Related
What are the main advantages of using a model for concurrency based on processes over one
based on threads and in what contexts is the latter appropriate?
Fault-tolerance and scalability are the main advantages of using Processes vs. Threads.
A system that relies on shared memory or some other kind of technology that is only available when using threads, will be useless when you want to run the system on multiple machines. Sooner or later you will need to communicate between different processes.
When using processes you are forced to deal with communication via messages, for example, this is the way Erlang handles communication. Data is not shared, so there is no risk of data corruption.
Another advantage of processes is that they can crash and you can feel relatively safe in the knowledge that you can just restart them (even across network hosts). However, if a thread crashes, it may crash the entire process, which may bring down your entire application. To illustrate: If an Erlang process crashes, you will only lose that phone call, or that webrequest, etc. Not the whole application.
In saying all this, OS processes also have many drawbacks that can make them harder to use, like the fact that it takes forever to spawn a new process. However, Erlang has it's own notion of processes, which are extremely lightweight.
With that said, this discussion is really a topic of research. If you want to get into more of the details, you can give Joe Armstrong's paper on fault-tolerant systems]1 a read, it explains a lot about Erlang and the philosophy that drives it.
The disadvantage of using a process-based model is that it will be slower. You will have to copy data between the concurrent parts of your program.
The disadvantage of using a thread-based model is that you will probably get it wrong. It may sound mean, but it's true-- show me code based on threads and I'll show you a bug. I've found bugs in threaded code that has run "correctly" for 10 years.
The advantages of using a process-based model are numerous. The separation forces you to think in terms of protocols and formal communication patterns, which means its far more likely that you will get it right. Processes communicating with each other are easier to scale out across multiple machines. Multiple concurrent processes allows one process to crash without necessarily crashing the others.
The advantage of using a thread-based model is that it is fast.
It may be obvious which of the two I prefer, but in case it isn't: processes, every day of the week and twice on Sunday. Threads are too hard: I haven't ever met anybody who could write correct multi-threaded code; those that claim to be able to usually don't know enough about the space yet.
In this case Processes are more independent of eachother, while Threads shares some resources e.g. memory. But in a general case Threads are more light-weight than Processes.
Erlang Processes is not the same thing as OS Processes. Erlang Processes are very light-weight and Erlang can have many Erlang Processes within the same OS Thread. See Technically why is processes in Erlang more efficient than OS threads?
First and foremost, processes differ from threads mostly in the way their memory is handled:
Process = n*Thread + memory region (n>=1)
Processes have their own isolated memory.
Processes can have multiple threads.
Processes are isolated from each other on the operating system level.
Threads share their memory with their peers in the process.
(This is often undesirable. There are libraries and methods out there to remedy this, but that is usually an artificial layer over operating system threads.)
The memory thing is the most important discerning factor, as it has certain implications:
Exchanging data between processes is slower than between threads. Breaking the process isolation always requires some involvement of kernel calls and memory remapping.
Threads are more lightweight than processes. The operating system has to allocate resources and do memory management for each process.
Using processes gives you memory isolation and synchronization. Common problems with access to memory shared between threads do not concern you. Since you have to make a special effort to share data between processes, you will most likely sync automatically with that.
Using processes gives you good (or ultimate) encapsulation. Since inter process communication needs special effort, you will be forced to define a clean interface. It is a good idea to break certain parts of your application out of the main executable. Maybe you can split dependencies like that.
e.g. Process_RobotAi <-> Process_RobotControl
The AI will have vastly different dependencies compared to the control component. The interface might be simple: Process_RobotAI --DriveXY--> Process_RobotControl.
Maybe you change the robot platform. You only have to implement a new RobotControl executable with that simple interface. You don't have to touch or even recompile anything in your AI component.
It will also, for the same reasons, speed up compilation in most cases.
Edit: Just for completeness I will shamelessly add what the others have reminded me of :
A crashing process does not (necessarily) crash your whole application.
