Is it possible to compile Linux kernel with something other than gcc - linux

I wonder if someone managed to compile the Linux kernel with some other compiler than gcc. Or if someone have ever tried? Question may seem to be silly or academic, but it arose when I thought about answers to: Are C++ int operations atomic on the mips architecture
It seems that the atomicity of some operations depends not only on the cpu architecture, but also on used compiler. So, I wonder if in Linux world some compiler other than gcc even exists.

Linux explicitly depends on some gcc extensions, so any other compiler must be compatible with the needed extensions, in that case.
This is not a "no", since it's of course not impossible for a separate compiler vendor/developer to track gcc's extensions, just a data point that might help you search.

At some point tcc would process and run the linux kernel source. SO that would be a yes, I guess.
::Hat tip to ephemient in the comments.::

The LLVM developers are trying to compile it with clang. The meta-bug on compiling the Linux kernel with clang has more details (the dependency tree for that meta-bug shows how little seems to be left).

There have been some efforts (and patches) to compile an early version of the 2.6 kernel with icc.

Yup. I've done this. See [cfe-dev] Clang builds a working Linux Kernel (Boots to RL5 with SMP, networking and X, self hosts).

IBM's compiler was able to do it some Linux versions ago, but I'm not sure about now, nor am I sure of how well IBM optimized the kernel as instructed. All I know is, they got it to build.
As Linux is self hosting (with its own libc) and has been developed from the start with gcc (and gcc cross compilers), its sort of silly to use anything else.
I think mainly, playing nice with preprocessor macros and instructed optimizations is the biggest obstacle (not even getting into a departure from gas), as GNU has basically written the book on the above, and extended it. Beyond that, Linux tunes its optimizations to work with gcc, for instance, don't get caught using 'volatile' in the kernel without a damn good reason. Using inline and actually having the compiler agree is another challenge.
Linus is the first one to call GCC an &*#$ hole, which makes for a better compiler.
This is why we have the great GNU/Linux debate.

Many, many, many years ago, it was actually possible to compile the kernel with g++, and as far as I remember part of the motivation was because C++ had stronger type check, not necessarily to have g++ to produce object files. But as Neil Butterworth have pointed out, Linus is not particular fond of C++, and there is zero chance that this ever will be possible again.

EKOPath 4 Compiler, not now. but probably with some minor patches
https://github.com/path64/repositories
http://www.pathscale.com/ekopath-compiler-suite

I am just now working on compile Linux kernel using Open64 for MIPS archtecture, and some other guys are now just working for make Open64 can build for X86 arch. Now the kernel can partly run, and still have Run fail errors.
However for the atomic problem, at least i have not come up with it. And I do not think it is really a problem.The reasons are:
The Linux kernel have already been a collection of source code, which can successfully build with GCC, so it is only the compiler's problem if it can not build it, or the built kernel runs fail.
If a compiler want to successfully build Linux kernel, it should obide the GNU C Extension, and this extension will give a clear discription of what a atomic operation is, so such a compile only need to generate code according to this extension.

My non-technical guess: The Linux Kernel can't currently (2009) be compiled with any compiler other than the GNU compiler, gcc.
I say this on the basis that I've heard Richard Stallman, with some conviction, say Linux should be called GNU/Linux because the kernel is "only 1 part of the operating system" and I'm guessing he would not be able to say this if the kernel was non-dependant on GNU (e.g. a tonne of embedded devices run a Linux OS without any GNU software).
As I said, just a guess, let me know if I'm wrong...

Related

Choosing a compact c/c++ compiler for ARM based Embedded Linux System

I am working on ARM cortex A7 based embedded system that runs Linux. I am looking for c/c++ compiler (as GCC is around 100 mb) which is compact in size and reliable. I have shortlisted some as SDCC, TCC, OTCC, Digital Mars, NWCC, LCC, Small C, portable C compiler.
I want to know if compilers are dependent on operating system or hardware and how should I proceed to start strip down the list. I am not an expert and I am learning about Linux systems and embedded environment. If you think I am asking wrong question or going in wrong direction, Kindly let me know.
Thanks you
Note
I already have cross compiler on my linux (laptop) system. I compile program to be loaded using this only. But the embedded system is supposed to be able to load with a particular language designed by us, I am hoping to convert that language in to equivalent C code and run it. I tried writing my own interpreter in c that accepts the code in other language and parse it and executes but it's little slow, I tried same instructions in (directly written in) C with satisfactory results.
Edit:
I ended up using g++ on my system to compile code, as main function of system was to use generated code.
Generally, when dealing with embedded systems you are better off cross-compiling and sending the binaries than compiling directly on the device. Even though it may consume you some time setting up the toolchain on the beginning, it definitely pays you back with build time.
There are several pre-built Linaro GCC which are cross-compilers having (generally) x86 linux as host and arm linux as target platforms. This way, you should not worry about compiler size.

