modify your original program so that it will work, wrap the modification of the property in the task inside a Platform.runLater construct:
Platform.runLater(new Runnable() {
#Override public void run() {
System.out.println("TIK! " + sec);
seconds.setValue(String.valueOf(sec));
System.out.println("TAK! " + seconds.getValue());
}
});
This ensures that when you write out to the property, you are already on the JavaFX application thread, so that when the subsequent change fires for the bound label text, that change will also occur on the JavaFX application thread.
On Property Naming Conventions
It is true that the program does not correspond to JavaFX bean conventions as Matthew points out. Conforming to those conventions is both useful in making the program more readily understandable and also for making use of things like the PropertyValueFactory which reflect on property method names to allow table and list cells to automatically update their values as the underlying property is updated. However, for your example, not following JavaFX bean conventions does not explain why the program does not work.
Alternate Solution
Here is an alternate solution to your countdown binding problem which uses the JavaFX animation framework rather than the concurrency framework. I prefer this because it keeps everything on the JavaFX application thread and you don't need to worry about concurrency issues which are difficult to understand and debug.
import javafx.animation.*;
import javafx.application.Application;
import javafx.beans.*;
import javafx.beans.binding.Bindings;
import javafx.beans.property.*;
import javafx.event.*;
import javafx.geometry.Pos;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javafx.util.Duration;
public class CountdownTimer extends Application {
#Override public void start(final Stage stage) throws Exception {
final CountDown countdown = new CountDown(10);
final CountDownLabel countdownLabel = new CountDownLabel(countdown);
final Button countdownButton = new Button(" Start ");
countdownButton.setOnAction(new EventHandler<ActionEvent>() {
#Override public void handle(ActionEvent t) {
countdownButton.setText("Restart");
countdown.start();
}
});
VBox layout = new VBox(10);
layout.getChildren().addAll(countdownLabel, countdownButton);
layout.setAlignment(Pos.BASELINE_RIGHT);
layout.setStyle("-fx-background-color: cornsilk; -fx-padding: 20; -fx-font-size: 20;");
stage.setScene(new Scene(layout));
stage.show();
}
public static void main(String[] args) throws Exception {
launch(args);
}
}
class CountDownLabel extends Label {
public CountDownLabel(final CountDown countdown) {
textProperty().bind(Bindings.format("%3d", countdown.timeLeftProperty()));
}
}
class CountDown {
private final ReadOnlyIntegerWrapper timeLeft;
private final ReadOnlyDoubleWrapper timeLeftDouble;
private final Timeline timeline;
public ReadOnlyIntegerProperty timeLeftProperty() {
return timeLeft.getReadOnlyProperty();
}
public CountDown(final int time) {
timeLeft = new ReadOnlyIntegerWrapper(time);
timeLeftDouble = new ReadOnlyDoubleWrapper(time);
timeline = new Timeline(
new KeyFrame(
Duration.ZERO,
new KeyValue(timeLeftDouble, time)
),
new KeyFrame(
Duration.seconds(time),
new KeyValue(timeLeftDouble, 0)
)
);
timeLeftDouble.addListener(new InvalidationListener() {
#Override public void invalidated(Observable o) {
timeLeft.set((int) Math.ceil(timeLeftDouble.get()));
}
});
}
public void start() {
timeline.playFromStart();
}
}
Update for additional questions on Task execution strategy
Is it possible to run more than one Task which includes a Platform.runLater(new Runnable()) method ?
Yes, you can use multiple tasks. Each task can be of the same type or a different type.
You can create a single thread and run each task on the thread sequentially, or you can create multiple threads and run the tasks in parallel.
For managing multiple tasks, you can create an overseer Task. Sometimes it is appropriate to use a Service for managing the multiple tasks and the Executors framework for managing multiple threads.
There is an example of a Task, Service, Executors co-ordination approach: Creating multiple parallel tasks by a single service In each task.
In each task you can place no runlater call, a single runlater call or multiple runlater calls.
So there is a great deal of flexibility available.
Or maybe I should create one general task which will be only take data from other Tasks and updating a UI?
Yes you can use a co-ordinating task approach like this if complexity warrants it. There is an example of such an approach in in Render 300 charts off screen and save them to files.
Your "Timer2" class doesn't conform to the JavaFX bean conventions:
public String getSeconds();
public void setSeconds(String seconds);
public StringProperty secondsProperty();