In General:
Want to create something highly concurrent or synchronuous, like an algorithm with n>>1 instances running in parallel and sharing data, use threads.
Have a system with multiple components that do not need to share data or algorithms, nor do they exchange data too often, use processes. If you use a RPC library for the inter process communication, you get a network-distributable solution at no extra cost.
1 and 2 are the extreme and no-brainer scenarios, everything in between must be decided individually.
For a good (or awesome) example of a system that uses IPC/RPC heavily, have a look at ros.
My Previous Question
From the above answer, means if in my threads has create objects, i will face memory allocation/deallocation bottleneck, thus result running threads may slower or no obvious time taken diff. than no thread. What's the advantages of running multi threads in the application if I cannot allocate memory to create the object for calculations in my thread?
What's the advantages of running multi threads in the application if I cannot allocate memory to create the objects for calculations in my thread?
It depends on where your bottlenecks are. If your bottleneck is the amount of memory available, then creating more threads won't help. Or, if I/O is a bottleneck, trying to parallelize will just slightly slow down everything because of context switching. It's like trying to make an underpowered car faster by putting wider tyres in it: fixing the wrong thing doesn't help.
Threads are useful when the bottleneck is the processor and there are several processors available.
Well, if you allocate chunks of memory in a loop, things will slow down.
If you can create your objects once at the beginning of TThread.execute, the overhead will be smaller.
Threads can also be benificial if you have to wait for IO-operations, or if you have expensive calculations to do on a machine with more than one physical core.
If you have memory intensive threads (many memory allocations/deallocations) you better use TopMM instead of FastMM:
http://www.topsoftwaresite.nl/
FastMM uses a lock which blocks all other threads, TopMM does not so it scales much better on multi cores/cpus!
When it comes to multithreding, shared resources issues will always arise (with current technology). All resources that may need serialization (RAM, disk, etc.) are a possible bottleneck. Multithreading is not a magic solution that turns a slow app in a fast one, and not always result in better speed. Made in the wrong way, it can actually result in worse speed. it should be analyzed to find possible bottlenecks, and some parts could need to be rewritten to minimize bottlenecks using different techniques (i.e. preallocating memory, using async I/O, etc.). Anyway, performance is only one of the reasons to use more than one thread. There are several other reason, for example letting the user to be able to interact with the application while background threads perform operations (i.e. printing, checking data, etc.) without "locking" the user. The application that way could seem "faster" (the user can keep on using it without waiting) even if it is actually slowerd (it takes more time to finish operations than if made them serially).
I've been toying around with the Parallel library in .NET 4.0. Recently, I developed a custom ORM for some unusual read/write operations one of our large systems has to use. This allows me to decorate an object with attributes and have reflection figure out what columns it has to pull from the database, as well as what XML it has to output on writes.
Since I envision this wrapper to be reused in many projects, I'd like to squeeze as much speed out of it as possible. This library will mostly be used in .NET web applications. I'm testing the framework using a throwaway console application to poke at the classes I've created.
I've now learned a lesson of the overhead that multithreading comes with. Multithreading causes it to run slower. From reading around, it seems like it's intuitive to people who've been doing it for a long time, but it's actually counter-intuitive to me: how can running a method 30 times at the same time be slower than running it 30 times sequentially?
I don't think I'm causing problems by multiple threads having to fight over the same shared object (though I'm not good enough at it yet to tell for sure or not), so I assume the slowdown is coming from the overhead of spawning all those threads and the runtime keeping them all straight. So:
Though I'm doing it mainly as a learning exercise, is this pessimization? For trivial, non-IO tasks, is multithreading overkill? My main goal is speed, not responsiveness of the UI or anything.