Compile linux gcc in windows - nvcc in windows

here is an interesting question that, if answered positively, would make cross compiling a whole lot easier.
Since gcc is written in C++, would it be possible to recompile the Linux gcc compiler on Windows MinGW G++ or VSC++ compiler, so that the resulting Windows executable would be able to compile c code to linux programs?
If so, what would be needed to do that?
So to simplify, here is what I want to do.
mingw32-g++ gcc.cpp -o gcc.exe
The command will probably not work because it would probably have been done before if it were that easy. What I ask is if this concept would be even possible.
Edit: thanks and expanding the question to NVCC
fvu was able to answer the question for the gcc compiler (please use the answer button next time), so if you had the same question you can thank him (or her) .
As an extention to the question, would it be possible to edit or recompile nvcc or the things it uses so that nvcc.exe can create a linux program from CUDA C code? I read that the windows variant of nvcc can only use the Visual Studio cl.exe and not MinGW or CygWin.
Is it possible to create linux programs with cl.exe? And if so, could that be used to generate linux programs with nvcc.exe?
Read the chapter on cross compiling in the gcc manual, gcc's architecture makes it quite easy to set up a toolchain where the target is different from the development machine.
I never went the exact route you describe, but I have built toolchains under Windows that target ARM9 embedded Linux machines, works like a charm - using cygwin btw. Look here for a gentle introduction. Also very useful info here.
I am not going to comment on what can be done with respect to nvcc, CUDA is somewhere on my (long) list of stuff to tinker with...
Now, can cl generate Linux binaries? The answer to this question is "sort of" : as long as the target processor is from a processor family that's supported by cl, the object files generated by it should probably not contain anything that would inhibit its execution on Linux, as they'll just contain machine code. That's the theory. However:
as Linux uses another executable format, you will need a Windows-hosted linker that understands Windows style object files (afaik, COFF), and links them together to a Linux style (ELF) executable. I never heard of such a beast, although in theory it could exist
the startup code (a tiny program that wraps around your main function) will also be different and needs to be written
and some more, eg library related issues
So, the practical answer is no, although it might be a nice summer project for a bored student :)

GCC/G++: building without GNU unique object symbols for older Linux kernels

I am currently working on updating the build system for a large pile of code, which happens to include a Linux C++ project. It would be nice if all of the developers here could run a build when hacking around with their own ideas, so I was examining if it would be possible to build this on vaguely modern Linux systems despite the target system being 2.6.18.
By 'vaguely modern' I am estimating something like GCC 4.5+, something that a distribution in the past year or two might come with. Currently I solve the libstdc++ issue by compiling that in statically, and any glibc issues are neatly worked around by remapping to old versions of the memcpy symbols (and so on) with a quick bit of wrapper code. So far so good.
The one problem I can't seem to completely figure out is that certain symbols built into the executable from the .o files are of type 'u', which is a GNU unique object, an extension to the ELF standard that 2.6.18 doesn't seem to recognise at all. This means the executable won't run because it can't find the symbols, though they are in fact present (just of type '?' on the target, from 'nm').
One can disable the use of GNU unique objects when compiling G++ but it's not exactly the most convenient solution. I can't see any way to just disable it when compiling code (distro gcc/g++ invariably has this option on), and I imagine the only way to get the target system to recognise it would be to update ld-linux and the kernel. That's almost certainly not going to happen.
Is there an option I haven't found to disable these symbol types? Or perhaps is there some neat way around this, or something that I'm missing? I am beginning to suspect it will just have to be compiled on G++ 4.1.x, which will mean an old Linux installation or building that from source.
I was trying to deal with the same problem (which led me to finding this question) and after a bunch of research came to the definitive conclusion that no, you are not missing anything, there is no way around this besides compiling your own g++. See this recent question on the gcc-help mailing list:
http://gcc.gnu.org/ml/gcc-help/2013-01/msg00008.html
I compared gcc sources and found that you can go as high as stock 4.4, as unique symbols were added in 4.5. However on RHEL/CentOS 6 they default to 4.4 but patched unique symbol support into it, so as usual one must beware of distribution-specific gcc versions. For me this is a huge bummer as it means that things compiled on RHEL 6 can't be run on RHEL 5, even with a copy of libstdc++ made just for gcc 4.4 + RHEL 5.
Here's the message where unique symbol support was first proposed, by the way:
https://gcc.gnu.org/ml/gcc-patches/2009-07/msg01240.html
If you search around you'll find that people have complained about it on other lists for various reasons, but I guess it's here to stay.

