My goal:
class BaseClass1:
def f(self)
class BaseClass2:
def f(self)
class DerivedClass:
def g(self):
self.f() # this is either BaseClass1::f() or BaseClass2::f(), depending on instantiation
Where DerivedClass is can be instanced either:
class DerivedClass(BaseClass1)
or
class DerivedClass(BaseClass2)
I understand that this can solve the problem itself:
class UtilityClass1:
def f(self)
class UtilityClass2:
def f(self)
class DerivedClass:
def __init__(self, utilityInstance):
self.utility = utilityInstance
def g(self):
self.utility.f()
d = DerivedClass(UtilityClass1())
d = DerivedClass(UtilityClass2())
However, I specifically want to know, if there is another way, through inheritance (probably using some decorators, or whatever).
Just to wrap things up:
INPUT:
3 class definitions:
class BaseClass1
class BaseClass2
class DerivedClass
OUTPUT:
2 "merged" class instances:
d1 = DerivedClass(BaseClass1)
d2 = DerivedClass(BaseClass2)
I am trying to create a wrapper class in Python with the following behaviour:
It should take as an argument an existing class from which it should inherit all methods and attributes
The wrapper class methods should be able to use Python super() to access methods of the superclass (the one passed as an argument)
Because of my second requirement I think the solution here will not suffice (and in any case I am having separate issues deepcopying some of the methods of the superclass' I am trying to inherit from).
I tried this but it's not correct...
class A:
def shout(self):
print("I AM A!")
class B:
def shout(self):
print("My name is B!")
class wrapper:
def __init__(self, super_class):
## Some inheritance thing here ##
# I initially tried this but no success...
super(super_class).__init__() # or similar?
def shout(self):
print('This is a wrapper')
super().shout()
And this is the behaviour I require...
my_wrapper = wrapper(A)
my_wrapper.shout()
# Expected output:
# > This is a wrapper
# > I AM A
my_wrapper = wrapper(B)
my_wrapper.shout()
# Expected output:
# > This is a wrapper
# > My name is B!
Is inheritance the correct approach here, if so am I sniffing in the right direction? Any help is appreciated, thanks :)
Edit for context:
I intend to build multiple wrappers so that all of my ML models have the same API. Generally, models from the same package (sklearn for example) have the same API and should be able to be wrapped by the same wrapper. In doing this I wish to modify/add functionality to the existing methods in these models whilst keeping the same method name.
If wrapper has to be a class then a composition solution would fit much better here.
Keep in mind that I turned the shout methods to staticmethod because in your example you pass the class to wrapper.shout, not an instance.
class A:
#staticmethod
def shout():
print("I AM A!")
class B:
#staticmethod
def shout():
print("My name is B!")
class wrapper:
def __init__(self, super_class):
self._super_class = super_class
def __getattr__(self, item):
try:
return self.__dict__[item].__func__
except KeyError:
return self._super_class.__dict__[item].__func__
def a_wrapper_method(self):
print('a wrapper attribute can still be used')
my_wrapper = wrapper(A)
my_wrapper.shout()
my_wrapper = wrapper(B)
my_wrapper.shout()
my_wrapper.a_wrapper_method()
Outputs
This is a wrapper
I AM A!
This is a wrapper
My name is B!
a wrapper attribute can still be used
So I went for a function in the end. My final solution:
class A:
def shout(self):
print("I AM A!")
class B:
def shout(self):
print("My name is B!")
def wrap_letter_class(to_wrap):
global letterWrapper
class letterWrapper(to_wrap):
def __init__(self):
super().__init__()
def shout(self):
print('This is a wrapper')
super().shout()
def __getstate__(self):
# Add the wrapper to global scope before pickling
global letterWrapper
letterWrapper = self.__class__
return self.__dict__
return letterWrapper()
Which produces the desired behaviour...
In [2]: wrapped = wrap_letter_class(A)
In [3]: wrapped.shout()
This is a wrapper
I AM A!
In [4]: wrapped = wrap_letter_class(B)
In [5]: wrapped.shout()
This is a wrapper
My name is B!