Would running the same multithreading code in IIS cause it to speed up because of already-created threads in the thread pool, whereas right now I'm using a console app, which I assume would be single-threaded until I told it otherwise? I'm about to run some tests, but I figure there's some base knowledge I'm missing to know why it would be one way or the other. My console app is also running on my desktop with two cores, whereas a server for a web app would have more, so I might have to use that as a variable as well.
Thread's don't actually all run concurrently.
On a desktop machine I'm presuming you have a dual core CPU, (maybe a quad at most). This means only 2/4 threads can be running at the same time.
If you have spawned 30 threads, the OS is going to have to context switch between those 30 threads to keep them all running. Context switches are quite costly, so hence the slowdown.
As a basic suggestion, I'd aim for 1 thread per CPU if you are trying to optimise calculations. Any more than this and you're not really doing any extra work, you are just swapping threads in an out on the same CPU. Try to think of your computer as having a limited number of workers inside, you can't do more work concurrently than the number of workers you have available.
Some of the new features in the .net 4.0 parallel task library allow you to do things that account for scalability in the number of threads. For example you can create a bunch of tasks and the task parallel library will internally figure out how many CPUs you have available, and optimise the number of threads is creates/uses so as not to overload the CPUs, so you could create 30 tasks, but on a dual core machine the TP library would still only create 2 threads, and queue the . Obviously, this will scale very nicely when you get to run it on a bigger machine. Or you can use something like ThreadPool.QueueUserWorkItem(...) to queue up a bunch of tasks, and the pool will automatically manage how many threads is uses to perform those tasks.
Yes there is a lot of overhead to thread creation, but if you are using the .net thread pool, (or the parallel task library in 4.0) .net will be managing your thread creation, and you may actually find it creates less threads than the number of tasks you have created. It will internally swap your tasks around on the available threads. If you actually want to control explicit creation of actual threads you would need to use the Thread class.
[Some cpu's can do clever stuff with threads and can have multiple Threads running per CPU - see hyperthreading - but check out your task manager, I'd be very surprised if you have more than 4-8 virtual CPUs on today's desktops]
There are so many issues with this that it pays to understand what is happening under the covers. I would highly recommend the "Concurrent Programming on Windows" book by Joe Duffy and the "Java Concurrency in Practice" book. The latter talks about processor architecture at the level you need to understand it when writing multithreaded code. One issue you are going to hit that's going to hurt your code is caching, or more likely the lack of it.
As has been stated there is an overhead to scheduling and running threads, but you may find that there is a larger overhead when you share data across threads. That data may be flushed from the processor cache into main memory, and that will cause serious slow downs to your code.
This is the sort of low-level stuff that managed environments are supposed to protect us from, however, when writing highly parallel code, this is exactly the sort of issue you have to deal with.
A colleague of mine recorded a screencast about the performance issue with Parallel.For and Parallel.ForEach which may help:
http://rocksolidknowledge.com/ScreenCasts.mvc/Watch?video=ParallelLoops.wmv
You're speaking of an ORM, so I presume some amount of I/O is going on. If this is the case, the overhead of thread creation and context switching is going to be comparatively non-existent.
Most likely, you're experiencing I/O contention: it can be slower (particularly on rotational hard drives, but also on other storage devices) to read the same set of data if you read it out of order than if you read it in-order. So, if you're executing 30 database queries, it's possible they'll run faster sequentially than in parallel if they're all backed by the same I/O device and the queries aren't in cache. Running them in parallel may cause the system to have a bunch of I/O read requests almost simultaneously, which may cause the OS to read little bits of each in turn - causing your drive head to jump back and forth, wasting precious milliseconds.
But that's just a guess; it's not possible to really determine what's causing your slowdown without knowing more.
Although thread creation is "extremely expensive" when compared to say adding two numbers, it's not usually something you'll easily overdo. If your operations are extremely short (say, a millisecond or less), using a thread-pool rather than new threads will noticeably save time. Generally though, if your operations are that short, you should reconsider the granularity of parallelism anyhow; perhaps you're better off splitting the computation into bigger chunks: for instance, by having a fairly low number of worker tasks which handle entire batches of smaller work-items at a time rather than each item separately.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed last year.
