Algorithm to find articles with similar text - string

I have many articles in a database (with title,text), I'm looking for an algorithm to find the X most similar articles, something like Stack Overflow's "Related Questions" when you ask a question.
I tried googling for this but only found pages about other "similar text" issues, something like comparing every article with all the others and storing a similarity somewhere. SO does this in "real time" on text that I just typed.
How?

Edit distance isn't a likely candidate, as it would be spelling/word-order dependent, and much more computationally expensive than Will is leading you to believe, considering the size and number of the documents you'd actually be interested in searching.
Something like Lucene is the way to go. You index all your documents, and then when you want to find documents similar to a given document, you turn your given document into a query, and search the index. Internally Lucene will be using tf-idf and an inverted index to make the whole process take an amount of time proportional to the number of documents that could possibly match, not the total number of documents in the collection.

It depends upon your definition of similiar.
The edit-distance algorithm is the standard algorithm for (latin language) dictionary suggestions, and can work on whole texts. Two texts are similiar if they have basically the same words (eh letters) in the same order. So the following two book reviews would be fairly similiar:
1) "This is a great book"
2) "These are not great books"
(The number of letters to remove, insert, delete or alter to turn (2) into (1) is termed the 'edit distance'.)
To implement this you would want to visit every review programmatically. This is perhaps not as costly as it sounds, and if it is too costly you could do the comparisions as a background task and store the n-most-similiar in a database field itself.
Another approach is to understand something of the structure of (latin) languages. If you strip short (non-capitialised or quoted) words, and assign weights to words (or prefixes) that are common or unique, you can do a Bayesianesque comparision. The two following book reviews might be simiplied and found to be similiar:
3) "The french revolution was blah blah War and Peace blah blah France." -> France/French(2) Revolution(1) War(1) Peace(1) (note that a dictionary has been used to combine France and French)
4) "This book is blah blah a revolution in french cuisine." -> France(1) Revolution(1)
To implement this you would want to identify the 'keywords' in a review when it was created/updated, and to find similiar reviews use these keywords in the where-clause of a query (ideally 'full text' searching if the database supports it), with perhaps a post-processing of the results-set for scoring the candidates found.
Books also have categories - are thrillers set in France similiar to historical studies of France, and so on? Meta-data beyond title and text might be useful for keeping results relevant.

The tutorial at this link sounds like it may be what you need. It is easy to follow and works very well.
His algorithm rewards both common substrings and a common ordering of those substrings and so should pick out similar titles quite nicely.

I suggest to index your articles using Apache Lucene, a high-performance, full-featured text search engine library written entirely in Java. It is a technology suitable for nearly any application that requires full-text search, especially cross-platform. Once indexed, you could easily find related articles.

One common algorithm used is the Self-Organizing Map.
It is a type of neural network that will automatically categorize your articles. Then you can simply find the location that a current article is in the map and all articles near it are related. The important part of the algorithm is how you would vector quantize your input. There are several ways to do with with text. You can hash your document/title, you can count words and use that as an n dimensional vector, etc. Hope that helps, although I may have opened up a Pandora's box for you of an endless journey in AI.

SO does the comparison only on the title, not on the body text of the question, so only on rather short strings.
You can use their algorithm (no idea what it looks like) on the article title and the keywords.
If you have more cpu time to burn, also on the abstracts of your articles.

Seconding the Lucene suggestion for full-text, but note that java is not a requirement; a .NET port is available. Also see the main Lucene page for links to other projects, including Lucy, a C port.

Maybe what your looking for is something that does paraphrasing. I only have cursory knowledge of this, but paraphrasing is a natural language processing concept to determine if two passages of text actually mean the same thing - although the may use entirely different words.
Unfortunately I don't know of any tools that allow you to do this (although I'd be interested in finding one)

If you are looking for words that wound alike, you could convert to soundex and the the soundex words to match ... worked for me

I tried some method but none works well.One may get a relatively satified result like this:
First: get a Google SimHash code for every paragraph of all text and store it in databse.
Second: Index for the SimHash code.
Third: process your text to be compared as above,get a SimHash code and search all the text by SimHash index which apart form a Hamming distance like 5-10. Then compare simility with term vector.
This may works for big data.

