Find the list of all persisted dataframes in Spark - apache-spark

I have a long spark code similar to below which has a lot of keywords :
df = spark.sql("""
select * from abc
""")
df.persist()
df2 = spark.sql("""
select * from def
""")
df2.persist()
df3 = spark.sql("""
select * from mno""")
I want to find out all the dataframes which have been persisted and store them in a list.
Output:
l1 = [df, df2]
How can we proceed with this?

Try this:
from pyspark.sql import DataFrame
df = spark.sql("""
select * from abc
""")
df.persist()
df2 = spark.sql("""
select * from def
""")
df2.persist()
df3 = spark.sql("""
select * from mno
""")
dfNameList = []
for k, v in globals().items():
if isinstance(v, DataFrame):
# k is the name of DF, v is DF itself.
if v.storageLevel.useMemory == True:
dfNameList.append(k)
print(dfNameList)
Output:
['df', 'df2']
Loop globals().items();
Find DataFrame instance;
Determine whether DF is persistent in memory;
Collect the DF name and print.
If you want to put all DF in the list instead of DF names, just append the v to list.
Output will like:
[DataFrame[fieldOne: typeOne, fieldTwo: typeTwo, ……], DataFrame[fieldOne: typeOne, fieldTwo: typeTwo,……]]

Related

Data type conversion in spark

I have an column id which had type int but later changed to bigint.
It has both types of values.
from pyspark.sql.functions import *
from pyspark.sql.types import *
df = spark.read.parquet('hdfs path')
df = df.select("id", "code")
df=df.withColumn("id1", df["id"].cast(LongType()))
res1=df.select("id1", "code")
res1.show(1, False)
It shows me the data frame but when i try to perform some operations on them
example:
res1.groupBy('code').agg(countDistinct("id1")).show(1, False)
I get Column: [id], Expected: int, Found: INT64
I tried mergeSchema did not work either.
from pyspark.sql.functions import *
from pyspark.sql.types import *
df1 = spark.read.parquet('hdfs path')
df2 = df1.select("id", "code")
df3 = df2.withColumn("id1", df2["id"].cast(LongType()))
res1=df3.select("id1", "code")
res1.show(1, False)
res1.groupBy("code").agg(countDistinct("id1")).show(1, False)
This should work. In spark Dataframes are immutable so you should not assign the value of transformation operation to a same df variable, you should use a different variable name. In scala it would give you compile time error but in python its allowed so you don't notice it.
if you want you could also chain all of your transformation and get a single df variable and perform groupby operation on it as below :
df = spark.read.parquet('hdfs path').select("id", "code").withColumn("id1", col("id").cast(LongType())).select("id1", "code")
df.groupBy("code").agg(countDistinct("id1")).show(1, False)