Something not mentioned in my initial question was that I intended to pickle my custom class, this is not possible if the class is not defined in the global scope, hence the __getstate__ and global additions.
Thanks!
What's the best practice to define an abstract instance attribute, but not as a property?
I would like to write something like:
class AbstractFoo(metaclass=ABCMeta):
#property
#abstractmethod
def bar(self):
pass
class Foo(AbstractFoo):
def __init__(self):
self.bar = 3
Instead of:
class Foo(AbstractFoo):
def __init__(self):
self._bar = 3
#property
def bar(self):
return self._bar
#bar.setter
def setbar(self, bar):
self._bar = bar
#bar.deleter
def delbar(self):
del self._bar
Properties are handy, but for simple attribute requiring no computation they are an overkill. This is especially important for abstract classes which will be subclassed and implemented by the user (I don't want to force someone to use #property when he just could have written self.foo = foo in the __init__).
Abstract attributes in Python question proposes as only answer to use #property and #abstractmethod: it doesn't answer my question.
The ActiveState recipe for an abstract class attribute via AbstractAttribute may be the right way, but I am not sure. It also only works with class attributes and not instance attributes.
A possibly a bit better solution compared to the accepted answer:
from better_abc import ABCMeta, abstract_attribute # see below
class AbstractFoo(metaclass=ABCMeta):
#abstract_attribute
def bar(self):
pass
class Foo(AbstractFoo):
def __init__(self):
self.bar = 3
class BadFoo(AbstractFoo):
def __init__(self):
pass
It will behave like this:
Foo() # ok
BadFoo() # will raise: NotImplementedError: Can't instantiate abstract class BadFoo
# with abstract attributes: bar
This answer uses same approach as the accepted answer, but integrates well with built-in ABC and does not require boilerplate of check_bar() helpers.
Here is the better_abc.py content:
from abc import ABCMeta as NativeABCMeta
class DummyAttribute:
pass
def abstract_attribute(obj=None):
if obj is None:
obj = DummyAttribute()
obj.__is_abstract_attribute__ = True
return obj
class ABCMeta(NativeABCMeta):
def __call__(cls, *args, **kwargs):
instance = NativeABCMeta.__call__(cls, *args, **kwargs)
abstract_attributes = {
name
for name in dir(instance)
if getattr(getattr(instance, name), '__is_abstract_attribute__', False)
}
if abstract_attributes:
raise NotImplementedError(
"Can't instantiate abstract class {} with"
" abstract attributes: {}".format(
cls.__name__,
', '.join(abstract_attributes)
)
)
return instance
The nice thing is that you can do:
class AbstractFoo(metaclass=ABCMeta):
bar = abstract_attribute()
and it will work same as above.
Also one can use:
class ABC(ABCMeta):
pass
to define custom ABC helper. PS. I consider this code to be CC0.
This could be improved by using AST parser to raise earlier (on class declaration) by scanning the __init__ code, but it seems to be an overkill for now (unless someone is willing to implement).
2021: typing support
You can use:
from typing import cast, Any, Callable, TypeVar
R = TypeVar('R')
def abstract_attribute(obj: Callable[[Any], R] = None) -> R:
_obj = cast(Any, obj)
if obj is None:
_obj = DummyAttribute()
_obj.__is_abstract_attribute__ = True
return cast(R, _obj)
which will let mypy highlight some typing issues
class AbstractFooTyped(metaclass=ABCMeta):
#abstract_attribute
def bar(self) -> int:
pass
class FooTyped(AbstractFooTyped):
def __init__(self):
# skipping assignment (which is required!) to demonstrate
# that it works independent of when the assignment is made
pass
f_typed = FooTyped()
_ = f_typed.bar + 'test' # Mypy: Unsupported operand types for + ("int" and "str")
FooTyped.bar = 'test' # Mypy: Incompatible types in assignment (expression has type "str", variable has type "int")
FooTyped.bar + 'test' # Mypy: Unsupported operand types for + ("int" and "str")
and for the shorthand notation, as suggested by #SMiller in the comments:
class AbstractFooTypedShorthand(metaclass=ABCMeta):
bar: int = abstract_attribute()
AbstractFooTypedShorthand.bar += 'test' # Mypy: Unsupported operand types for + ("int" and "str")
Just because you define it as an abstractproperty on the abstract base class doesn't mean you have to make a property on the subclass.
