Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 8 years ago.
Improve this question
I was always attracted to the world of kernel hacking and embedded systems.
Has anyone got good tutorials (+easily available hardware) on starting to mess with such stuff?
Something like kits for writing drivers etc, which come with good documentation and are affordable?
Thanks!
If you are completely new to kernel development, i would suggest not starting with hardware development and going to some "software-only" kernel modules like proc file / sysfs or for more complex examples filesystem / network development , developing on a uml/vmware/virtualbox/... machine so crashing your machine won't hurt so much :) For embedded development you could go for a small ARM Development Kit or a small Via C3/C4 machine, or any old PC which you can burn with your homebrew USB / PCI / whatever device.
A good place to start is probably Kernelnewbies.org - which has lots of links and useful information for kernel developers, and also features a list of easy to implement tasks to tackle for beginners.
Some books to read:
Understanding the Linux Kernel - a very good reference detailing the design of the kernel subsystems
Linux Device Drivers - is written more like a tutorial with a lot of example code, focusing on getting you going and explaining key aspects of the linux kernel. It introduces the build process and the basics of kernel modules.
Linux Kernel Module Programming Guide - Some more introductory material
As suggested earlier, looking at the linux code is always a good idea, especially as Linux Kernel API's tend to change quite often ... LXR helps a lot with a very nice browsing interface - lxr.linux.no
To understand the Kernel Build process, this link might be helpful:
Linux Kernel Makefiles (kbuild)
Last but not least, browse the Documentation directory of the Kernel Source distribution!
Here are some interesting exercises insolently stolen from a kernel development class:
Write a kernel module which creates the file /proc/jiffies reporting the current time in jiffies on every read access.
Write a kernel module providing the proc file /proc/sleep. When an application writes a number of seconds as ASCII text into this file ("echo 3 > /proc/sleep"), it should block for the specified amount of seconds. Write accesses should have no side effect on the contents of the file, i.e., on the read accesses, the file should appear to be empty (see LDD3, ch. 6/7)
Write a proc file where you can store some text temporarily (using echo "blah" > /proc/pipe) and get it out again (cat /proc/pipe), clearing the file. Watch out for synchronisation issues.
Modify the pipe example module to register as a character device /dev/pipe, add dynamic memory allocation for write requests.
Write a really simple file system.
An absolute must is this book by Rubini. (available both as a hardcopy or a free soft copy)
He gives implementations of several dummy drivers that don't require that you have any hardware other than your pc. So for getting started in kernel development it's the easiest way to go.
As for doing embedded work I would recommend purchasing one of the numerous SBC (single board computers) that are out there. There are a number of these that are based on x86 processors, usually with PC/104 interfaces (electrically PC/104 is identical to the ISA bus standard, but based on stackable connectors rather than edge connectors - very easy to interface custom hardware to)
They usually have vga connectors that make it easier to do debugging.
For embedded Linux hacking, simple Linksys WRT54G router that you can buy everywhere is a development platform on its own http://en.wikipedia.org/wiki/Linksys_WRT54G_series:
The WRT54G is notable for being the first consumer-level network device that had its firmware source code released to satisfy the obligations of the GNU GPL. This allows programmers to modify the firmware to change or add functionality to the device. Several third-party firmware projects provide the public with enhanced firmware for the WRT54G.
I've tried installing OpenWrt and DD-WRT firmware on it. You can check those out as a starting point for hacking on a low-cost platform.
For starters, the best way is to read a lot of code. Since Linux is Open Source, you'll find dozens of drivers. Find one that works in some ways like what you want to write. You'll find some decent and relatively easy-to-understand code (the loopback device, ROM fs, etc.)
You can also use the lxr.linux.no, which is the Linux code cross-referenced. If you have to find out how something works, and need to look into the code, this is a good and easy way.
There's also an O'Reilly book (Understanding the Linux Kernel, the 3rd edition is about the 2.6 kernels) or if you want something for free, you can use the Advanced Linux Programing book (http://www.advancedlinuxprogramming.com/). There are also a lot of specific documentation about file systems, networking, etc.
Some things to be prepared for:
you'll be cross-compiling. The embedded device will use a MIPS, PowerPC, or ARM CPU but won't have enough CPU power, memory, or storage to compile its own kernel in a reasonable amount of time.
An embedded system often uses a serial port as the console, and to lower the cost there is usually no connector soldered onto production boards. Debugging kernel panics is very difficult unless you can solder on a serial port connector, you won't have much information about what went wrong.