Given a sample text, this program lists the repository texts sorted by similarity: simple implementation of bag of words in C++. The algorithm is linear in the total length of the sample text and the repository texts. Plus the program is multi-threaded to process repository texts in parallel.
Here is the core algorithm:
class Statistics {
std::unordered_map<std::string, int64_t> _counts;
int64_t _totWords;
void process(std::string& token);
public:
explicit Statistics(const std::string& text);
double Dist(const Statistics& fellow) const;
bool IsEmpty() const { return _totWords == 0; }
};
namespace {
const std::string gPunctStr = ".,;:!?";
const std::unordered_set<char> gPunctSet(gPunctStr.begin(), gPunctStr.end());
}
Statistics::Statistics(const std::string& text) {
std::string lastToken;
for (size_t i = 0; i < text.size(); i++) {
int ch = static_cast<uint8_t>(text[i]);
if (!isspace(ch)) {
lastToken.push_back(tolower(ch));
continue;
}
process(lastToken);
}
process(lastToken);
}
void Statistics::process(std::string& token) {
do {
if (token.size() == 0) {
break;
}
if (gPunctSet.find(token.back()) != gPunctSet.end()) {
token.pop_back();
}
} while (false);
if (token.size() != 0) {
auto it = _counts.find(token);
if (it == _counts.end()) {
_counts.emplace(token, 1);
}
else {
it->second++;
}
_totWords++;
token.clear();
}
}
double Statistics::Dist(const Statistics& fellow) const {
double sum = 0;
for (const auto& wordInfo : _counts) {
const std::string wordText = wordInfo.first;
const double freq = double(wordInfo.second) / _totWords;
auto it = fellow._counts.find(wordText);
double fellowFreq;
if (it == fellow._counts.end()) {
fellowFreq = 0;
}
else {
fellowFreq = double(it->second) / fellow._totWords;
}
const double d = freq - fellowFreq;
sum += d * d;
}
return std::sqrt(sum);
}

you can use the following
Minhash/LSH https://en.wikipedia.org/wiki/MinHash
(also see: http://infolab.stanford.edu/~ullman/mmds/book.pdf Minhash chapter), also see http://ann-benchmarks.com/ for state of the art
collaborative filtering if you have info of users interaction with articles (clicks/likes/views): https://en.wikipedia.org/wiki/Collaborative_filtering
word2vec or similar embeddings to compare articles in 'semantic' vector space: https://en.wikipedia.org/wiki/Word2vec
Latent semantic analysis: https://en.wikipedia.org/wiki/Latent_semantic_analysis
Use Bag-of-words and apply some distance measure, like Jaccard coefficient to compute set similarity https://en.wikipedia.org/wiki/Jaccard_index, https://en.wikipedia.org/wiki/Bag-of-words_model

The link in #alex77's answer points to an the Sorensen-Dice Coefficient which was independently discovered by the author of that article - the article is very well written and well worth reading.
I have ended up using this coefficient for my own needs. However, the original coefficient can yield erroneous results when dealing with
three letter word pairs which contain one misspelling, e.g. [and,amd] and
three letter word pairs which are anagrams e.g. [and,dan]
In the first case Dice erroneously reports a coefficient of zero whilst in the second case the coefficient turns up as 0.5 which is misleadingly high.
An improvement has been suggested which in its essence consists of taking the first and the last character of the word and creating an additional bigram.
In my view the improvement is only really required for 3 letter words - in longer words the other bigrams have a buffering effect that covers up the problem.
My code that implements this improvement is given below.
function wordPairCount(word)
{
var i,rslt = [],len = word.length - 1;
for(i=0;i < len;i++) rslt.push(word.substr(i,2));
if (2 == len) rslt.push(word[0] + word[len]);
return rslt;
}
function pairCount(arr)
{
var i,rslt = [];
arr = arr.toLowerCase().split(' ');
for(i=0;i < arr.length;i++) rslt = rslt.concat(wordPairCount(arr[i]));
return rslt;
}
function commonCount(a,b)
{
var t;
if (b.length > a.length) t = b, b = a, a = t;
t = a.filter(function (e){return b.indexOf(e) > -1;});
return t.length;
}
function myDice(a,b)
{
var bigrams = [],
aPairs = pairCount(a),
bPairs = pairCount(b);
debugger;
var isct = commonCount(aPairs,bPairs);
return 2*commonCount(aPairs,bPairs)/(aPairs.length + bPairs.length);
}
$('#rslt1').text(myDice('WEB Applications','PHP Web Application'));
$('#rslt2').text(myDice('And','Dan'));
$('#rslt3').text(myDice('and','aMd'));
$('#rslt4').text(myDice('abracadabra','abracabadra'));
*{font-family:arial;}
table
{
width:80%;
margin:auto;
border:1px solid silver;
}
thead > tr > td
{
font-weight:bold;
text-align:center;
background-color:aqua;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min.js"></script>
<table>
<thead>
<tr>
<td>Phrase 1</td>
<td>Phrase 2</td>
<td>Dice</td>
</tr>
<thead>
<tbody>
<tr>
<td>WEB Applications</td>
<td>PHP Web Application</td>
<td id='rslt1'></td>
</tr>
<tr>
<td>And</td>
<td>Dan</td>
<td id='rslt2'></td>
</tr>
<tr>
<td>and</td>
<td>aMd</td>
<td id='rslt3'></td>
</tr>
<tr>
<td>abracadabra</td>
<td>abracabadra</td>
<td id='rslt4'></td>
</tr>
</tbody>
</table>
Note the deliberate misspelling in the last example: abracadabra vs abracabadra. Even though no extra bigram correction is applied the coefficient reported is 0.9. With the correction it would have been 0.91.