The compilation of the compiler could affect the compiled programs?

Probably my question sounds weird, but my point is: i have to compile a program using GCC, if i compile GCC from the source i will get a slight edge in terms of performances from a software compiled with the fresh new GCC? What I should expect?
You won't get any faster programs out of a compiler built with optimizing flags. Since a program is the compilers' output, and optimizations don't change the output of a correct program, the programs stay the same.
You might, however, profit from new available options if your distributor ships an incomplete compiler. Look through the GCC manual for any options you want to enable (like certain target architecture variants), and if you can't enable them in your current compiler build, there might be potential in a custom-built compiler. However, it is unlikely that it's worth it.
Not unless you're building a newer version of gcc, or enabling cloog, graphite, etc.
the performance difference usually is nothing or is negligible.
in a very rare, really very rare cases you can see noticeable difference, but not always performance improvement. degradation is possible too.

Is assembler portable between Linux distros?

Is a program shipped in assembler format portable between Linux distributions (modulo CPU architecture differences)?
Here's the background to my question: I'm working on a new programming language (named Aklo), whose modus operandi will be the classic compiling to .s and feeding the result to the GNU assembler.
Obviously it would be nice ultimately to have the implementation written in itself, but I had resigned myself to maintaining it in C++ to solve the chicken and egg problem: suppose you download the compiler for the first time and it is itself written in Aklo, how do you compile it? As I understand it, different Linux distributions and other UNIX like systems have different conventions for binary formats.
But it's just occurred to me, a solution might be to ship the .s file (well, one per CPU architecture): it's fair to assume you have or can install the GNU assembler. Of course I'd still need a bootstrap compiler, but that doesn't need to be fast; I can write it in Python.
Is assembler portable in the way that binaries are not? Are there any other stumbling blocks I haven't thought of?
Added in response to one answer:
I had looked wistfully at LLVM, there is certainly a lot of good stuff there and it would make my life easier -- except that it would incur a dependency on the correct version of LLVM being installed. It wouldn't be so bad having that dependency on development machines, but in a world where it's common to ship programs as source, the same dependency would be incurred for every user of every program ever written in Aklo, and I decided that was too high a price to pay.
But if the solution of shipping compiled programs as assembler works... then that solves that problem, and I can use LLVM after all, which would be a big win.
So the question about portability of assembler is even considerably more important than I had first realized.
Conclusion: from answers here and on the LLVM mailing list http://lists.cs.uiuc.edu/pipermail/llvmdev/2010-January/028991.html it seems the bad news is the problem is unsolvable, but the good news is that means using LLVM makes it no worse, so I'm free to do so and obtain all the advantages thereof.
You might want to check out LLVM before going down this particular path. It might make your life a lot easier, as it provides a low level virtual machine that makes a lot of hard stuff just work and has been very popular.
At a very high level, the ABI consists of { instruction set, system calls, binary format, libraries }.
Distribution as .s may free you from the binary format. This is still rather pointless, because you are fixed to a particular ISA and still need to use libraries and/or make system calls. Libraries vary from distribution to distribution (although this isn't really that bad, especially if you just use libc) and syscalls vary from OS to OS.
It's basically 20 years since I last bootstrapped a C compiler. At the level of compilers, the differences between Linux distributions are minimal.
The much more important reason for going LLVM is cross-platform; if you're not writing some intermediate language, your compiler will be extremely difficult to retarget for different processors. And seeing as, on my laptop, I have compilers for x86, x86_64, two kinds of MIPS, PowerPC, ARM and AVR... you see where I'm going? I can compile multiple languages for most of those targets too (only C for AVR).

Resources