How to check NULL values while comparing 2 text files using spark data frames

The below code failing to capture the 'null' value records. From below df1, the column NO . 5 has a null value (name field).
As per my below requirement OutputDF, the No. 5 record should come as mentioned. But after below code execution this record is not coming into the final output. The records with 'null' values are not coming into the output. Except this, remaining everything fine.
df1
NO DEPT NAME SAL
1 IT RAM 1000
2 IT SRI 600
3 HR GOPI 1500
5 HW 700
df2
NO DEPT NAME SAL
1 IT RAM 1000
2 IT SRI 900
4 MT SUMP 1200
5 HW MAHI 700
OutputDF
NO DEPT NAME SAL FLAG
1 IT RAM 1000 SAME
2 IT SRI 900 UPDATE
4 MT SUMP 1200 INSERT
3 HR GOPI 1500 DELETE
5 HW MAHI 700 UPDATE
from pyspark.shell import spark
from pyspark.sql import DataFrame
import pyspark.sql.functions as F
sc = spark.sparkContext
filedf1 = spark.read.option("header","true").option("delimiter", ",").csv("C:\\files\\file1.csv")
filedf2 = spark.read.option("header","true").option("delimiter", ",").csv("C:\\files\\file2.csv")
filedf1.createOrReplaceTempView("table1")
filedf2.createOrReplaceTempView("table2")
df1 = spark.sql( "select * from table1" )
df2 = spark.sql( "select * from table2" )
#DELETE
df_d = df1.join(df2, df1.NO == df2.NO, 'left').filter(F.isnull(df2.NO)).select(df1.NO,df1.DEPT,df1.NAME,df1.SAL, F.lit('DELETE').alias('FLAG'))
print("df_d left:",df_d.show())
#INSERT
df_i = df1.join(df2, df1.NO == df2.NO, 'right').filter(F.isnull(df1.NO)).select(df2.NO,df2.DEPT,df2.NAME,df2.SAL, F.lit('INSERT').alias('FLAG'))
print("df_i right:",df_i.show())
#SAME
df_s = df1.join(df2, df1.NO == df2.NO, 'inner').filter(F.concat(df2.NO,df2.DEPT,df2.NAME,df2.SAL) == F.concat(df1.NO,df1.DEPT,df1.NAME,df1.SAL)).select(df1.NO,df1.DEPT,df1.NAME,df1.SAL, F.lit('SAME').alias('FLAG'))
print("df_s inner:",df_s.show())
#UPDATE
df_u = df1.join(df2, df1.NO == df2.NO, 'inner').filter(F.concat(df2.NO,df2.DEPT,df2.NAME,df2.SAL) != F.concat(df1.NO,df1.DEPT,df1.NAME,df1.SAL)).select(df2.NO,df2.DEPT,df2.NAME,df2.SAL, F.lit('UPDATE').alias('FLAG'))
print("df_u inner:",df_u.show())
df = df_d.union(df_i).union(df_s).union(df_u)
df.show()
Here i'm comparing both df1 and df2, if found new records in df2 taking flag as INSERT, if record is same in both dfs then taking as SAME, if the record is in df1 and not in df2 taking as DELETE and if the record exist in both dfs but with different values then taking df2 values as UPDATE.
There's two issues with the code:
The result of F.concat of a null returns null, so this part in code filters out row row NO 5:
.filter(F.concat(df2.NO, df2.NAME, df2.SAL) != F.concat(df1.NO, df1.NAME, df1.SAL))
You are only selecting df2. It's fine in the example case above, but if your df2 has a null then the resultant dataframe will have null.
You can try concatenating it with a udf below:
def concat_cols(row):
concat_row = ''.join([str(col) for col in row if col is not None])
return concat_row
udf_concat_cols = udf(concat_cols, StringType())
The function concat_row can be broken down into two parts:
"".join([mylist]) is a string function. It joins everything in the
list with the defined delimeter, in this case it's an empty string.
[str(col) for col in row if col is not None] is a list comprehension, it does as it reads: for each column in the row, if
the column is not None, then append the str(col) into the list.
List comprehension is just a more pythonic way of doing this:
mylist = []
for col in row:
if col is not None:
mylist.append(col))
You can replace your update code as:
df_u = (df1
.join(df2, df1.NO == df2.NO, 'inner')
.filter(udf_concat_cols(struct(df1.NO, df1.NAME, df1.SAL)) != udf_concat_cols(struct(df2.NO, df2.NAME, df2.SAL)))
.select(coalesce(df1.NO, df2.NO),
coalesce(df1.NAME, df2.NAME),
coalesce(df1.SAL, df2.SAL),
F.lit('UPDATE').alias('FLAG')))
You should do something similar for your #SAME flag and break the line for readability.
Update:
If df2 always have the correct (updated) result, there is no need to coalesce.
The code for this instance would be:
df_u = (df1
.join(df2, df1.NO == df2.NO, 'inner')
.filter(udf_concat_cols(struct(df1.NO, df1.NAME, df1.SAL)) != udf_concat_cols(struct(df2.NO, df2.NAME, df2.SAL)))
.select(df2.NO,
df2.NAME,
df2.SAL,
F.lit('UPDATE').alias('FLAG')))