You can use SQL Server Full-text index to get the smart comparison, I believe that SO is using an ajax call, that does a query to return the similar questions.
What technologies are you using?

The simplest and fastest way to compare similarity among abstracts is probably by utilizing the set concept. First convert abstract texts into set of words. Then check how much each set overlaps. Python's set feature comes very hand performing this task. You would be surprised to see how well this method compares to those "similar/related papers" options out there provided by GScholar, ADS, WOS or Scopus.

Related

Find all references to a supplied noun in StanfordNLP

I'm trying to parse some text to find all references to a particular item. So, for example, if my item was The Bridge on the River Kwai and I passed it this text, I'd like it to find all the instances I've put in bold.
The Bridge on the River Kwai is a 1957 British-American epic war film
directed by David Lean and starring William Holden, Jack Hawkins, Alec
Guinness, and Sessue Hayakawa. The film is a work of fiction, but
borrows the construction of the Burma Railway in 1942–1943 for its
historical setting. The movie was filmed in Ceylon (now Sri Lanka).
The bridge in the film was near Kitulgala.
So far my attempt has been to go through all the mentions attached to each CorefChain and loop through those hunting for my target string. If I find the target string, I add the whole CorefChain, as I think this means the other items in that CorefChain also refer to the same thing.
List<CorefChain> gotRefs = new ArrayList<CorefChain>();
String pQuery = "The Bridge on the River Kwai";
for (CorefChain cc : document.get(CorefCoreAnnotations.CorefChainAnnotation.class).values()) {
List<CorefChain.CorefMention> corefMentions = cc.getMentionsInTextualOrder();
boolean addedChain = false;
for (CorefChain.CorefMention cm : corefMentions) {
if ((!addedChain) &&
(pQuery.equals(cm.mentionSpan))) {
gotRefs.add(cc);
addedChain = true;
}
}
}
I then loop through this second list of CorefChains, re-retrieve the mentions for each chain and step through them. In that loop I show which sentences have a likely mention of my item in a sentence.
for (CorefChain gr : gotRefs) {
List<CorefChain.CorefMention> corefMentionsUsing = gr.getMentionsInTextualOrder();
for (CorefChain.CorefMention cm : corefMentionsUsing) {
//System.out.println("Got reference to " + cm.mentionSpan + " in sentence #" + cm.sentNum);
}
}
It finds some of my references, but not that many, and it produces a lot of false positives. As might be entirely apparently from reading this, I don't really know the first thing about NLP - am I going about this entirely the wrong way? Is there a StanfordNLP parser that will already do some of what I'm after? Should I be training a model in some way?
I think a problem with your example is that you are looking for references to a movie title, and there isn't support in Stanford CoreNLP for recognizing movie titles, book titles, etc...
If you look at this example:
"Joe bought a laptop. He is happy with it."
You will notice that it connects:
"Joe" -> "He"
and
"a laptop" -> "it"
Coreference is an active research area and even the best system can only really be expected to produce an F1 of around 60.0 on general text, meaning it will often make errors.

