Explanation of “tying the knot” - haskell

In reading Haskell-related stuff I sometimes come across the expression “tying the knot”, I think I understand what it does, but not how.
So, are there any good, basic, and simple to understand explanations of this concept?

Tying the knot is a solution to the problem of circular data structures. In imperative languages you construct a circular structure by first creating a non-circular structure, and then going back and fixing up the pointers to add the circularity.
Say you wanted a two-element circular list with the elements "0" and "1". It would seem impossible to construct because if you create the "1" node and then create the "0" node to point at it, you cannot then go back and fix up the "1" node to point back at the "0" node. So you have a chicken-and-egg situation where both nodes need to exist before either can be created.
Here is how you do it in Haskell. Consider the following value:
alternates = x where
x = 0 : y
y = 1 : x
In a non-lazy language this will be an infinite loop because of the unterminated recursion. But in Haskell lazy evaluation does the Right Thing: it generates a two-element circular list.
To see how it works in practice, think about what happens at run-time. The usual "thunk" implementation of lazy evaluation represents an unevaluated expression as a data structure containing a function pointer plus the arguments to be passed to the function. When this is evaluated the thunk is replaced by the actual value so that future references don't have to call the function again.
When you take the first element of the list 'x' is evaluated down to a value (0, &y), where the "&y" bit is a pointer to the value of 'y'. Since 'y' has not been evaluated this is currently a thunk. When you take the second element of the list the computer follows the link from x to this thunk and evaluates it. It evaluates to (1, &x), or in other words a pointer back to the original 'x' value. So you now have a circular list sitting in memory. The programmer doesn't need to fix up the back-pointers because the lazy evaluation mechanism does it for you.

It's not quite what you asked for, and it's not directly related to Haskell, but Bruce McAdam's paper That About Wraps It Up goes into this topic in substantial breadth and depth. Bruce's basic idea is to use an explicit knot-tying operator called WRAP instead of the implicit knot-tying that is done automatically in Haskell, OCaml, and some other languages. The paper has lots of entertaining examples, and if you are interested in knot-tying I think you will come away with a much better feel for the process.

Related

Why would more array accesses perform better?

I'm taking a course on coursera that uses minizinc. In one of the assignments, I was spinning my wheels forever because my model was not performing well enough on a hidden test case. I finally solved it by changing the following types of accesses in my model
from
constraint sum(neg1,neg2 in party where neg1 < neg2)(joint[neg1,neg2]) >= m;
to
constraint sum(i,j in 1..u where i < j)(joint[party[i],party[j]]) >= m;
I dont know what I'm missing, but why would these two perform any differently from eachother? It seems like they should perform similarly with the former being maybe slightly faster, but the performance difference was dramatic. I'm guessing there is some sort of optimization that the former misses out on? Or, am I really missing something and do those lines actually result in different behavior? My intention is to sum the strength of every element in raid.
Misc. Details:
party is an array of enum vars
party's index set is 1..real_u
every element in party should be unique except for a dummy variable.
solver was Gecode
verification of my model was done on a coursera server so I don't know what optimization level their compiler used.
edit: Since minizinc(mz) is a declarative language, I'm realizing that "array accesses" in mz don't necessarily have a direct corollary in an imperative language. However, to me, these two lines mean the same thing semantically. So I guess my question is more "Why are the above lines different semantically in mz?"
edit2: I had to change the example in question, I was toting the line of violating coursera's honor code.
The difference stems from the way in which the where-clause "a < b" is evaluated. When "a" and "b" are parameters, then the compiler can already exclude the irrelevant parts of the sum during compilation. If "a" or "b" is a variable, then this can usually not be decided during compile time and the solver will receive a more complex constraint.
In this case the solver would have gotten a sum over "array[int] of var opt int", meaning that some variables in an array might not actually be present. For most solvers this is rewritten to a sum where every variable is multiplied by a boolean variable, which is true iff the variable is present. You can understand how this is less efficient than an normal sum without multiplications.