The Linksys NSLU2 is a low-cost way to get a real embedded system to work with, and has a USB port to add peripherals. Any of a number of wireless access points can also be used, see the OpenWrt compatibility page. Be aware that current models of the Linksys WRT54G you'll find in stores can no longer be used with Linux: they have less RAM and Flash in order to reduce the cost. Cisco/Linksys now uses vxWorks on the WRT54G, with a smaller memory footprint.
If you really want to get into it, evaluation kits for embedded CPUs start at a couple hundred US dollars. I'd recommend not spending money on these unless you need it professionally for a job or consulting contract.
I am completely beginner in kernel hacking :) I decided to buy two books "Linux Program Development: a guide with exercises" and "Writing Linux Device Drivers: a guide with exercises" They are very clearly written and provide good base to further learning.
Related
Context
Debian 64 bit. kernel 3.18.x
Litterally struggling to understand how a network driver is initialized.
I mean how to choose which flag to set. I dig in the kernel for days now to train myself. The card setup is the only point I miss.
I take the intel 82574 as an example. I downloaded the card's datasheet, saw many information but not a clue on how to setup the hardware.
Question
Where to start to know what flags to set ? The datasheet didn't helped me (i am not very experienced but willing to learn).
Please give me a starting point, a tip or anything to help me understand what is going on in the already written open sourced driver.
How can a developer knows how to initialize his nic ? (yes reinventing the wheel the time to understand)
You'll need to read the source code of the kernel module that handles your specific NIC.
EDIT: Of course, to develop such a module, you'd usually just use a register map as specified in a data sheet or application node; often, manufacturers develop their linux drivers themselves, so the driver developers might even be the same people that developed the chipset (because it's really handy to have a platform to test against -- it's impossible to test hardware without having something like a driver, so you might as well write a proper driver).
Furthermore, devices often come with code examples -- no one is going to build a device based on an IC that he has not seen in action.
If you've got access to neither proper documentation nor source, you can only reverse engineer - and that's an incredibly large field.
Using your example with the Intel 82574 Network Adapter, Intel provides a zip file of the source code used to build the Linux driver. The driver is like all drivers in that it hooks into the OS API for Networking.
The Linux networking API is document on both the linux.org site and discussed on popular Linux sites like lwn.org. Below is the link to lwn's chapter on Network drivers using the networking API called NAPI.
https://static.lwn.net/images/pdf/LDD3/ch17.pdf
You'll notice in the Intel igb driver source code that the NAPI net_device data structure is one of the first things that is setup. It registers the driver with the OS. This way the OS knows which igb functions to call when loading/unloading the driver, or when needing to send/receive data.
The igb functions read/modify/write the necessary bits in the 82574's memory-mapped registers that control and monitor the device. The device registers are all documented in the 82574 datasheet available on Intel's site. And this is usually the case for almost any networking company like Broadcom/Chelsio/Mellanox/Marvell.
Hope that helps a little more.
This may be a foolish question but I've been searching around for some time and don't see a clear answer. I've seen several microcontrollers advertised as running Unix-like software (Linux, Ubuntu) for example, the BeagleBone Black and Arduino Yun. Can someone please explain to me the benefit of this? So far I've used a couple of microcontrollers like the Arduino Uno/Duo, Freescale FRDM and STM32 Discovery which either didn't have this feature or I was not aware of it. I'm starting to see it more and more on newer microcontrollers so I'd like to know what it brings to the table.
Full disclosure: I've had minimal exposure to UNIX and its variants so far so please talk slowly and use small words =)
Hope to hear from you,
Yusif Nurizade
You get complex drivers already included Linux for free (USB, internet protocols, storage media and file systems).
You can use lots of free software for the things not included in the kernel.
It is simpler to develop software on a full OS (easier to debug, look what is going on, change the configuration, etc etc).
The drawback is that the real-time capabilities are generally worse than for some small RTOS, and it needs more resources (a couple of megabytes memory).
In the heart of all Android and iphone is a Embedded Linux System. Without getting too deep
Linux + Java = Android
BSD Unix variant + C/C++/Object C = iOS
Now if you get deeper the above two statement can be argued for accuracy
All Android devices run on ARM based microprocessors. Beaglebone is one such open source hardware platform with can run Android as well as Embedded Linux distribution and even a Ubuntu.
Now (IMHO) Ubuntu is primarily for desktop and server application. Many of the popular computer server farms uses Ubuntu.
Now STM32 is a ARM based CORTEX-M micro control. Once again (IMHO) is mostly used for bare metal embedded applications. I have hard that FreeRTOS can be ported to TM4C123 ARM Cortex-M TM4C123.