PySpark: Replace Punctuations with Space Looping Through Columns

I have the following code running successfully in PySpark:
def pd(data):
df = data
df = df.select('oproblem')
text_col = ['oproblem']
for i in text_col:
df = df.withColumn(i, F.lower(F.col(i)))
df = df.withColumn(i, F.regexp_replace(F.col(i), '[.,#-:;/?!\']', ' '))
return df
But when I add a second column in and try to loop it, it doesn't work:
def pd(data):
df = data
df = df.select('oproblem', 'lca')
text_col = ['oproblem', 'lca']
for i in text_col:
df = df.withColumn(i, F.lower(F.col(i)))
df = df.withColumn(i, F.regexp_replace(F.col(i), '[.,#-:;/?!\']', ' '))
return df
Below is the error I get:
TypeError: 'Column' object is not callable
I think it should be df = df.select(['oproblem', 'lca']) instead of df = df.select('oproblem', 'lca').
Better yet for code quality purposes, have the select statement use the text_columns variable, so you only have to change 1 line of code if you need to do this with more columns or if your column names change. Eg,
def pd(data):
df = data
text_col = ['oproblem', 'lca']
df = df.select(text_col)
....

HiveQL to PySpark - issue with aggregated column in SELECT statement

I have following HQL script which needs to be puti nto pyspark, spark 1.6
insert into table db.temp_avg
select
a,
avg(b) ,
c
from db.temp WHERE flag is not null GROUP BY a, c;
I created few versions of spark code, but I'm stuggling how to get this averaged column into select.
Also I found out that groupped data cannot be write this way:
df3 = df2.groupBy...
df3.write.mode('overwrite').saveAsTable('db.temp_avg')
part of pyspark code:
temp_table = sqlContext.table("db.temp")
df = temp_table.select('a', 'avg(b)', 'c', 'flag').toDF('a', 'avg(b)', 'c', 'flag')
df = df.where(['flag'] != 'null'))
# this ofc does not work along with the avg(b)
df2 = df.groupBy('a', 'c')
df3.write.mode('overwrite').saveAsTable('db.temp_avg')
Thx for your help.
Correct solution:
import pyspark.sql.functions as F
df = sqlContext.sql("SELECT * FROM db.temp_avg").alias("temp")
df = df.select('a', 'b', 'c')\
.filter(F.col("temp.flag").isNotNULL())\
.groupby('a', 'c')\
.agg(F.avg('b').alias("avg_b"))
import pyspark.sql.functions as F
df = sqlContext.sql("select * from db.temp_avg")
df = df.select('a',
b,
'c')\
.filter(F.col("flag").isNotNULL())\
.groupby('a', 'c')\
.agg(F.avg('b').alias("avg_b"))
Then you can save the table by
df.saveAsTable("tabe_name")