Saving the result of applying a function to a variable in the same variable

I was remembering the haskell programming I learnt the last year and suddenly I had a little problem.
ghci> let test = [1,2,3,4]
ghci> test = drop 1 test
ghci> test
^CInterrupted.
I do not remember if it is possible.
Thanks!
test on the first line and test on the second line are not, in fact, the same variable. They're two different, separate, unrelated variables that just happen to have the same name.
Further, the concept of "saving in a variable" does not apply to Haskell. In Haskell, variables cannot be interpreted as "memory cells", which can hold values. Haskell's variables are more like mathematical variables - just names that you give to complex expressions for easier reasoning (well, this is a bit of an oversimplification, but good enough for now)
Consequently, variables in Haskell are immutable. You cannot change the value of a variable by assignment, like you can in many other languages. This property follows from interpreting the concept of "variable" in the mathematical sense, as described above.
Furthermore, definitions (aka "bindings") in Haskell are recursive. This means that the right side (the body) of a binding may refer to its left side. This is very handy for constructing infinite data structures, for example:
x = 42 : x
An infinite list of 42s
In your example, when you write test = drop 1 test, you're defining a list named test, which is completely unrelated to the list defined on the previous line, and which is equal to itself without the first element. It's only natural that trying to print such a list results in an infinite loop.
The bottom line is: you cannot do what you're trying to do. You cannot create a new binding, which shadows an existing binding, while at the same time references it. Just give it a different name.

Accumulator factory in Haskell

Now, at the start of my adventure with programming I have some problems understanding basic concepts. Here is one related to Haskell or perhaps generally functional paradigm.
Here is a general statement of accumulator factory problem, from
http://rosettacode.org/wiki/Accumulator_factory
[Write a function that]
Takes a number n and returns a function (lets call it g), that takes a number i, and returns n incremented by the accumulation of i from every call of function g(i).
Works for any numeric type-- i.e. can take both ints and floats and returns functions that can take both ints and floats. (It is not enough simply to convert all input to floats. An accumulator that has only seen integers must return integers.) (i.e., if the language doesn't allow for numeric polymorphism, you have to use overloading or something like that)
Generates functions that return the sum of every number ever passed to them, not just the most recent. (This requires a piece of state to hold the accumulated value, which in turn means that pure functional languages can't be used for this task.)
Returns a real function, meaning something that you can use wherever you could use a function you had defined in the ordinary way in the text of your program. (Follow your language's conventions here.)
Doesn't store the accumulated value or the returned functions in a way that could cause them to be inadvertently modified by other code. (No global variables or other such things.)
with, as I understand, a key point being:
"[...] creating a function that [...]
Generates functions that return the sum of every number ever passed to them, not just the most recent. (This requires a piece of state to hold the accumulated value, which in turn means that pure functional languages can't be used for this task.)"
We can find a Haskell solution on the same website and it seems to do just what the quote above says.
Here
http://rosettacode.org/wiki/Category:Haskell
it is said that Haskell is purely functional.
What is then the explanation of the apparent contradiction? Or maybe there is no contradiction and I simply lack some understanding? Thanks.
The Haskell solution does not actually quite follow the rules of the challenge. In particular, it violates the rule that the function "Returns a real function, meaning something that you can use wherever you could use a function you had defined in the ordinary way in the text of your program." Instead of returning a real function, it returns an ST computation that produces a function that itself produces more ST computations. Within the context of an ST "state thread", you can create and use mutable references (STRef), arrays, and vectors. However, it's impossible for this mutable state to "leak" outside the state thread to contaminate pure code.