Now the advantages of using Linux base micro controller architecture are
OS is free for the most part
Larger community of users
The industry is moving towards open source
Lot of free resources get up to speed
Disadvantage are
Learning curve is pretty steep
Expect to stumble and fall a few time
Below to two good resources to learn Beaglebone open source development
Beaglebone
Introduction to Beaglebone development by Derek Molloy of Dublin City University
HTH and good luck
Most of the linux kernel architecture books were written taking x86 architecture as reference (LKD by robert love or ULKI by bovett). Does there exist any book which explain linux kernel internals taking ARM architecture as reference.
Some basic questions are missing to really recommend you something and point you to useful resources:
what low level routines do you mean?
what are you going to do with that information?
The linux kernel is running on ARM already and most of the low level stuff is solved there and you shouldn't touch that unless you really know what you're doing. The linux kernel provides some generic low-level interfaces that its drivers stay portable without plattform specific snippets. Unless your intention is to add another ARM processor that is not supported yet you shouldn't need to dig around there.
If you want to add drivers or use components look into this device tree howto.
One major difference to X86 is the device tree/ open firmware stuff because System on Chip devices have often the same hardware mapped to different memory.
If you are looking for embedded kernel development you might also look into elinux.
Further reading is also provided in the linux-kernel tag wiki of stackoverflow.
So, I know Linux kernel is quite "heavy" when considering lower scale embedded systems, but currently but we're a 2 man team trying to see how to create our own embedded system.
I'm the one in charge of all software (the other guy is a HW guy), and thus I would like to re-use existing libraries and frameworks as much as possible, and I would like to bounce off some ideas with gurus around here.
I am fairly comfortable in Linux, but the booting and initialization process is new to me, and I need to dive in to that soon enough. Any book recommendations are welcome as well!
I haven't designed any embedded systems before.. Only own some ARM dev boards (beagleboard and raspberry pi).
Current I have prototype of the software running on beagleboard already, and now we're thinking how to minimize the cost, and to create something our own..
It's a system connected to the internet, and I need to run a tiny web server with some scripting support. Performance wise I don't think it needs to be too powerful.
I would like to minimize all bootloader etc work, since I'm a one man SW team, and just concentrate on the application itself.
Of course I understand that I need to configure our kernel for this, but this is indeed why I thought selecting some SoC would be good, since they usually have some linux and bootloaders ready..
First I thought that Cirrus EP9301 would be perfect, since it seems to be a good package, and not very expensive.. But it seems that it's already in end-of-life, and also support for this is very bad (people on the cirrus forums constantly complain about it).
Are there some good choices for this kind of project, which would enable us "easily" to get linux kernel up and running, with still maintaining some kind of decent BOM (hopefully 20USD or so) ?
Your hardware guy should already know this, but go with an existing reference design. Take the raspberry pi, the beagleboard/bone, open-rd, or any number of other existing systems and clone the part you need. As a result the linux porting will be a matter of removing what you are not using from the reference design instead of adding new stuff and hoping it works. If you go with flat pack parts you can do the work in your garage, if you go with bgas you need the equipment for that or pay someone to do it. (can you tell yet that I hate bgas?).
Is linux a requirement, if not that opens the door to a lot more devices using freertos or chibios or a number of other solutions. the stm32f4 discovery board for example is $20, uses what can barely be called a microcontroller for all the features it has (cortex-m4). Supposedly possible to run uclinux on a cortex-m, but definitely possible to run any number of rtoses and have an ip stack, etc. stellaris (ti.com) has a number of eval boards, one/some with ethernet already (use as a reference design). You can also take the wiznet approach (or a spi ethernet) and use any microcontroller (puts you into the avr/msp430 level and price range). Bang for buck the cortex-m's are good, arm based so comfortable to work with, etc.
Using linux if you are already not an experienced at porting to an embedded platform, and dont want to learn that on this go around, I would definitely go with a clone of an existing design, leverage as much as you can from a project with folks that are experienced at porting linux to a platform. If need be take an existing board (beagle/raspi/openrd) and go through the motions of porting to the platform with the cheat sheet of having access to an existing port, see if you cant get uboot ported and linux booting, etc. (dont really need uboot at all, that is possibly an unnecessary complication, just get dram up and pass the atags, etc to linux and just branch to it, pretty easy to launch linux from bare metal).
You could probably do worse than taking the Broadcom BCM2835 - used on the Raspberry Pi - as your starting point - especially if you want to avoid kernel and boot-loader work and a source of reference schematics. If this proves too expensive, check out other devices in the Broadcom range.
A few bits of advice
You probably want some flash rather than a MMC card interface for production use. eMMC is an option. NAND flash is a nightmare due to rapid component obsolescence and the need to get own and dirty with the MTD drivers.