Spark: Merge 2 dataframes by adding row index/number on both dataframes

Q: Is there is any way to merge two dataframes or copy a column of a dataframe to another in PySpark?
For example, I have two Dataframes:
DF1
C1 C2
23397414 20875.7353
5213970 20497.5582
41323308 20935.7956
123276113 18884.0477
76456078 18389.9269
the seconde dataframe
DF2
C3 C4
2008-02-04 262.00
2008-02-05 257.25
2008-02-06 262.75
2008-02-07 237.00
2008-02-08 231.00
Then i want to add C3 of DF2 to DF1 like this:
New DF
C1 C2 C3
23397414 20875.7353 2008-02-04
5213970 20497.5582 2008-02-05
41323308 20935.7956 2008-02-06
123276113 18884.0477 2008-02-07
76456078 18389.9269 2008-02-08
I hope this example was clear.
rownum + window function i.e solution 1 or zipWithIndex.map i.e solution 2 should help in this case.
Solution 1 : You can use window functions to get this kind of
Then I would suggest you to add rownumber as additional column name to Dataframe say df1.
DF1
C1 C2 columnindex
23397414 20875.7353 1
5213970 20497.5582 2
41323308 20935.7956 3
123276113 18884.0477 4
76456078 18389.9269 5
the second dataframe
DF2
C3 C4 columnindex
2008-02-04 262.00 1
2008-02-05 257.25 2
2008-02-06 262.75 3
2008-02-07 237.00 4
2008-02-08 231.00 5
Now .. do inner join of df1 and df2 that's all...
you will get below ouput
something like this
from pyspark.sql.window import Window
from pyspark.sql.functions import rowNumber
w = Window().orderBy()
df1 = .... // as showed above df1
df2 = .... // as shown above df2
df11 = df1.withColumn("columnindex", rowNumber().over(w))
df22 = df2.withColumn("columnindex", rowNumber().over(w))
newDF = df11.join(df22, df11.columnindex == df22.columnindex, 'inner').drop(df22.columnindex)
newDF.show()
New DF
C1 C2 C3
23397414 20875.7353 2008-02-04
5213970 20497.5582 2008-02-05
41323308 20935.7956 2008-02-06
123276113 18884.0477 2008-02-07
76456078 18389.9269 2008-02-08
Solution 2 : Another good way(probably this is best :)) in scala, which you can translate to pyspark :
/**
* Add Column Index to dataframe
*/
def addColumnIndex(df: DataFrame) = sqlContext.createDataFrame(
// Add Column index
df.rdd.zipWithIndex.map{case (row, columnindex) => Row.fromSeq(row.toSeq :+ columnindex)},
// Create schema
StructType(df.schema.fields :+ StructField("columnindex", LongType, false))
)
// Add index now...
val df1WithIndex = addColumnIndex(df1)
val df2WithIndex = addColumnIndex(df2)
// Now time to join ...
val newone = df1WithIndex
.join(df2WithIndex , Seq("columnindex"))
.drop("columnindex")
I thought I would share the python (pyspark) translation for answer #2 above from #Ram Ghadiyaram:
from pyspark.sql.functions import col
def addColumnIndex(df):
# Create new column names
oldColumns = df.schema.names
newColumns = oldColumns + ["columnindex"]
# Add Column index
df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
row + (columnindex,)).toDF()
#Rename all the columns
new_df = reduce(lambda data, idx: data.withColumnRenamed(oldColumns[idx],
newColumns[idx]), xrange(len(oldColumns)), df_indexed)
return new_df
# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)
#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
'inner').drop("columnindex")
for python3 version,
from pyspark.sql.types import StructType, StructField, LongType
def with_column_index(sdf):
new_schema = StructType(sdf.schema.fields + [StructField("ColumnIndex", LongType(), False),])
return sdf.rdd.zipWithIndex().map(lambda row: row[0] + (row[1],)).toDF(schema=new_schema)
df1_ci = with_column_index(df1)
df2_ci = with_column_index(df2)
join_on_index = df1_ci.join(df2_ci, df1_ci.ColumnIndex == df2_ci.ColumnIndex, 'inner').drop("ColumnIndex")
I referred to his(#Jed) answer
from pyspark.sql.functions import col
def addColumnIndex(df):
# Get old columns names and add a column "columnindex"
oldColumns = df.columns
newColumns = oldColumns + ["columnindex"]
# Add Column index
df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
row + (columnindex,)).toDF()
#Rename all the columns
oldColumns = df_indexed.columns
new_df = reduce(lambda data, idx:data.withColumnRenamed(oldColumns[idx],
newColumns[idx]), xrange(len(oldColumns)), df_indexed)
return new_df
# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)