Search in new Sitecore ContentSearch using whole words

I am using new Sitecore search, and the issue I ran into is having results come for words that have nothing to do with my search term.
For example, searching for "lies" will find "applies". And this is not what I am looking for.
This is an example of search I am doing (simplified). It is a direct LINQ check for "Contains" on the "Content" property of the SearchResultItem, and most likely not what I supposed to do. It is just happen to be that samples I find online are practically doing so.
Example of my code (simplified). In here I break down the search sentence to separate keywords. By the way, I am looking for a way to show full sentence match first.
using (var context = ContentSearchManager.GetIndex("sitecore_web_index").CreateSearchContext())
{
var results = context.GetQueryable<SearchResultItem>()
.Filter(i => i.Path.StartsWith(Home.Paths.FullPath))
.Filter(GetTermPredicate(Term));
// use results here
}
protected Expression<Func<SearchResultItem, bool>> GetTermPredicate(string term)
{
var predicate = PredicateBuilder.True<SearchResultItem>();
foreach (var tempTerm in term.Split(' '))
{
predicate = predicate.And(p => p.Content.Contains(tempTerm));
}
return predicate;
}
Thank you in advance!!
All right. I got help from Sitecore Support.
In my version of Sitecore I can use the following to acheive search for a whole word instead of partial:
instead of:
predicate = predicate.And(p => p.Content.Contains(tempTerm));
use
predicate = predicate.And(p => p.Content.Equals(tempTerm));
Issue solved.
Replace Filter in your code by Where, it should be fine,
here is an example :
var currentIndex = ContentSearchManager.GetIndex("sitecore_web_index");
using (var context = currentIndex.CreateSearchContext())
{
var predicate = PredicateBuilder.True();
foreach (var currentWord in term.Split(‘ ‘))
{
predicate = predicate.Or(x => x.Content.Contains(currentWord ));
}
var results = context.GetQueryable().Where(predicate).GetResults();
}
As Ahmed notes, you should use Where instead of Filter, since Filter has no effect on search rank. The classic use case for filters is to apply a facet chosen by the user without distorting the ordering of results, as would happen if you used a Where clause.
Filtering is similar to using Where to restrict the result list. Both methods will affect the result in the same
result list, but when you use a Filter the scoring/ranking of the search hits is not affected by the filters.
Developer's Guide to Item Buckets and Search
There's a good dicussion of when to use Filter on the Sitecore 7 team blog:
Making Good Part 4: Filters, Paging and I'm feeling lucky.
If you only want to search for whole words, you could prefix and postfix the searchterm with a space. Allthough this doesn't catch all situations.

Setting a df threshold, beyond which, query terms should be ignored

I am using Solr to search and index products from a database. Products have two interesting fields : a name and a description. Product names are normally unique, but sometimes contain common words, which serve as a pre-description of the product. One example would be "UltraScrew - a motor powered screwdriver”. Names are generally much shorter than descriptions
The problem is that when one searches for a common term, documents that contain it in the name get an unwanted boost, over those that contain it only in the description. This is due to the fact that names are shorter, and even with the normalization added afterwards, it is quite visible.
I was wondering if it is possible to filter terms out of the name, not with a dictionary of stop words, but based on the relative document frequency of the term. That means, if a term appears in more than 10% of the available documents, it should be ignored when the name field is queried. The description field should be left untouched.
Is this generally possible?
maybe you could use your own similarity:
import org.apache.lucene.search.Similarity;
public class MySimilarity extends Similarity {
#Override
public float idf(int docFreq, int numDocs) {
float freq = ((float)docFreq)/((float)numDocs);
if (freq >=0.1) return 0;
return (float) (Math.log(numDocs / (double) (docFreq + 1)) + 1.0);
}
...
}
and use that one instead of the default one.
You can set the similarity for an indexSearcher at lucene level, see this other answer to a question.
I am not sure if I understood the question correctly, but you could run two separate queries. Pseudo code:
SearchResults nameSearchResults = search("name:X");
if (nameSearchResults.size() * 10 >= corpusSize) { // name-based search useless?
return search("description:X"); // use description-based search
} else {
return search("name:X description:X); // search both fields
}