e.g. you can:
In [1]: from abc import ABCMeta, abstractproperty
In [2]: class X(metaclass=ABCMeta):
...: #abstractproperty
...: def required(self):
...: raise NotImplementedError
...:
In [3]: class Y(X):
...: required = True
...:
In [4]: Y()
Out[4]: <__main__.Y at 0x10ae0d390>
If you want to initialise the value in __init__ you can do this:
In [5]: class Z(X):
...: required = None
...: def __init__(self, value):
...: self.required = value
...:
In [6]: Z(value=3)
Out[6]: <__main__.Z at 0x10ae15a20>
Since Python 3.3 abstractproperty is deprecated. So Python 3 users should use the following instead:
from abc import ABCMeta, abstractmethod
class X(metaclass=ABCMeta):
#property
#abstractmethod
def required(self):
raise NotImplementedError
If you really want to enforce that a subclass define a given attribute, you can use metaclasses:
class AbstractFooMeta(type):
def __call__(cls, *args, **kwargs):
"""Called when you call Foo(*args, **kwargs) """
obj = type.__call__(cls, *args, **kwargs)
obj.check_bar()
return obj
class AbstractFoo(object):
__metaclass__ = AbstractFooMeta
bar = None
def check_bar(self):
if self.bar is None:
raise NotImplementedError('Subclasses must define bar')
class GoodFoo(AbstractFoo):
def __init__(self):
self.bar = 3
class BadFoo(AbstractFoo):
def __init__(self):
pass
Basically the meta class redefine __call__ to make sure check_bar is called after the init on an instance.
GoodFoo() # ok
BadFoo () # yield NotImplementedError
As Anentropic said, you don't have to implement an abstractproperty as another property.
However, one thing all answers seem to neglect is Python's member slots (the __slots__ class attribute). Users of your ABCs required to implement abstract properties could simply define them within __slots__ if all that's needed is a data attribute.
So with something like,
class AbstractFoo(abc.ABC):
__slots__ = ()
bar = abc.abstractproperty()
Users can define sub-classes simply like,
class Foo(AbstractFoo):
__slots__ = 'bar', # the only requirement
# define Foo as desired
def __init__(self):
self.bar = ...
Here, Foo.bar behaves like a regular instance attribute, which it is, just implemented differently. This is simple, efficient, and avoids the #property boilerplate that you described.
This works whether or not ABCs define __slots__ at their class' bodies. However, going with __slots__ all the way not only saves memory and provides faster attribute accesses but also gives a meaningful descriptor instead of having intermediates (e.g. bar = None or similar) in sub-classes.1
A few answers suggest doing the "abstract" attribute check after instantiation (i.e. at the meta-class __call__() method) but I find that not only wasteful but also potentially inefficient as the initialization step could be a time-consuming one.
In short, what's required for sub-classes of ABCs is to override the relevant descriptor (be it a property or a method), it doesn't matter how, and documenting to your users that it's possible to use __slots__ as implementation for abstract properties seems to me as the more adequate approach.
1 In any case, at the very least, ABCs should always define an empty __slots__ class attribute because otherwise sub-classes are forced to have __dict__ (dynamic attribute access) and __weakref__ (weak reference support) when instantiated. See the abc or collections.abc modules for examples of this being the case within the standard library.
The problem isn't what, but when:
from abc import ABCMeta, abstractmethod
class AbstractFoo(metaclass=ABCMeta):
#abstractmethod
def bar():
pass
class Foo(AbstractFoo):
bar = object()
isinstance(Foo(), AbstractFoo)
#>>> True
It doesn't matter that bar isn't a method! The problem is that __subclasshook__, the method of doing the check, is a classmethod, so only cares whether the class, not the instance, has the attribute.
I suggest you just don't force this, as it's a hard problem. The alternative is forcing them to predefine the attribute, but that just leaves around dummy attributes that just silence errors.