#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
'inner').drop("columnindex")
This answer solved it for me:
import pyspark.sql.functions as sparkf
# This will return a new DF with all the columns + id
res = df.withColumn('id', sparkf.monotonically_increasing_id())
Credit to Arkadi T
Here is an simple example that can help you even if you have already solve the issue.
//create First Dataframe
val df1 = spark.sparkContext.parallelize(Seq(1,2,1)).toDF("lavel1")
//create second Dataframe
val df2 = spark.sparkContext.parallelize(Seq((1.0, 12.1), (12.1, 1.3), (1.1, 0.3))). toDF("f1", "f2")
//Combine both dataframe
val combinedRow = df1.rdd.zip(df2.rdd). map({
//convert both dataframe to Seq and join them and return as a row
case (df1Data, df2Data) => Row.fromSeq(df1Data.toSeq ++ df2Data.toSeq)
})
// create new Schema from both the dataframe's schema
val combinedschema = StructType(df1.schema.fields ++ df2.schema.fields)
// Create a new dataframe from new row and new schema
val finalDF = spark.sqlContext.createDataFrame(combinedRow, combinedschema)
finalDF.show
Expanding on Jed's answer, in response to Ajinkya's comment:
To get the same old column names, you need to replace "old_cols" with a column list of the newly named indexed columns. See my modified version of the function below
def add_column_index(df):
new_cols = df.schema.names + ['ix']
ix_df = df.rdd.zipWithIndex().map(lambda (row, ix): row + (ix,)).toDF()
tmp_cols = ix_df.schema.names
return reduce(lambda data, idx: data.withColumnRenamed(tmp_cols[idx], new_cols[idx]), xrange(len(tmp_cols)), ix_df)
Not the better way performance wise.
df3=df1.crossJoin(df2).show(3)
To merge columns from two different dataframe you have first to create a column index and then join the two dataframes. Indeed, two dataframes are similar to two SQL tables. To make a connection you have to join them.
If you don't care about the final order of the rows you can generate the index column with monotonically_increasing_id().
Using the following code you can check that monotonically_increasing_id generates the same index column in both dataframes (at least up to a billion of rows), so you won't have any error in the merged dataframe.
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
sample_size = 1E9
sdf1 = spark.range(1, sample_size).select(F.col("id").alias("id1"))
sdf2 = spark.range(1, sample_size).select(F.col("id").alias("id2"))
sdf1 = sdf1.withColumn("idx", sf.monotonically_increasing_id())
sdf2 = sdf2.withColumn("idx", sf.monotonically_increasing_id())
sdf3 = sdf1.join(sdf2, 'idx', 'inner')
sdf3 = sdf3.withColumn("diff", F.col("id1")-F.col("id2")).select("diff")
sdf3.filter(F.col("diff") != 0 ).show()
You can use a combination of monotonically_increasing_id (guaranteed to always be increasing) and row_number (guaranteed to always give the same sequence). You cannot use row_number alone because it needs to be ordered by something. So here we order by monotonically_increasing_id. I am using Spark 2.3.1 and Python 2.7.13.
from pandas import DataFrame
from pyspark.sql.functions import (
monotonically_increasing_id,
row_number)
from pyspark.sql import Window
DF1 = spark.createDataFrame(DataFrame({
'C1': [23397414, 5213970, 41323308, 123276113, 76456078],
'C2': [20875.7353, 20497.5582, 20935.7956, 18884.0477, 18389.9269]}))
DF2 = spark.createDataFrame(DataFrame({
'C3':['2008-02-04', '2008-02-05', '2008-02-06', '2008-02-07', '2008-02-08']}))
DF1_idx = (
DF1
.withColumn('id', monotonically_increasing_id())
.withColumn('columnindex', row_number().over(Window.orderBy('id')))
.select('columnindex', 'C1', 'C2'))
DF2_idx = (
DF2
.withColumn('id', monotonically_increasing_id())
.withColumn('columnindex', row_number().over(Window.orderBy('id')))
.select('columnindex', 'C3'))
DF_complete = (
DF1_idx
.join(
other=DF2_idx,
on=['columnindex'],
how='inner')
.select('C1', 'C2', 'C3'))
DF_complete.show()
+---------+----------+----------+
| C1| C2| C3|
+---------+----------+----------+
| 23397414|20875.7353|2008-02-04|
| 5213970|20497.5582|2008-02-05|
| 41323308|20935.7956|2008-02-06|
|123276113|18884.0477|2008-02-07|
| 76456078|18389.9269|2008-02-08|
+---------+----------+----------+

Resources