The community reviewed whether to reopen this question last year and left it closed:
Original close reason(s) were not resolved
Improve this question
I've recently heard a few people say that in Linux, it is almost always better to use processes instead of threads, since Linux is very efficient in handling processes, and because there are so many problems (such as locking) associated with threads. However, I am suspicious, because it seems like threads could give a pretty big performance gain in some situations.
So my question is, when faced with a situation that threads and processes could both handle pretty well, should I use processes or threads? For example, if I were writing a web server, should I use processes or threads (or a combination)?
Linux uses a 1-1 threading model, with (to the kernel) no distinction between processes and threads -- everything is simply a runnable task. *
On Linux, the system call clone clones a task, with a configurable level of sharing, among which are:
CLONE_FILES: share the same file descriptor table (instead of creating a copy)
CLONE_PARENT: don't set up a parent-child relationship between the new task and the old (otherwise, child's getppid() = parent's getpid())
CLONE_VM: share the same memory space (instead of creating a COW copy)
fork() calls clone(least sharing) and pthread_create() calls clone(most sharing). **
forking costs a tiny bit more than pthread_createing because of copying tables and creating COW mappings for memory, but the Linux kernel developers have tried (and succeeded) at minimizing those costs.
Switching between tasks, if they share the same memory space and various tables, will be a tiny bit cheaper than if they aren't shared, because the data may already be loaded in cache. However, switching tasks is still very fast even if nothing is shared -- this is something else that Linux kernel developers try to ensure (and succeed at ensuring).
In fact, if you are on a multi-processor system, not sharing may actually be beneficial to performance: if each task is running on a different processor, synchronizing shared memory is expensive.
* Simplified. CLONE_THREAD causes signals delivery to be shared (which needs CLONE_SIGHAND, which shares the signal handler table).
** Simplified. There exist both SYS_fork and SYS_clone syscalls, but in the kernel, the sys_fork and sys_clone are both very thin wrappers around the same do_fork function, which itself is a thin wrapper around copy_process. Yes, the terms process, thread, and task are used rather interchangeably in the Linux kernel...
Linux (and indeed Unix) gives you a third option.
Option 1 - processes
Create a standalone executable which handles some part (or all parts) of your application, and invoke it separately for each process, e.g. the program runs copies of itself to delegate tasks to.
Option 2 - threads
Create a standalone executable which starts up with a single thread and create additional threads to do some tasks
Option 3 - fork
Only available under Linux/Unix, this is a bit different. A forked process really is its own process with its own address space - there is nothing that the child can do (normally) to affect its parent's or siblings address space (unlike a thread) - so you get added robustness.
However, the memory pages are not copied, they are copy-on-write, so less memory is usually used than you might imagine.
Consider a web server program which consists of two steps:
Read configuration and runtime data
Serve page requests
If you used threads, step 1 would be done once, and step 2 done in multiple threads. If you used "traditional" processes, steps 1 and 2 would need to be repeated for each process, and the memory to store the configuration and runtime data duplicated. If you used fork(), then you can do step 1 once, and then fork(), leaving the runtime data and configuration in memory, untouched, not copied.
So there are really three choices.
That depends on a lot of factors. Processes are more heavy-weight than threads, and have a higher startup and shutdown cost. Interprocess communication (IPC) is also harder and slower than interthread communication.
Conversely, processes are safer and more secure than threads, because each process runs in its own virtual address space. If one process crashes or has a buffer overrun, it does not affect any other process at all, whereas if a thread crashes, it takes down all of the other threads in the process, and if a thread has a buffer overrun, it opens up a security hole in all of the threads.