Lucene wild card search

How can I perform a wildcard search in Lucene ?
I have the text: "1997_titanic"
If I search like "1997_titanic", it is returning a result, but I am not able to do below two searches:
1) If I search with only 1997 it is not returning any results.
2) Also if there is a space, such as in "spider man", that is not finding any results.
I retrieve all movie information from a DB and store it in Lucene Documents:
public Document createMovieDoc(Movie m){
document.add(new StoredField("moviename", m.getName()));
TextField field = new TextField("movienameSearch", m.getName().toLowerCase(), Store.NO);
field.setBoost(5.0f);
document.add(field);
}
And to search, I have this method:
public List searh(String txt){
PhraseQuery phQuery= new PhraseQuery();
Term term = new Term("movienameSearch", txt.toLowerCase());
BooleanQuery b = new BooleanQuery();
b.add(phQuery, Occur.SHOULD);
TopFieldDocs tp= searcher.search(b, 20, ..);
for(int i=0;i<tp.length;i++)
{
int mId = tp[i].doc;
Document d = searcher.doc(mId);
String moviename = d.get("moviename");
list.add(moviename);
}
return list;
}
I'm not sure what analyzer you are using to index. Sounds like maybe WhitespaceAnalyzer? It sounds like, when indexing "1997_titanic" remains a single token, while "spider man" is split into the token "spider" and "man".
Could also be SimpleAnalyzer which uses a LetterTokenizer. This would make it impossible to search for "1997", since that tokenizer will eliminate all numbers for the indexed representation of the text.
Your search method doesn't look right. You aren't adding any terms to your PhraseQuery, so I wouldn't expect it to find anything. You must add some terms in order for anything to be found. You create a Term in what you've provided, but nothing is ever done with that Term. Maybe this has something to do with how you've pick your excerpts, or something? Not sure, I'm a bit confused by that.
In order to manually construct a PhraseQuery you must add each term individually, so to search for "spider man", you would do something like:
PhraseQuery phQuery= new PhraseQuery();
phQuery.add(new Term("movienameSearch", "spider"));
phQuery.add(new Term("movienameSearch", "man"));
This requires you to know what the analyzer was doing at index time, and tokenize the input yourself to suit. The simpler solution is to just use the QueryParser:
//With whatever analyzer you like to use.
QueryParser parser = new QueryParser(Version.LUCENE_46, "defaultField", analyzer);
Query query = parser.parse("movienameSearch:\"" + txt.toLowerCase() + "\"");
TopFieldDocs tp= searcher.search(query, 20);
This allows you to rely on the same analyzer to index and query, so you don't have to know how to tokenize your phrases to suit.
As far as finding "1997" and "titanic" individually, I would recommend just using StandardAnalyzer. It will tokenize those into discrete tokens, allowing them to be searched very easily, with a simple query like: movienameSearch:1997.