USB Ethernet will be easier to integrate than a controller hanging off a general purpose bus, but won't perform as well. SmSC seems to be popular source for either
You could also have a look at the work that Olimex is doing with their linux boards. Perhaps even order a som and then combine it with other external components.
I need to produce an embedded ARM design that has requirements to do many things that embedded Linux would do. However the design is cost sensitive and does not need huge amounts of horse power. Mostly will be talking to serial interfaces. Ideally I would like to use one of the low end ARMs. What is the lowest configuration of an ARM that you have successfully used embedded Linux on.
Edit:
The application needs a file system on some kind of flash device and the ability to run applications for processing the data. Some of the applications might be written by others than myself. I also need to ability to load new applications or update old apps using the serial ports to accept the apps.
When I have looked at other embedded OSes they seem to be more of a real time threading solution than having the ability to run applications. I am open to what ever will get the job done.
I think you need to weigh your cost options here.
ARM + linux is an option but you will be paying a very high operating overhead for such a simple (from your description) set of features. You can't just look at the cost of the ARM chip but must also consider external RAM which will very likely be required as well as flash to get enough space available to run the kernel + apps.
NOTE: you may be able to avoid the external requirements with a very minimal kernel and simple apps combined with a uC with large internal resources.
A second option is a much simpler microcontroller with a light weight OS. This will cut your hardware costs on the CPU and you can likely run something like this without external RAM or flash (dependent on application RAM and program space requirement)
third option: I don't actually see anything in your requirements that demands any OS at all be used. Basic file systems are very simple, for instance there are even FAT drivers out there for 8 bit PIC's. Interfacing to an SD card only requires a SPI port and minimal external circuitry.
The application bit could be simple or complex. I've built systems around PIC18 microcontollers that run a web server and allow program updates via a simple upload screen, it just stores the new program into an EEPROM or flash, reboots into a bootloader and copies the new program into internal program memory. You could likely design a way to do this without the reboot via a cooperative multitasking type of architecture. Any way you go the programmers writing the apps are going to need to have knowledge of the architecture and access to libraries / driver you write. Your best bet to simplify this is to provide as simple an API as possible and to try to automate the build process for them.
The third option will be the "cheapest" in terms of hardware as there will be very little overhead in the processing of your applications allowing you to get away with minimal processing power and memory. It likely will require some more programming/software architecting on your part but won't require nearly the research you will need to undertake to get linux up and running in addition to learning to write the needed device drivers under a linux paradigm.
As always you have to include the software development costs in the build cost of the device. If you plan to build 10,000+ of these your likely better off keeping hardware costs down and putting more man power into designing a software solution that allows that hardware to meet the design goals. If your building 10 of them, your better off spending an extra $15-20 on hardware if it can cut down on your software development costs. For example an ARM with MMU with full linux kernel support and available device drivers.
I kind of feel that your selecting the worst of both worlds at the moment, your paying extra to get a uC you can run linux on but by doing so your also selecting a part that will likely be the most complex to get linux up and running on, especially having not worked with linux on embedded platforms before.
I've had success even on ARM7TDMI, so I don't think you're going to have any trouble. If you have a low-requirements system, you could use any kind of lightweight real-time executive and have a lot better experience than you would getting Linux to work.
I've used a TS-7200 for about five years to run a web server and mail server, using Debian GNU Linux. It is 200 MHz and has 32 MB of RAM, and is quite adequate for these tasks. It has serial port built in. It's based on a ARM920T.
This would be overkill for your job; I mention it so you have another data point.
For several years I've been using a gumstix to do prototyping and testing and I've had good results with it. I don't know if the processor they are using (Intel PXA255 on my board) is considered low-cost, but the entire Verdex line seems pretty cheap to me for an adaptable device.
ucLinux is designed specifically for resource constrained targets, but perhaps more importantly for targets without an MMU.
However you have to have a good reason to use Linux on such a system rather than a small real-time executive. Out-of-the-box networking, readily available drivers and protocol stacks for complex hardware and support for existing POSIX legacy or open source code are a few perhaps. However if you don't need that, Linux is still large, and you may be squandering resources for no real benefit. In most cases you will still need off-chip SDRAM and Flash if you choose Linux of any flavour.
I would not regard serial I/O as 'complex hardware', so unless you are running a complex, but standard protocol, your brief description does not appear to warrant the use of Linux IMO
My DLINK DIR-320 router runs Linux inside.
And I know some handymen, flashing it with Optware and connecting USB-hub, HDDs, USB-flash, and much more.
It's low-cost ready for use "platform". (If you don't need mass production). But maybe more powerful than you need.
Additionally, it can be configured wirelessly via web-interface even through your pda :)