So, if your application's modules can run mostly independently with little communication, you should probably use processes if you can afford the startup and shutdown costs. The performance hit of IPC will be minimal, and you'll be slightly safer against bugs and security holes. If you need every bit of performance you can get or have a lot of shared data (such as complex data structures), go with threads.
Others have discussed the considerations.
Perhaps the important difference is that in Windows processes are heavy and expensive compared to threads, and in Linux the difference is much smaller, so the equation balances at a different point.
Once upon a time there was Unix and in this good old Unix there was lots of overhead for processes, so what some clever people did was to create threads, which would share the same address space with the parent process and they only needed a reduced context switch, which would make the context switch more efficient.
In a contemporary Linux (2.6.x) there is not much difference in performance between a context switch of a process compared to a thread (only the MMU stuff is additional for the thread).
There is the issue with the shared address space, which means that a faulty pointer in a thread can corrupt memory of the parent process or another thread within the same address space.
A process is protected by the MMU, so a faulty pointer will just cause a signal 11 and no corruption.
I would in general use processes (not much context switch overhead in Linux, but memory protection due to MMU), but pthreads if I would need a real-time scheduler class, which is a different cup of tea all together.
Why do you think threads are have such a big performance gain on Linux? Do you have any data for this, or is it just a myth?
I think everyone has done a great job responding to your question. I'm just adding more information about thread versus process in Linux to clarify and summarize some of the previous responses in context of kernel. So, my response is in regarding to kernel specific code in Linux. According to Linux Kernel documentation, there is no clear distinction between thread versus process except thread uses shared virtual address space unlike process. Also note, the Linux Kernel uses the term "task" to refer to process and thread in general.
"There are no internal structures implementing processes or threads, instead there is a struct task_struct that describe an abstract scheduling unit called task"
Also according to Linus Torvalds, you should NOT think about process versus thread at all and because it's too limiting and the only difference is COE or Context of Execution in terms of "separate the address space from the parent " or shared address space. In fact he uses a web server example to make his point here (which highly recommend reading).
Full credit to linux kernel documentation
If you want to create a pure a process as possible, you would use clone() and set all the clone flags. (Or save yourself the typing effort and call fork())
If you want to create a pure a thread as possible, you would use clone() and clear all the clone flags (Or save yourself the typing effort and call pthread_create())
There are 28 flags that dictate the level of resource sharing. This means that there are over 268 million flavours of tasks that you can create, depending on what you want to share.
This is what we mean when we say that Linux does not distinguish between a process and a thread, but rather alludes to any flow of control within a program as a task. The rationale for not distinguishing between the two is, well, not uniquely defining over 268 million flavours!
Therefore, making the "perfect decision" of whether to use a process or thread is really about deciding which of the 28 resources to clone.
How tightly coupled are your tasks?
If they can live independently of each other, then use processes. If they rely on each other, then use threads. That way you can kill and restart a bad process without interfering with the operation of the other tasks.
To complicate matters further, there is such a thing as thread-local storage, and Unix shared memory.
Thread-local storage allows each thread to have a separate instance of global objects. The only time I've used it was when constructing an emulation environment on linux/windows, for application code that ran in an RTOS. In the RTOS each task was a process with it's own address space, in the emulation environment, each task was a thread (with a shared address space). By using TLS for things like singletons, we were able to have a separate instance for each thread, just like under the 'real' RTOS environment.
Shared memory can (obviously) give you the performance benefits of having multiple processes access the same memory, but at the cost/risk of having to synchronize the processes properly. One way to do that is have one process create a data structure in shared memory, and then send a handle to that structure via traditional inter-process communication (like a named pipe).
In my recent work with LINUX is one thing to be aware of is libraries. If you are using threads make sure any libraries you may use across threads are thread-safe. This burned me a couple of times. Notably libxml2 is not thread-safe out of the box. It can be compiled with thread safe but that is not what you get with aptitude install.