Configuring Solr for Suggestive/Predictive Auto Complete Search

We are working on integrating Solr 3.6 to an eCommerce site. We have indexed data & search is performing really good.
We have some difficulties figuring how to use Predictive Search / Auto Complete Search Suggestion. Also interested to learn the best practices for implementing this feature.
Our goal is to offer predictive search similar to http://www.amazon.com/, but don't know how to implement it with Solr. More specifically I want to understand how to build those terms from Solr, or is it managed by something else external to solr? How the dictionary should be built for offering these kind of suggestions? Moreover, for some field, search should offer to search in category. Try typing "xper" into Amazon search box, and you will note that apart from xperia, xperia s, xperia p, it also list xperia s in Cell phones & accessories, which is a category.
Using a custom dictionary this would be difficult to manage. Or may be we don't know how to do it correctly. Looking to you to guide us on how best utilize solr to achieve this kind of suggestive search.
I would suggest you a couple of blogpost:
This one which shows you a really nice complete solution which works well but requires some additional work to be made, and uses a specific lucene index (solr core) for that specific purpose
I used the Highlight approach because the facet.prefix one is too heavy for big index, and the other ones had few or unclear documentation (i'm a stupid programmer)
So let's suppose the user has just typed "aaa bbb ccc"
Our autocomplete function (java/javascript) will call solr using the following params
q="aaa bbb"~100 ...base query, all the typed words except the last
fq=ccc* ...suggest word filter using last typed word
hl=true
hl.q=ccc* ...highlight word will be the one to suggest
fl=NONE ...return empty docs in result tag
hl.pre=### ...escape chars to locate highlight word in the response
hl.post=### ...see above
you can also control the number of suggestion with 'rows' and 'hl.fragsize' parameters
the highlight words in each document will be the right candidates for the suggestion with "aaa bbb" string
more suggestion words are the ones before/after the highlight words and, of course, you can implement more filters to extract valid words, avoid duplicates, limit suggestions
if interested i can send you some examples...
EDITED: Some further details about the approach
The portion of example i give supposes the 'autocomplete' mechanism given by jquery: we invoke a jsp (or a servlet) inside a web application passing as request param 'q' the words just typed by user.
This is the code of the jsp
ByteArrayInputStream is=null; // Used to manage Solr response
try{
StringBuffer queryUrl=new StringBuffer('putHereTheUrlOfSolrServer');
queryUrl.append("/select?wt=xml");
String typedWords=request.getParameter("q");
String base="";
if(typedWords.indexOf(" ")<=0) {
// No space typed by user: the 'easy case'
queryUrl.append("&q=text:");
queryUrl.append(URLEncoder.encode(typedWords+"*", "UTF-8"));
queryUrl.append("&hl.q=text:"+URLEncoder.encode(typedWords+"*", "UTF-8"));
} else {
// Space chars present
// we split the search in base phrase and last typed word
base=typedWords.substring(0,typedWords.lastIndexOf(" "));
queryUrl.append("&q=text:");
if(base.indexOf(" ")>0)
queryUrl.append("\""+URLEncoder.encode(base, "UTF-8")+"\"~1000");
else
queryUrl.append(URLEncoder.encode(base, "UTF-8"));
typedWords=typedWords.substring(typedWords.lastIndexOf(" ")+1);
queryUrl.append("&fq=text:"+URLEncoder.encode(typedWords+"*", "UTF-8"));
queryUrl.append("&hl.q=text:"+URLEncoder.encode(typedWords+"*", "UTF-8"));
}
// The additional parameters to control the solr response
queryUrl.append("&rows="+suggestPageSize); // Number of results returned, a parameter to control the number of suggestions
queryUrl.append("&fl=A_FIELD_NAME_THAT_DOES_NOT_EXIST"); // Interested only in highlights section, Solr return a 'light' answer
queryUrl.append("&start=0"); // Use only first page of results
queryUrl.append("&hl=true"); // Enable highlights feature
queryUrl.append("&hl.simple.pre=***"); // Use *** as 'highlight border'
queryUrl.append("&hl.simple.post=***"); // Use *** as 'highlight border'
queryUrl.append("&hl.fragsize="+suggestFragSize); // Another parameter to control the number of suggestions
queryUrl.append("&hl.fl=content,title"); // Look for result only in some fields
queryUrl.append("&facet=false"); // Disable facets
/* Omitted section: use a new URL(queryUrl.toString()) to get the solr response inside a byte array */
is=new ByteArrayInputStream(solrResponseByteArray);
DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();
Document doc = dBuilder.parse(is);
XPathFactory xPathfactory = XPathFactory.newInstance();
XPath xpath = xPathfactory.newXPath();
XPathExpression expr = xpath.compile("//response/lst[#name=\"highlighting\"]/lst/arr[#name=\"content\"]/str");
NodeList valueList = (NodeList) expr.evaluate(doc, XPathConstants.NODESET);
Vector<String> suggestions=new Vector<String>();
for (int j = 0; j < valueList.getLength(); ++j) {
Element value = (Element) valueList.item(j);
String[] result=value.getTextContent().split("\\*\\*\\*");
for(int k=0;k<result.length;k++){
String suggestedWord=result[k].toLowerCase();
if((k%2)!=0){
//Highlighted words management
if(suggestedWord.length()>=suggestedWord.length() && !suggestions.contains(suggestedWord))
suggestions.add(suggestedWord);
}else{
/* Words before/after highlighted words
we can put these words inside another vector
and use them if not enough suggestions */
}
}
}
/* Finally we build a Json Answer to be managed by our jquery function */
out.print(request.getParameter("json.wrf")+"({ \"suggestions\" : [");
boolean firstSugg=true;
for(String suggestionW:suggestions) {
out.print((firstSugg?" ":" ,"));
out.print("{ \"suggest\" : \"");
if(base.length()>0) {
out.print(base);
out.print(" ");
}
out.print(suggestionW+"\" }");
firstSugg=false;
}
out.print(" ]})");
}catch (Exception x) {
System.err.println("Exception during main process: " + x);
x.printStackTrace();
}finally{
//Gracefully close streams//
try{is.close();}catch(Exception x){;}
}
Hope to be helpfull,
Nik
This might help you out.I am trying to do the same.
http://solr.pl/en/2010/10/18/solr-and-autocomplete-part-1/

Resources