Handle dependency resolution functionally in Haskell

I'm implementing something similar to a Spreadsheet engine in Haskell.
There are ETables, which have rows of cells containing expressions in the form of ASTs (e.g. BinOp + 2 2), which can contain references to other cells of ETables.
The main function should convert these ETables into VTables, which contain a fully resolved value in the cell (e.g. the cell BinOp + 2 2 should be resolved to IntValue 4). This is pretty easy when cells have no external references, because you can just build the value bottom up from the expression AST of the cell (e.g. eval (BinOpExpr op l r) = IntValue $ (eval l) op (eval r), minus unboxing and typechecking) all the way to the table (evalTable = (map . map) eval rows)
However, I can't think of a "natural" way of handling this when external references are thrown into the mix. Am I correct to assume that I can't just call eval on the referenced cell and use its value, because Haskell is not smart enough to cache the result and re-use it when that cell is independently evaluated?
The best thing I came up with is using a State [VTable] which is progressively filled, so the caching is explicit (each eval call updates the state with the return value before returning). This should work, however it feels "procedural". Is there a more idiomatic approach available that I'm missing?
Haskell doesn't memoization by default because that would generally take up too much memory, so you can't just rely on eval doing the right thing. However, the nature of lazy evaluation means that data structures are, in a sense, memoized: each thunk in a large lazy structure is only evaluated once. This means that you can memoize a function by defining a large lazy data structure internally and replacing recursive calls with accesses into the structure—each part of the structure will be evaluated at most once.
I think the most elegant approach to model your spreadsheet would be a large, lazy directed graph with the cells as nodes and references as edges. Then you would need to define the VTable graph in a recursive way such that all recursion goes through the graph itself, which will memoize the result in the way I described above.
There are a couple of handy ways to model a graph. One option would be to use an explicit map with integers as node identifiers—IntMap or even an array of some sort could work. Another option is to use an existing graph library; this will save you some work and ensure you have a nice graph abstraction, but will take some effort up front to understand. I'm a big fan of the fgl, the "functional graph library", but it does take a bit of up-front reading and thinking to understand. The performance isn't going to be very different because it's also implemented in terms of IntMap.
Tooting my own horn a bit, I've written a couple of blog posts expanding on this answer: one about memoization with lazy structures (with pictures!) and one about the functional graph library. Putting the two ideas together should get you what you want, I believe.

Call by need: When is it used in Haskell?

http://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_need says:
"Call-by-need is a memoized version of call-by-name where, if the function argument is evaluated, that value is stored for subsequent uses. [...] Haskell is the most well-known language that uses call-by-need evaluation."
However, the value of a computation is not always stored for faster access (for example consider a recursive definition of fibonacci numbers). I asked someone on #haskell and the answer was that this memoization is done automatically "only in one instance, e.g. if you have `let foo = bar baz', foo will be evaluated once".
My questions is: What does instance exactly mean, are there other cases than let in which memoization is done automatically?
Describing this behavior as "memoization" is misleading. "Call by need" just means that a given input to a function will be evaluated somewhere between 0 and 1 times, never more than once. (It could be partially evaluated as well, which means the function only needed part of that input.) In contrast, "call by name" is simply expression substitution, which means if you give the expression 2 + 3 as an input to a function, it may be evaluated multiple times if the input is used more than once. Both call by need and call by name are non-strict: if the input is not used, then it is never evaluated. Most programming languages are strict, and use a "call by value" approach, which means that all inputs are evaluated before you begin evaluating the function, whether or not the inputs are used. This all has nothing to do with let expressions.
Haskell does not perform any automatic memoization. Let expressions are not an example of memoization. However, most compilers will evaluate let bindings in a call-by-need-esque fashion. If you model a let expression as a function, then the "call by need" mentality does apply:
let foo = expression one in expression two that uses foo
==>
(\foo -> expression two that uses foo) (expression one)
This doesn't correctly model recursive bindings, but you get the idea.
The haskell language definition does not define when, or how often, code is invoked. Infinite loops are defined in terms of 'the bottom' (written ⊥), which is a value (which exists within all types) that represents an error condition. The compiler is free to make its own decisions regarding when and how often to evaluate things as long as the program (and presence/absence of error conditions, including infinite loops!) behaves according to spec.
That said, the usual way of doing this is that most expressions generate 'thunks' - basically a pointer to some code and some context data. The first time you attempt to examine the result of the expression (ie, pattern match it), the thunk is 'forced'; the pointed-to code is executed, and the thunk overwritten with real data. This in turn can recursively evaluate other thunks.
Of course, doing this all the time is slow, so the compiler usually tries to analyze when you'd end up forcing a thunk right away anyway (ie, when something is 'strict' on the value in question), and if it finds this, it'll skip the whole thunk thing and just call the code right away. If it can't prove this, it can still make this optimization as long as it makes sure that executing the thunk right away can't crash or cause an infinite loop (or it handles these conditions somehow).
If you don't want to have to get very technical about this, the essential point is that when you have an expression like some_expensive_computation of all these arguments, you can do whatever you want with it; store it in a data structure, create a list of 53 copies of it, pass it to 6 other functions, etc, and then even return it to your caller for the caller to do whatever it wants with it.
What Haskell will (mostly) do is evaluate it at most once; if it the program ever needs to know something about what that expression returned in order to make a decision, then it will be evaluated (at least enough to know which way the decision should go). That evaluation will affect all the other references to the same expression, even if they are now scattered around in data structures and other not-yet-evaluated expressions all throughout your program.

Resources