I'd have to agree with what you've been hearing. When we benchmark our cluster (xhpl and such), we always get significantly better performance with processes over threads. </anecdote>
The decision between thread/process depends a little bit on what you will be using it to.
One of the benefits with a process is that it has a PID and can be killed without also terminating the parent.
For a real world example of a web server, apache 1.3 used to only support multiple processes, but in in 2.0 they added an abstraction so that you can swtch between either. Comments seems to agree that processes are more robust but threads can give a little bit better performance (except for windows where performance for processes sucks and you only want to use threads).
For most cases i would prefer processes over threads.
threads can be useful when you have a relatively smaller task (process overhead >> time taken by each divided task unit) and there is a need of memory sharing between them. Think a large array.
Also (offtopic), note that if your CPU utilization is 100 percent or close to it, there is going to be no benefit out of multithreading or processing. (in fact it will worsen)
Threads -- > Threads shares a memory space,it is an abstraction of the CPU,it is lightweight.
Processes --> Processes have their own memory space,it is an abstraction of a computer.
To parallelise task you need to abstract a CPU.
However the advantages of using a process over a thread is security,stability while a thread uses lesser memory than process and offers lesser latency.
An example in terms of web would be chrome and firefox.
In case of Chrome each tab is a new process hence memory usage of chrome is higher than firefox ,while the security and stability provided is better than firefox.
The security here provided by chrome is better,since each tab is a new process different tab cannot snoop into the memory space of a given process.
Multi-threading is for masochists. :)
If you are concerned about an environment where you are constantly creating threads/forks, perhaps like a web server handling requests, you can pre-fork processes, hundreds if necessary. Since they are Copy on Write and use the same memory until a write occurs, it's very fast. They can all block, listening on the same socket and the first one to accept an incoming TCP connection gets to run with it. With g++ you can also assign functions and variables to be closely placed in memory (hot segments) to ensure when you do write to memory, and cause an entire page to be copied at least subsequent write activity will occur on the same page. You really have to use a profiler to verify that kind of stuff but if you are concerned about performance, you should be doing that anyway.
Development time of threaded apps is 3x to 10x times longer due to the subtle interaction on shared objects, threading "gotchas" you didn't think of, and very hard to debug because you cannot reproduce thread interaction problems at will. You may have to do all sort of performance killing checks like having invariants in all your classes that are checked before and after every function and you halt the process and load the debugger if something isn't right. Most often it's embarrassing crashes that occur during production and you have to pore through a core dump trying to figure out which threads did what. Frankly, it's not worth the headache when forking processes is just as fast and implicitly thread safe unless you explicitly share something. At least with explicit sharing you know exactly where to look if a threading style problem occurs.
If performance is that important, add another computer and load balance. For the developer cost of debugging a multi-threaded app, even one written by an experienced multi-threader, you could probably buy 4 40 core Intel motherboards with 64gigs of memory each.
That being said, there are asymmetric cases where parallel processing isn't appropriate, like, you want a foreground thread to accept user input and show button presses immediately, without waiting for some clunky back end GUI to keep up. Sexy use of threads where multiprocessing isn't geometrically appropriate. Many things like that just variables or pointers. They aren't "handles" that can be shared in a fork. You have to use threads. Even if you did fork, you'd be sharing the same resource and subject to threading style issues.
If you need to share resources, you really should use threads.
Also consider the fact that context switches between threads are much less expensive than context switches between processes.
I see no reason to explicitly go with separate processes unless you have a good reason to do so (security, proven performance tests, etc...)
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
I was recently working on an application that sent and received messages over Ethernet and Serial. I was then tasked to add the monitoring of DIO discretes. I throught,
"No reason to interrupt the main
thread which is involved in message
processing, I'll just create
another thread that monitors DIO."
This decision, however, proved to be poor. Sometimes the main thread would be interrupted between a Send and a Receive serial message. This interruption would disrupt the timing and alas, messages would be lost (forever).