JavaFX 2.1: Toolkit not initialized

My application is Swing-based. I would like to introduce JavaFX and configure it to render a Scene on a secondary display.
I could use a JFrame to hold a JFXPanel which could hold a JFXPanel but I would like to achieve this with JavaFX API.
Subclassing com.sun.glass.ui.Application and using Application.launch(this) is not an option because the invoking thread would be blocked.
When instantiating a Stage from Swing EDT, the error I get is:
java.lang.IllegalStateException: Toolkit not initialized
Any pointers?
EDIT: Conclusions
Problem: Non-trivial Swing GUI application needs to run JavaFX components. Application's startup process initializes the GUI after starting up a dependent service layer.
Solutions
Subclass JavaFX Application class and run it in a separate thread e.g.:
public class JavaFXInitializer extends Application {
#Override
public void start(Stage stage) throws Exception {
// JavaFX should be initialized
someGlobalVar.setInitialized(true);
}
}
Sidenote: Because Application.launch() method takes a Class<? extends Application> as an argument, one has to use a global variable to signal JavaFX environment has been initialized.
Alternative approach: instantiate JFXPanel in Swing Event Dispatcher Thread:
final CountDownLatch latch = new CountDownLatch(1);
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new JFXPanel(); // initializes JavaFX environment
latch.countDown();
}
});
latch.await();
By using this approach the calling thread will wait until JavaFX environment is set up.
Pick any solution you see fit. I went with the second one because it doesn't need a global variable to signal the initialization of JavaFX environment and also doesn't waste a thread.
Found a solution. If I just create a JFXPanel from Swing EDT before invoking JavaFX Platform.runLater it works.
I don't know how reliable this solution is, I might choose JFXPanel and JFrame if turns out to be unstable.
public class BootJavaFX {
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
new JFXPanel(); // this will prepare JavaFX toolkit and environment
Platform.runLater(new Runnable() {
#Override
public void run() {
StageBuilder.create()
.scene(SceneBuilder.create()
.width(320)
.height(240)
.root(LabelBuilder.create()
.font(Font.font("Arial", 54))
.text("JavaFX")
.build())
.build())
.onCloseRequest(new EventHandler<WindowEvent>() {
#Override
public void handle(WindowEvent windowEvent) {
System.exit(0);
}
})
.build()
.show();
}
});
}
});
}
}
Since JavaFX 9, you can run JavaFX application without extending Application class, by calling Platform.startup():
Platform.startup(() ->
{
// This block will be executed on JavaFX Thread
});
This method starts the JavaFX runtime.
The only way to work with JavaFX is to subclass Application or use JFXPanel, exactly because they prepare env and toolkit.
Blocking thread can be solved by using new Thread(...).
Although I suggest to use JFXPanel if you are using JavaFX in the same VM as Swing/AWT, you can find more details here: Is it OK to use AWT with JavaFx?
I checked the source code and this is to initialize it
com.sun.javafx.application.PlatformImpl.startup(()->{});
and to exit it
com.sun.javafx.application.PlatformImpl.exit();
I used following when creating unittests for testing javaFX tableview updates
public class testingTableView {
#BeforeClass
public static void initToolkit() throws InterruptedException
{
final CountDownLatch latch = new CountDownLatch(1);
SwingUtilities.invokeLater(() -> {
new JFXPanel(); // initializes JavaFX environment
latch.countDown();
});
if (!latch.await(5L, TimeUnit.SECONDS))
throw new ExceptionInInitializerError();
}
#Test
public void updateTableView() throws Exception {
TableView<yourclassDefiningEntries> yourTable = new TableView<>();
.... do your testing stuff
}
}
even though this post is not test related, then it helped me to get my unittest to work
without the BeforeClass initToolkit, then the instantiation of TableView in the unittest would yield a message of missing toolkit
There's also way to initialize toolkit explicitly, by calling:
com.sun.javafx.application.PlatformImpl#startup(Runnable)
Little bit hacky, due to using *Impl, but is useful, if you don't want to use Application or JXFPanel for some reason.
re-posting myself from this post
private static Thread thread;
public static void main(String[] args) {
Main main = new Main();
startup(main);
thread = new Thread(main);
thread.start();
}
public static void startup(Runnable r) {
com.sun.javafx.application.PlatformImpl.startup(r);
}
#Override
public void run() {
SoundPlayer.play("BelievexBelieve.mp3");
}
This is my solution. The class is named Main and implements Runnable. Method startup(Runnable r) is the key.
Using Jack Lin’s answer, I found that it fired off the run() twice. With a few modifications that also made the answer more concise, I offer the following;
import com.sun.javafx.application.PlatformImpl;
public class MyFxTest implements Runnable {
public static void main(String[] args) {
MyFxTest main = new MyFxTest();
PlatformImpl.startup((Runnable) main);
}
#Override
public void run() {
// do your testing;
System.out.println("Here 'tis");
System.exit(0); // Optional
}
}