I've searched around for this for awhile but didn't see anything I like. As you probably know if you do:
class AbstractFoo(object):
#property
def bar(self):
raise NotImplementedError(
"Subclasses of AbstractFoo must set an instance attribute "
"self._bar in it's __init__ method")
class Foo(AbstractFoo):
def __init__(self):
self.bar = "bar"
f = Foo()
You get an AttributeError: can't set attribute which is annoying.
To get around this you can do:
class AbstractFoo(object):
#property
def bar(self):
try:
return self._bar
except AttributeError:
raise NotImplementedError(
"Subclasses of AbstractFoo must set an instance attribute "
"self._bar in it's __init__ method")
class OkFoo(AbstractFoo):
def __init__(self):
self._bar = 3
class BadFoo(AbstractFoo):
pass
a = OkFoo()
b = BadFoo()
print a.bar
print b.bar # raises a NotImplementedError
This avoids the AttributeError: can't set attribute but if you just leave off the abstract property all together:
class AbstractFoo(object):
pass
class Foo(AbstractFoo):
pass
f = Foo()
f.bar
You get an AttributeError: 'Foo' object has no attribute 'bar' which is arguably almost as good as the NotImplementedError. So really my solution is just trading one error message from another .. and you have to use self._bar rather than self.bar in the init.
Following https://docs.python.org/2/library/abc.html you could do something like this in Python 2.7:
from abc import ABCMeta, abstractproperty
class Test(object):
__metaclass__ = ABCMeta
#abstractproperty
def test(self): yield None
def get_test(self):
return self.test
class TestChild(Test):
test = None
def __init__(self, var):
self.test = var
a = TestChild('test')
print(a.get_test())
I'm not the strongest pillar when it comes to class inheritance, so here goes my rather silly question. Following the code below, I would logically assume that after the 'super' call, the pointer arrives at self.example() which would in turn refer to the 'example' method in the same class and value 20 will be printed.
class A(object):
def __init__():
self.example()
def example(self):
print(20)
class B(A):
def __init__():
super().__init__()
def example(self):
print(10)
x = B()
Result : 10
This clearly isn't the case and 10 is printed instead. Could someone please shed some light on the mysterious world of class inheritance.
class A(object):
def __init__():
self.example()
def example(self):
print(20)
class B(A):
def __init__():
super().__init__()
x = B()
x.example()
Look for this, at example.
When you inherit B, from A, then method example is inheritated to B, you not must rewrite this to B. Of course still you can write this method for B, then you will override 'A' method, for objects of class B.
You also can use one class to Inheritance with many others:
class Base(object):
def __init__(self):
print("Base created")
class ChildA(Base):
def __init__(self):
Base.__init__(self)
class ChildB(Base):
def __init__(self):
super(ChildB, self).__init__()
ChildA()
ChildB()
ChildB have another call which is equivalent to that used in example above.
I need for an abstract class to be able to handle missing class method. I find out how to do this for instance method with __getattr__ but it's not working with class method. Is it even possible ?
I've got something like this :
class Container:
_definitions = {'class_a': 'example.class_a.ClassA',
'class_b': 'example.class_b.ClassB'}
#classmethod
def get(cls, def_id):
# import dynamicaly
parts = cls._definitions[def_id].split(".")
module_name = ".".join(parts[:-1])
class_name = parts[-1]
__import__(module_name)
return class_name
class AbstractClass:
#classmethod
def __getattr__(cls, name, *args):
def missing_method():
result = re.search("^(?P<class_id>[a-z0-9._-]*)$", name)
if result:
return Container.get(result.group('class_id'))
raise RuntimeError("class method '{}' missing from class".format(name))
return missing_method
class ClassA(AbstractClass):
#classmethod
def method(cls):
classb = cls.class_a()
classb.method()
class ClassB(AbstractClass):
#classmethod
def method(cls):
print('Hello world')
Each class in my Container must extend AbstractClass to be able to magically call any class in it, like I do un classA.method().
It's working if I do not use class method, but my purpose is that every class into my container can not be instantiate cause it will be useless for my needs. It's a kind of Singleton pattern.
Is it more understandable ?