I found another way to monitor the DIO without using another thread and Ethernet and Serial communication were restored to their correct functionality.
The whole fiasco, however, got me thinking. Are their any general guidelines about when not to use multiple-threads and/or does anyone have anymore examples of situations when using multiple-threads is not a good idea?
**EDIT:Based on your comments and after scowering the internet for information, I have composed a blog post entitled When is multi-threading not a good idea?
On a single processor machine and a desktop application, you use multi threads so you don't freeze the app but for nothing else really.
On a single processor server and a web based app, no need for multi threading because the web server handles most of it.
On a multi-processor machine and desktop app, you are suggested to use multi threads and parallel programming. Make as many threads as there are processors.
On a multi-processor server and a web based app, no need again for multi threads because the web server handles it.
In total, if you use multiple threads for other than un-freezing desktop apps and any other generic answer, you will make the app slower if you have a single core machine due to the threads interrupting each other.
Why? Because of the hardware switches. It takes time for the hardware to switch between threads in total. On a multi-core box, go ahead and use 1 thread for each core and you will greatly see a ramp up.
To paraphrase an old quote: A programmer had a problem. He thought, "I know, I'll use threads." Now the programmer has two problems. (Often attributed to JWZ, but it seems to predate his use of it talking about regexes.)
A good rule of thumb is "Don't use threads, unless there's a very compelling reason to use threads." Multiple threads are asking for trouble. Try to find a good way to solve the problem without using multiple threads, and only fall back to using threads if avoiding it is as much trouble as the extra effort to use threads. Also, consider switching to multiple threads if you're running on a multi-core/multi-CPU machine, and performance testing of the single threaded version shows that you need the performance of the extra cores.
Multi-threading is a bad idea if:
Several threads access and update the same resource (set a variable, write to a file), and you don't understand thread safety.
Several threads interact with each other and you don't understand mutexes and similar thread-management tools.
Your program uses static variables (threads typically share them by default).
You haven't debugged concurrency issues.
Actually, multi threading is not scalable and is hard to debug, so it should not be used in any case if you can avoid it. There is few cases where it is mandatory : when performance on a multi CPU matters, or when you deal whith a server that have a lot of clients taking a long time to answer.
In any other cases, you can use alternatives such as queue + cron jobs or else.
You might want to take a look at the Dan Kegel's "The C10K problem" web page about handling multiple data sources/sinks.
Basically it is best to use minimal threads, which in sockets can be done in most OS's w/ some event system (or asynchronously in Windows using IOCP).
When you run into the case where the OS and/or libraries do not offer a way to perform communication in a non-blocking manner, it is best to use a thread-pool to handle them while reporting back to the same event loop.
Example diagram of layout:
Per CPU [*] EVENTLOOP ------ Handles nonblocking I/O using OS/library utilities
| \___ Threadpool for various blocking events
Threadpool for handling the I/O messages that would take long
Multithreading is bad except in the single case where it is good. This case is
The work is CPU Bound, or parts of it is CPU Bound
The work is parallelisable.
If either or both of these conditions are missing, multithreading is not going to be a winning strategy.
If the work is not CPU bound, then you are waiting not on threads to finish work, but rather for some external event, such as network activity, for the process to complete its work. Using threads, there is the additional cost of context switches between threads, The cost of synchronization (mutexes, etc), and the irregularity of thread preemption. The alternative in most common use is asynchronous IO, in which a single thread listens to several io ports, and acts on whichever happens to be ready now, one at a time. If by some chance these slow channels all happen to become ready at the same time, It might seem like you will experience a slow-down, but in practice this is rarely true. The cost of handling each port individually is often comparable or better than the cost of synchronizing state on multiple threads as each channel is emptied.
Many tasks may be compute bound, but still not practical to use a multithreaded approach because the process must synchronise on the entire state. Such a program cannot benefit from multithreading because no work can be performed concurrently. Fortunately, most programs that require enormous amounts of CPU can be parallelized to some level.