repainting multiple JPanel from a single "control" panel

so i'm trying to set up an application where i have multiple panels inside a jframe. lets say 3 of them are purely for display purposes, and one of them is for control purposes. i'm using a borderLayout but i don't think the layout should really affect things here.
my problem is this: i want the repainting of the three display panels to be under the control of buttons in the control panel, and i want them to all execute in sync whenever a button on the control panel is pressed. to do this, i set up this little method :
public void update(){
while(ButtonIsOn){
a.repaint();
b.repaint()
c.repaint();
System.out.println("a,b, and c should have repainted");
}
}
where a,b, and c are all display panels and i want a,b,and c to all repaint continously until i press the button again. the problem is, when i execute the loop, the message prints in an infinite loop, but none of the panels do anything, ie, none of them repaint.
i've been reading up on the event dispatch thread and swing multithreading, but nothing i've found so far has really solved my problem. could someone give me the gist of what i'm doing wrong here, or even better, some sample code that handles the situation i'm describing? thanks...
The java.util.concurrent package provides very powerful tools for concurrent programing.
In the code below, I make use of a ReentrantLock (which works much like the Java synchronized keyword, ensuring mutually exclusive access by multiple threads to a single block of code). The other great thing which ReentrantLock provides are Conditions, which allow Threads to wait for a particular event before continuing.
Here, RepaintManager simply loops, calling repaint() on the JPanel. However, when toggleRepaintMode() is called, it blocks, waiting on the modeChanged Condition until toggleRepaintMode() is called again.
You should be able to run the following code right out of the box. Pressing the JButton toggle repainting of the JPanel (which you can see working by the System.out.println statements).
In general, I'd highly recommend getting familiar with the capabilities that java.util.concurrent offers. There's lots of very powerful stuff there. There's a good tutorial at http://docs.oracle.com/javase/tutorial/essential/concurrency/
import java.awt.Component;
import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Collection;
import java.util.Collections;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class RepaintTest {
public static void main(String[] args) {
JFrame frame = new JFrame();
JPanel panel = new JPanel()
{
#Override
public void paintComponent( Graphics g )
{
super.paintComponent( g );
// print something when the JPanel repaints
// so that we know things are working
System.out.println( "repainting" );
}
};
frame.add( panel );
final JButton button = new JButton("Button");
panel.add(button);
// create and start an instance of our custom
// RepaintThread, defined below
final RepaintThread thread = new RepaintThread( Collections.singletonList( panel ) );
thread.start();
// add an ActionListener to the JButton
// which turns on and off the RepaintThread
button.addActionListener(new ActionListener() {
#Override
public void actionPerformed(ActionEvent arg0) {
thread.toggleRepaintMode();
}
});
frame.setSize( 300, 300 );
frame.setVisible( true );
}
public static class RepaintThread extends Thread
{
ReentrantLock lock;
Condition modeChanged;
boolean repaintMode;
Collection<? extends Component> list;
public RepaintThread( Collection<? extends Component> list )
{
this.lock = new ReentrantLock( );
this.modeChanged = this.lock.newCondition();
this.repaintMode = false;
this.list = list;
}
#Override
public void run( )
{
while( true )
{
lock.lock();
try
{
// if repaintMode is false, wait until
// Condition.signal( ) is called
while ( !repaintMode )
try { modeChanged.await(); } catch (InterruptedException e) { }
}
finally
{
lock.unlock();
}
// call repaint on all the Components
// we're not on the event dispatch thread, but
// repaint() is safe to call from any thread
for ( Component c : list ) c.repaint();
// wait a bit
try { Thread.sleep( 50 ); } catch (InterruptedException e) { }
}
}
public void toggleRepaintMode( )
{
lock.lock();
try
{
// update the repaint mode and notify anyone
// awaiting on the Condition that repaintMode has changed
this.repaintMode = !this.repaintMode;
this.modeChanged.signalAll();
}
finally
{
lock.unlock();
}
}
}
}
jComponent.getTopLevelAncestor().repaint();
You could use SwingWorker for this. SwingWorker was designed to perform long running tasks in the background without blocking the event dispatcher thread. So, you need to extend SwingWorker and implement certain methods that will make sense to you. Note that all long running action should happen in the doInBackground() method, and the Swing UI elements should be updated only on the done() method.
So here is an example :
class JPanelTask extends SwingWorker<String, Object>{
JPanel panel = null;
Color bg = null;
public JPanelTask(JPanel panel){
this.panel = panel;
}
#Override
protected String doInBackground() throws Exception {
//loooong running computation.
return "COMPLETE";
}
#Override
protected void done() {
panel.repaint();
}
}
Now, in your "control" button's action performed event, you could do the following :
controlButton.addActionListener(new ActionListener() {
#Override
public void actionPerformed(ActionEvent arg0) {
JPanelTask task1 = new JPanelTask(panel1);
task1.execute();
JPanelTask task2 = new JPanelTask(panel2);
task2.execute();
//so on..
}
});
Another way is using javax.swing.Timer. Timer helps you to fire a change to your ui elements in a timely fasthion.This may not be the most appropriate solution. But it gets the work done too.
Again you should be careful about updating UI elements in right places.

Resources