Multi-threading is not a good idea if you need to guarantee precise physical timing (like in your example). Other cons include intensive data exchange between threads. I would say multi-threading is good for really parallel tasks if you don't care much about their relative speed/priority/timing.
A recent application I wrote that had to use multithreading (although not unbounded number of threads) was one where I had to communicate in several directions over two protocols, plus monitoring a third resource for changes. Both protocol libraries required a thread to run the respective event loop in, and when those were accounted for, it was easy to create a third loop for the resource monitoring. In addition to the event loop requirements, the messages going through the wires had strict timing requirements, and one loop couldn't be risked blocking the other, something that was further alleviated by using a multicore CPU (SPARC).
There were further discussions on whether each message processing should be considered a job that was given to a thread from a thread pool, but in the end that was an extension that wasn't worth the work.
All-in-all, threads should if possible only be considered when you can partition the work into well defined jobs (or series of jobs) such that the semantics are relatively easy to document and implement, and you can put an upper bound on the number of threads you use and that need to interact. Systems where this is best applied are almost message passing systems.
In priciple everytime there is no overhead for the caller to wait in a queue.
A couple more possible reasons to use threads:
Your platform lacks asynchronous I/O operations, e.g. Windows ME (No completion ports or overlapped I/O, a pain when porting XP applications that use them.) Java 1.3 and earlier.
A third-party library function that can hang, e.g. if a remote server is down, and the library provides no way to cancel the operation and you can't modify it.
Keeping a GUI responsive during intensive processing doesn't always require additional threads. A single callback function is usually sufficient.
If none of the above apply and I still want parallelism for some reason, I prefer to launch an independent process if possible.
I would say multi-threading is generally used to:
Allow data processing in the background while a GUI remains responsive
Split very big data analysis onto multiple processing units so that you can get your results quicker.
When you're receiving data from some hardware and need something to continuously add it to a buffer while some other element decides what to do with it (write to disk, display on a GUI etc.).
So if you're not solving one of those issues, it's unlikely that adding threads will make your life easier. In fact it'll almost certainly make it harder because as others have mentioned; debugging mutithreaded applications is considerably more work than a single threaded solution.
Security might be a reason to avoid using multiple threads (over multiple processes). See Google chrome for an example of multi-process safety features.
Multi-threading is scalable, and will allow your UI to maintain its responsivness while doing very complicated things in the background. I don't understand where other responses are acquiring their information on multi-threading.
When you shouldn't multi-thread is a mis-leading question to your problem. Your problem is this: Why did multi-threading my application cause serial / ethernet communications to fail?
The answer to that question will depend on the implementation, which should be discussed in another question. I know for a fact that you can have both ethernet and serial communications happening in a multi-threaded application at the same time as numerous other tasks without causing any data loss.
The one reason to not use multi-threading is:
There is one task, and no user interface with which the task will interfere.
The reasons to use mutli-threading are:
Provides superior responsiveness to the user
Performs multiple tasks at the same time to decrease overall execution time
Uses more of the current multi-core CPUs, and multi-multi-cores of the future.
There are three basic methods of multi-threaded programming that make thread safety implemented with ease - you only need to use one for success:
Thread Safe Data types passed between threads.
Thread Safe Methods in the threaded object to modify data passed between.
PostMessage capabilities to communicate between threads.
Are the processes parallel? Is performance a real concern? Are there multiple 'threads' of execution like on a web server? I don't think there is a finite answer.
A common source of threading issues is the usual approaches employed to synchronize data. Having threads share state and then implement locking at all the appropriate places is a major source of complexity for both design and debugging. Getting the locking right to balance stability, performance, and scalability is always a hard problem to solve. Even the most experienced experts get it wrong frequently. Alternative techniques to deal with threading can alleviate much of this complexity. The Clojure programming language implements several interesting techniques for dealing with concurrency.